Skip to main content

Part of the book series: Selected Topics in Superconductivity ((STIS))

  • 409 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kamerlingh-Onnes, Further experiments with liquid helium. G. On the electrical resistance of pure metals, etc., VI. On the sudden change in the rate at which the resistance of mercury disappears. Communication from the Physical Laboratory of the University of Leiden, No. 124c, (1911).

    Google Scholar 

  2. W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Einritt der Supraleitfahigkeit, Naturwiss. 21(44), 787–788(1933).

    Article  ADS  Google Scholar 

  3. F. and H. London, The electromagnetic equations of the superconductor, Proc. Roy. Soc. Lond. A149, 71–88(1935).

    ADS  Google Scholar 

  4. Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115(3), 485–491 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. L. Feinberg, On the “special role” of the electromagnetic potentials in quantum mechanics, Sov. Phys. Uspekhi 5(5), 753–760 (1963) [Usp. Fiz. Nauk 78(1), 53–64 (1962)].

    Article  ADS  Google Scholar 

  6. S. Olariu and 1.1. Popescu, The quantum effects of electromagnetic fluxes, Rev. Mod. Phys. 57(2), 339–436 (1986).

    Article  ADS  Google Scholar 

  7. F. London, Macroscopical interpretation of superconductivity, Proc. Roy. Soc. London A152, 24–34(1935).

    Google Scholar 

  8. P. A. M Dirac, The Principles of Quantum Mechanics, 4th ed., pp. 253–275, Clarendon Press, Oxford (1958).

    MATH  Google Scholar 

  9. C. Kittel, Quantum Theory of Solids, pp. 286–288, Wiley, New York (1963).

    Google Scholar 

  10. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, pp. 1–44, McGraw-Hill, New York (1964).

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics, 4th ed., pp. 727–729, Wiley, New York (1971).

    Google Scholar 

  12. P. G. De Gennes, Superconductivity of Metals and Alloys, pp. 1–272, W.A. Benjamin, New York (1966).

    MATH  Google Scholar 

  13. D. Lurié and S. Cremer, Zitterbewegung of quasiparticles in superconductors, Physica 50, 224–240(1970).

    Article  ADS  Google Scholar 

  14. C. J. Pethick and H. Smith, Relaxation and collective motion in superconductors: A two-fluid description, Ann. Phys. 119(1), 133–169(1979).

    Article  ADS  Google Scholar 

  15. O. Klein, Die Reflection von Elektronen an einen Potentialssprung nach der relativistischen Dynamic von Dirac, Z. Phys. 53, 157–165 (1929).

    Article  MATH  ADS  Google Scholar 

  16. A. F. Andreev, The thermal conductivity of the intermediate state in superconductors, Sov. Phys. JETP 19(5), 1228–1231 (1964) [Zh. Eksp. i Teor. Fiz. 46(5) 1823–1828 (1964)].

    Google Scholar 

  17. I. P. Krylov and Yu. V. Sharvin, Radio-frequency size effect in a layer of normal metal bounded by its superconducting phase, Sov. Phys. JETP 37(3), 481–486 (1973) [Zh. Eksp. i Tear. Fiz. 64(3) 946–957(1973)].

    ADS  Google Scholar 

  18. P. W. Anderson, When the electron falls apart, Phys. Today, October, 42–47 (1997).

    Google Scholar 

  19. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B 25(7), 4515–4532 (1982).

    Article  ADS  Google Scholar 

  20. S. Sinha and K.-W. Ng, Zero bias conductance peak enhancement in Bi 2Sr2CaCu2Os/Pb tunneling junctions, Phys. Rev. Lett. 80(6), 1296–1299 (1998).

    Article  ADS  Google Scholar 

  21. Y. Tanaka and S. Kashiwaya, Theory of tunneling spectroscopy of d-wave superconductors, Phys. Rev. Lett. 74(17), 3451–3454 (1995).

    Article  ADS  Google Scholar 

  22. S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kajimura, Theory for tunneling spectroscopy of anisotropic superconductors, Phys. Rev. B 53(5), 2667–2676 (1996).

    Article  ADS  Google Scholar 

  23. T. P. Devereaux and P. Fulde, Multiple Andreev scattering in superconductor normal-metal superconductor junctions as a test for anisotropic electron pairing, Phys. Rev. B 47(21), 14638–14641 (1993).

    Article  ADS  Google Scholar 

  24. C.-R. Hu, Midgap surface states as a novel signature for d x 2a −x 2a -wave superconductivity, Phys. Rev. Lett. 72(10), 1526–1529 (1994).

    Article  ADS  Google Scholar 

  25. J. H. Xu, J. H. Miller, Jr., and C. S. Ting, Conductance anomalies in a normal-metal-d-wave superconductor junction, Phys. Rev. B 53(6), 3604–3612 (1996).

    Article  ADS  Google Scholar 

  26. J. M. Hergenrother, M. T. Tuominen, and M. Tinkham, Charge transport by Andreev reflection through a mesoscopic superconducting island, Phys. Rev. Lett. 72(11), 1742–1745 (1994).

    Article  ADS  Google Scholar 

  27. B. J. van Wees, P. de Vries, P. Magée, and T. M. Klapwijk, Excess conductance of superconductor-semiconductor interfaces due to phase conjugation between electrons and holes, Phys. Rev. Lett. 69(3), 510–513 (1992).

    Article  ADS  Google Scholar 

  28. F. W. J. Hekking and Yu. V. Nazarov, Interference of two electrons entering a superconductor, Phys. Rev. Lett. 71(10), 1625–1628 (1993).

    Article  ADS  Google Scholar 

  29. V. L. Ginzburg and L. D. Landau, To the theory of superconductivity, Zh. Eksp. i Teor. Fiz. 20(12), 1064–1082 (1950), in Russian.

    Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed., pp. 424–454, Addison-Wesley, Reading, MA (1970).

    Google Scholar 

  31. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics. Part 2 (Addison-Wesley Publishing Company, Reading, 1980), pp. 450–468.

    Google Scholar 

  32. A. A. Abrikosov, Fundamentals of the Theory of Metals, pp. 392–396, North-Holland, Amsterdam (1988).

    Google Scholar 

  33. J. Bardeen, L. Cooper, and J. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175–1204(1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. B. S. Deaver and W. M. Fairbank, Jr., Experimental evidence for quantized flux in superconducting cylinders, Phys. Rev. Lett. 7(2), 43–46 (1961).

    Article  ADS  Google Scholar 

  35. D. R. Doll and M. Nöbauer, Experimental proof of magnetic flux quantization in superconducting ring, Phys. Rev. Lett. 7(2), 51–52 (1961).

    Article  ADS  Google Scholar 

  36. L. Cooper. Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189–1190 (1956).

    Article  MATH  ADS  Google Scholar 

  37. L. I. Schiff, Quantum Mechanics, 3rd ed., p. 247, McGraw-Hill, New York (1968).

    Google Scholar 

  38. S. T. Belyayev, Application of the methods of quantum field theory to a system of bosons, Sov. Phys. JETP 7 (2), 289–299 (1958) [Zh. Eksp. i Teor. Fiz. 34(2), 417–432 (1958)].

    Google Scholar 

  39. P. W. Anderson, Basic Notions of Condensed Matter Physics, pp. 229–248, Benjamin/Cummings, London, (1984).

    Google Scholar 

  40. L. P. Gor’kov, On the energy spectrum of superconductors, Sov. Phys. JETP 7(3), 505–508 (1964) [Zh. Eksp. i Tear. Fiz. 34(3) 735–739 (1958)].

    Google Scholar 

  41. J. R. Schrieffer, Theory of Superconductivity, pp. 1–282, W. A. Benjamin, New York (1964).

    MATH  Google Scholar 

  42. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd ed., pp. 42–439, Pergamon, Oxford (1965).

    MATH  Google Scholar 

  43. V. L. Ginzburg, Superconductivity and Superfluidity (What is done and what is not done) Sov. Phys. Uspekhi. 40(4), 407–432 (1997) [Usp. Fiz. Nauk 167(4), 429–454 (1997)].

    ADS  Google Scholar 

  44. O. Penrose and L. Onsager, Bose-Einstein condensation and liquid helium, Phys. Rev. 104(3), 576–584(1956).

    Article  ADS  MATH  Google Scholar 

  45. V. P, Mineev, Superfluid 3He: Introduction to the subject, Sov. Phys. Uspekhi 26(2), 160–175 (1963) [Usp. Fiz. Nauk 139(2), 303–332 (1983)].

    Article  ADS  Google Scholar 

  46. G. E. Volovik and L. P. Gor’kov, Superconducting classes in heavy-fermion systems, Sov. Phys. JETP 61(4), 843–854 (1985) [Zh. Eksp. i Teor. Fiz. 88(4), 1412–1429 (1985)].

    Google Scholar 

  47. E. G. Maximov, in: High-temperature Superconductivity, edited by V. L. Ginzburg and D. A. Kirzhnits, pp. 1–364, Consultants Bureau, New York (1982).

    Google Scholar 

  48. V. Z. Kresin and S. A. Wolf, Microscopic model for the isotope effect in high-T c oxides, Phys. Rev. B 49(5), 3652–3654(1994).

    Article  ADS  Google Scholar 

  49. A. Bill, V. Z. Kresin, and S. A. Wolf, Isotope effect in high-T c materials: Role of non-adiabaticity and magnetic impurities, Z. Phys. B 104(4), 759–763 (1997).

    Article  ADS  Google Scholar 

  50. L. P. Gor’kov, Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity, Sov. Phys. JETP 9(6), 1364–1367 (1959) [Zh. Eksp. i Teor. Fiz. 36(6), 1918–1923 (1959)].

    MATH  Google Scholar 

  51. G. M. Eliashberg, Theory of nonequilibrium states and nonlinear electrodynamics of superconductors (Thesis Sov. Doct. Degree, Chernogolovka — Moscow, 1971).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Basic Equilibrium Properties. In: Nonequilibrium Electrons and Phonons in Superconductors. Selected Topics in Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/0-306-47087-X_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47087-X_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46075-3

  • Online ISBN: 978-0-306-47087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics