Skip to main content

A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem

  • Chapter

Abstract

This article is devoted to the numerical analysis of a fictitious domain method for the Stokes problem, where the boundary condition is enforced weakly by means of a multiplier defined in a portion of the domain. In practice, this is applied for example to the sedimentation of many particles in a fluid. It is found that the multiplier is divergence-free. We present here sufficient conditions on the relative mesh sizes for convergence of the discrete method. Also, we show how the constraint on the divergence of the discrete multiplier can be relaxed when such a sedimentation problem is discretized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A. (1975). Sobolev Spaces. Academic Press, New York.

    Google Scholar 

  2. Arnold, D.N., Scott, L.R. and Vogelius, M. (1988). Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa-Serie IV, XV:169–192.

    MathSciNet  Google Scholar 

  3. Bernardi, C. and Girault, V. (1998). A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal., 35:1893–1916.

    Article  MathSciNet  Google Scholar 

  4. Bramble, J., Pasciak, J. and Xu, J. (1991). The analysis of multigrid algorithms with non nested spaces and noninherited quadratic forms. Math. Comp., 56:1–34.

    MathSciNet  Google Scholar 

  5. Brenner, S. and Scott, L.R. (1994). The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York.

    Google Scholar 

  6. Brezzi, F. and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York.

    Google Scholar 

  7. Ciarlet, P.O. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam.

    Google Scholar 

  8. Clément, P. (1975). Approximation by finite element functions using local regularization. RAIRO, Anal Numér., R-2:77–84.

    MATH  Google Scholar 

  9. Glowinski, R., Hesla, T., Joseph, D.D., Pan, T.W. and Périaux, J. (1997). Distributed Lagrange multiplier methods for particulate flow, in: Computational Science for the 21st Century, pp.270–279, M.O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux, M.F. Wheeler (Eds.).

    Google Scholar 

  10. Glowinski, R., Pan, T.W. and Périaux, J. (1998). Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comp. Meth. Appl. Mech. Engrg., 151:181–194.

    Google Scholar 

  11. Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D. and Périaux, J. (1998). A fictitious-domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow, in: Domain Decomposition Methods, 10:121–137, J. Mandel, C. Favhat, X.C. Cai (Eds.), AMS, Providence, R.I.

    Google Scholar 

  12. Girault, V. and Raviart, P.A. (1986). Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, New York.

    Google Scholar 

  13. Grisvard, P. (1985). Elliptic Problems in Nonsmooth Domains, Pitman, Boston.

    Google Scholar 

  14. Lions, J.L. and Magenes, E. (1968). Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris.

    Google Scholar 

  15. Nečas, J. (1967). Les Méthodes directes en théorie des équations elliptiques, Masson, Paris.

    Google Scholar 

  16. Scott, L.R. and Zhang, S. (1990). Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp., 54:483–493.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Girault, V., Glowinski, R., Pan, T.W. (2002). A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem. In: Sequeira, A., da Veiga, H.B., Videman, J.H. (eds) Applied Nonlinear Analysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47096-9_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47096-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46303-7

  • Online ISBN: 978-0-306-47096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics