Principles of Fluorescence Immunoassay

  • Alvydas J. Ozinskas
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 4)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Hemmilä, Applications of Fluorescence in Immunoassays (J. D. Winefordner and I. M. Kolthoff, series eds.), John Wiley & Sons, New York (1991).Google Scholar
  2. 2.
    K. Van Dyke and R. Van Dyke, Eds., Luminescence Immunoassay and Molecular Applications, CRC Press, Boca Raton, Florida (1990).Google Scholar
  3. 3.
    C. P. Price and D. J. Newman, Eds., Principles and Practice of Immunoassay, Stockton Press, New York (1991).Google Scholar
  4. 4.
    T. T. Ngo, Nonisotopic Immunoassay, Plenum Press, New York (1988).Google Scholar
  5. 5.
    W. P. Collins, Ed., Alternative Immunoassays, John Wiley & Sons, New York (1985).Google Scholar
  6. 6.
    E. P. Diamandis, Immunoassays with time-resolved fluorescence spectroscopy. Principles and applications, Clin. Biochem. 21, 139–150 (1988).PubMedGoogle Scholar
  7. 7.
    J. F. Place, R. M. Sutherland, and C. Dähne, Opto-electronic immunosensors: A review of optical immunoassay at continuous surfaces, Biosensors 1, 321–353 (1985).CrossRefPubMedGoogle Scholar
  8. 8.
    J. P. Gosling, A decade of development in immunoassay methodology, Clin. Chem. 36, 1408–1427 (1990).PubMedGoogle Scholar
  9. 9.
    V. P. Butler, Jr., D. H. Schmidt, T. W. Smith, E. Haber, B. D. Raynor, and P. Demartini, Effects of sheep digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs, J. Clin. Invest. 59, 345–359 (1977).PubMedGoogle Scholar
  10. 10.
    E. Lamoyi and A. Nisonoff, Preparation of F(ab’)2 fragments from mouse IgG of various subclasses, J. Immunol. Methods 56, 235–243 (1983).CrossRefPubMedGoogle Scholar
  11. 11.
    P. Parham, On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice, J. Immunol. 131, 2895–2902 (1983).PubMedGoogle Scholar
  12. 12.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256, 495–497 (1975).PubMedGoogle Scholar
  13. 13.
    Linscott’s Directory, 4877 Grange Road, Santa Rosa, California 95404.Google Scholar
  14. 14.
    J. H. Howanitz, Immunoassay innovations in label technology, Arch. Pathol. Lab. Med. 112, 775–779 (1988).PubMedGoogle Scholar
  15. 15.
    E. Soini and I. Hemmilä, Fluoroimmunoassay: Present status and key problems, Clin. Chem. 25, 353–361 (1979).PubMedGoogle Scholar
  16. 16.
    R. S. Davidson and M. M. Hilchenbach, The use of fluorescent probes in immunochemistry, Photochem. Photobiol. 52, 431–38 (1990).PubMedGoogle Scholar
  17. 17.
    M. Brinkley, A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents, Bioconjugate Chem. 3, 2–13 (1992).CrossRefGoogle Scholar
  18. 18.
    S. H. Wong, Chemistry of Protein Conjugation and Cross-Linking, CRC Press, Boca Raton, Florida (1991).Google Scholar
  19. 19.
    R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjugate Chem. 4, 105–111 (1993).CrossRefGoogle Scholar
  20. 20.
    T. A. Kelly, C. A. Hunter, D. C. Schindele, and B. V. Pepich, Aluminum phthalocyanine-streptavidin: New, sensitive fluorescent tracer for immunoassay, Clin. Chem. 37, 1283–1286 (1991).PubMedGoogle Scholar
  21. 21.
    D. C. Schindele and G. E. Renzoni, Ultra Fluors: New fluorophores for immunological applications, J. Clin. Immunoassay 13, 182–186 (1990).Google Scholar
  22. 22.
    S. A. Soper, Q. L. Mattingly, and P. Vegunta, Photon burst detection of single near-infrared fluorescent molecules, Anal. Chem. 65, 740–747 (1993).CrossRefGoogle Scholar
  23. 23.
    L. E. Morrison, Time-resolved detection of energy transfer: Theory and application to immunoassays, Anal. Biochem. 174, 101–120 (1988).CrossRefPubMedGoogle Scholar
  24. 24.
    M. N. Kronick and P. D. Grossman, Immunoassay techniques with fluorescent phycobiliprotein conjugates, Clin. Chem. 29, 1582–1586 (1983).PubMedGoogle Scholar
  25. 25.
    J. D. Rodwell, V. L. Alvarez, C. Lee, A. D. Lopes, J. W. F. Goers, H. D. King, H. J. Powsner, and T. J. McKearn, Site-specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations, Proc. Natl. Acad. Sci. USA 83, 2632–2636 (1986).PubMedGoogle Scholar
  26. 26.
    M.-M. Chua, S.-T. Fan, and F. Karush, Attachment of immunoglobulin to liposomal membrane via protein carbohydrate, Biochim. Biophys. Acta 800, 291–300 (1984).PubMedGoogle Scholar
  27. 27.
    B. Packard and M. Edidin, Site-directed labeling of a monoclonal antibody: Targeting to a disulfide bond, Biochemistry 25, 3548–3552 (1986).CrossRefPubMedGoogle Scholar
  28. 28.
    F. J. Martin and D. Papahadjopoulos, Irreversible coupling of immunoglobulin fragments to preformed vesicles, J. Biol. Chem. 257, 286–288 (1982).PubMedGoogle Scholar
  29. 29.
    E. Ishikawa, M. Imagawa, S. Hashida, S. Yoshitake, Y. Hamaguchi, and T. Ueno, Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining, J. Immunoassay 4, 209–327 (1983).PubMedGoogle Scholar
  30. 30.
    D. L. Meadows, J. S. Shafer, and J. S. Schultz, J. Immunol. Methods 143, 263–272 (1991).CrossRefPubMedGoogle Scholar
  31. 31.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).Google Scholar
  32. 32.
    E. Amler, L. Mazzanti, E. Bertoli, and A. Kotyk, Lifetime distribution of low sample concentrations: A new cuvette for highly accurate and sensitive fluorescence measurements, Biochem. Int. 27, 771–776 (1992).PubMedGoogle Scholar
  33. 33.
    W. Groskopf, B. Green, L. Sohn, and S. Hsu, Furosemide as a displacing agent in assay of total triiodothyronine, Clin. Chem. 37, 587–588 (1991).PubMedGoogle Scholar
  34. 34.
    A. J. Ozinskas, H. Malak, J. Joshi, H. Szmacinski, J. Britz, R. B. Thompson, P. A. Koen, and J. R. Lakowicz, Homogeneous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy, Anal. Biochem. 213, 264–270 (1993).CrossRefPubMedGoogle Scholar
  35. 35.
    R. P. Ekins, Current concepts and future developments, in: Alternative Immunoassays (W. P. Collins, ed.), pp. 219–237, John Wiley & Sons, New York (1985).Google Scholar
  36. 36.
    J. El Jabri, S. De Lauzon, and N. Cittanova, Estrogen fluoroimmunoassay with a fluorimeter designed for low-intensity light detection, Anal. Chim. Acta 227, 129–134 (1989)Google Scholar
  37. 37.
    W. K. Wang, L. T. Ho, Y. Chiang, and T.C. Chen, A space-resolved fluorometer and its application to immunoassay, J. Immunol. Methods 112, 173–176 (1988).CrossRefPubMedGoogle Scholar
  38. 38.
    W. K Wang, L. T. Ho, and Y. Chiang, Space-resolved fluoroimmunoassay for quantifying α-feto-protein in serum, Clin. Chem. 39, 1659–1661 (1993).PubMedGoogle Scholar
  39. 39.
    V. M. Bertram, M. P. Bailey, and B. F. Rocks, Multiple releasable fluorescein labels for immunoassay. The principle illustrated by an immunoassay for antibodies to the human immunodeficiency virus, Ann. Clin. Biochem. 28, 487–491 (1991).PubMedGoogle Scholar
  40. 40.
    T. L. Keimig and L. B. McGown, Micellar modification of the spectral, intensity and lifetime characteristics of fluorescein-labeled phenobarbital, Talanta 33, 653–656 (1986).CrossRefGoogle Scholar
  41. 41.
    O. R. Bethell, M. Dawson, and M. J LaFoe, Characterization of monoclonal antibodies to cell surface antigens by particle concentration fluorescence immunoassay (PCFIA), BioTechniques 3, 466–473 (1985).Google Scholar
  42. 42.
    K. Auditore-Hargreaves, R. L. Houghton, N. Monji, J. H. Priest, A. S. Hoffman, and R. C. Nowinski, Phase-separation immunoassays, Clin. Chem. 33, 1509–1516 (1987).PubMedGoogle Scholar
  43. 43.
    W. B. Dandliker, R. J. Kelly, J. Dandliker, J. Farquhar, and J. Levin, Fluorescence polarization immunoassay. Theory and experimental method, Immunochemistry 10, 219–227 (1973).CrossRefPubMedGoogle Scholar
  44. 44.
    M. Fiore, J. Mitchell, T. Doan, R Nelson, G. Winter, C. Grandone, K. Zeng, R. Haraden, J. Smith, K. Harris, J. Leszczynski, D. Berry, S. Safford, G. Barnes, A. Scholnick, and K. Ludington, The Abbott IMx automated benchtop imunochemistry analyzer, Clin. Chem. 34, 1726–1732 (1988).PubMedGoogle Scholar
  45. 45.
    R. A. A. Watson, J. Landon, E. J. Shaw, and D. S. Smith, Polarisation fluoroimmunoassay of gentamicin, Clin. Chim. Acta 73, 51–55 (1976).CrossRefPubMedGoogle Scholar
  46. 46.
    A R. McGregor, J. C). Crookall-Grecning, J. Landon, and D. S. Smith, Polarisation fluoroimmunoassay of phenytoin, Clin. Chim. Acta 83, 161–166 (1978).CrossRefPubMedGoogle Scholar
  47. 47.
    F. V Bright, Multifrequency phase fluorescence study of hapten-antibody complexation, Anal. Chem. 61, 309–313 (1989).PubMedGoogle Scholar
  48. 48.
    F. Perrin, Polarization de la lumiere de fluorescence. Vie moyenne de molecules dans l’etat excite, J. Phys. Radium. 7, 390–401 (1926).Google Scholar
  49. 49.
    F. V. Bright and L. B. McGown, Homogeneous immunoassay of phenobarbital by phase-resolved fluorescence spectroseopy, Talanta 32, 15–18 (1985).CrossRefGoogle Scholar
  50. 50.
    S. A, Eremin, D. E. Schiavetta, H. Lotey, D. S. Smith, and J. Landon, Design and development of a single-reagent polarization fluoroimmunoassay for methamphetamine, Ther. Drug Monitoring 10, 327–332 (1988).Google Scholar
  51. 51.
    T. Uematsu, R. Sato, A. Mizuno, M. Nishimoto, S. Nagashima, and M. Nakashima, A fluorescence polarization immunoassay evaluated for quantifying astromicin, a new aminoglycoside antibiotic, Clin. Chem. 34, 1880–1882 (1988).PubMedGoogle Scholar
  52. 52.
    P. Urios, N. Cittanova, and M.-F. Jayle, Immunoassay of the human chorionic gonadotropin using fluorescence polarization, FEBS Lett. 94, 54–58 (1978).CrossRefPubMedGoogle Scholar
  53. 53.
    K. Nithipatikom and L. B. McGown, Homogeneous immunochemical technique for determination of human lactoferrin using excitation transfer and phase-resolved fluorometry. Anal. Chem. 59, 423–427 (1987).CrossRefPubMedGoogle Scholar
  54. 54.
    P. Urios and N. Cittanova, Adaptation of fluorescence polarization immunoassay to the assay of macromolecules, Anal. Biochem. 185, 308–312 (1990).CrossRefPubMedGoogle Scholar
  55. 55.
    S. H. Grossman. Fluorescence polarization immunoassay applied to macromolecules: Creatine kinase-BB, J. Clin. Immunoassay 7, 96–100 (1984).Google Scholar
  56. 56.
    M. Tsuruoka, E. Tamiya, and I. Karube, Fluorescence polarization immunoassay employing immobilized antibody, Biosensors and Bioelectronics 6, 501–505 (1991).CrossRefPubMedGoogle Scholar
  57. 57.
    R. P. Fisher and J. D. Winefordner, Pulsed source-time resonance phosphorimetry, Anal. Chem. 44, 948–956 (1972).Google Scholar
  58. 58.
    C. G. Barnes and J. D. Winefordner, Optimization of time-resolved phosphorimetry, Appl. Spectrosc. 38, 214–228 (1984).CrossRefGoogle Scholar
  59. 59.
    E. Soini and H. Kojola, Time-resolved fluorometer for lanthanide chelates-a new generation of nonisotopic immunoassays, Clin. Chem. 29, 65–68 (1983).PubMedGoogle Scholar
  60. 60.
    N. Sabbatini, M. Guardigli, A. Mecati, V. Balzani, R. Ungaro, E. Ghidini, A. Casnati, and A. Pochini, Encapsulation of lanthanide ions in calixarene receptors. A strongly luminescent terbium(3+) complex, J. Chem. Soc. Chem. Commun. 878–879 (1990).Google Scholar
  61. 61.
    V.-M. Mukkala and J. Kankare, New fluorescent Eu(III) and Tb(III) chelates of 2,2′-bipyridine derivatives, Eur. J. Solid State Inorg. Chem, 29, 53–56 (1992).Google Scholar
  62. 62.
    G. F. de Sa, L. H. A. Nunes, and O. L. Malta, Synthesis, characterization and luminescence of europium(III) and terbium(III) complexes of 3-aminopyrazine-2-carboxylic acid, J. Chem. Res. (S), 78–79 (1992).Google Scholar
  63. 63.
    L. Prodi, M. Maestri, R. Ziessel, and V. Balzani, Luminescent Eu3+, Tb3+, and Gd3+ complexes of a branched-triazacyclononane ligand containing three 2,2′-bipyridine units, Inorg. Chem. 30, 3798–3802 (1991).CrossRefGoogle Scholar
  64. 64.
    V. Balzani and R. Ballardini, New trends in the design of luminescent metal complexes, Photochem. Photobiol. 52, 409–416 (1990).Google Scholar
  65. 65.
    M. P. Bailey, B. F. Rocks, and C. Riley, Chelated terbium as a label in fluorescence immunoassay, in: Nonisotopic Immunoassay (T. Ngo, ed.), pp. 187–197, Plenum Press, New York (1988).Google Scholar
  66. 66.
    I. A. Hemmilä, S. Dakubu, V.-M. Mukkala, H. Siitari, and T. Lövgren, Europium as a label in time-resolved immunofluorometric assays, Anal. Biochem. 137, 335–343 (1984).PubMedGoogle Scholar
  67. 67.
    I. A. Hemmilä, Time-resolved fluorometric determination of terbium in aqueous solution, Anal. Chem. 57, 1676–1681 (1985).Google Scholar
  68. 68.
    T. Lövgren, I. Hemmilä, K. Pettersson and P. Halonen, Time-resolved fluorometry in immunoassay, in: Alternative Immunoassays (W. P. Collins, ed.) pp. 203–217, John Wiley & Sons, New York (1985).Google Scholar
  69. 69.
    E. Soini, Pulsed light, time-resolved fluorometric immunoassay, in: Monocolonal Antibodies and New Trends in Immunoassays (Ch. A. Bixollon, ed.) pp. 197–208, Elsevier Science Publishers, Amsterdam (1984).Google Scholar
  70. 70.
    V.-M. Mukkala, H. Mikoia, and I. Hemmilä, The synthesis and use of activated N-benzyl derivatives of diethylenetriaminetetraacetic acids: Alternative reagents for labeling of antibodies with metal ions, Anal. Biochem. 176, 319–325 (1989).CrossRefPubMedGoogle Scholar
  71. 71.
    P. Helsingius, 1. Hemmilä, and T. Lövgren, Solid-phase immunoassay of digoxin by measuring time-resolved fluorescence, Clin. Chem. 32, 1767–1769 (1986).PubMedGoogle Scholar
  72. 72.
    K.-T. Yeo, T. M. Sioussat, J. D. Faix, D. R. Senger, and T.-K. Yeo, Development of time-resolved immunofluorometric assay of vascular permeability factor, Clin. Chem. 38, 71–75 (1992).PubMedGoogle Scholar
  73. 73.
    P. Nuutila, P. Koskinen, K. Irjala, L. Linko, H.-L. Kaihola, J. U. Eskola, R. Erkkola, P. Seppcälä, and J. Viikari, Two new two-step immunoassays for free thyroxine evaluated: Solid-phase radioimmunoassay and time-resolved fluoroimmunoassay, Clin. Chem. 36, 1355–1360 (1990).PubMedGoogle Scholar
  74. 74.
    T. Lövgren, I. Hemmilä, K. Pettersson, J. U. Eskola, and E. Bertoft, Determination of hormones by time-resolved fluoroimmunoassay, Talanta 31, 909–916 (1984).Google Scholar
  75. 75.
    E. P. Diamandis and R. C. Morton, Time-resolved fluorescence using a europium chelate of 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BCPDA). Labelling procedures and applications in immunoassays, J. Immunol. Methods 112, 43–52 (1988).CrossRefPubMedGoogle Scholar
  76. 76.
    E. P. Diamandis and T. K. Christopoulos, Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays, Anal. Chem. 62, 1149A–1157A (1990).PubMedGoogle Scholar
  77. 77.
    V. Bhayana and E. P. Diamandis, A double monoclonal time-resolved immunofluorometric assay of carcinoembryonic antigen in serum, Clin. Biochem. 22, 433–138 (1989).PubMedGoogle Scholar
  78. 78.
    E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label, Anal. Chem. 60, 1069–1074 (1988).CrossRefPubMedGoogle Scholar
  79. 79.
    M. J. Khosravi and E. P. Diamandis, Immunofluorometry of choriogonadotropin by time-resolved fluorescence spectroscopy, with a new europium chelate as label, Clin. Chem. 33, 1994–1999 (1987).PubMedGoogle Scholar
  80. 80.
    M. A. Chan, A. C. Bellem, and E. P. Diamandis, Time-resolved immunofluorometric assay of alpha-fetoprotein in serum and amniotic fluid with a novel detection system, Clin. Chem. 33, 2000–2003 (1987).PubMedGoogle Scholar
  81. 81.
    P. Shankaran, E. Reichstein, M. J. Khosravi, and E. P. Diamandis, Detection of immunoglobulins G and M to rubella virus by time-resolved immunofluorometry, J. Clin. Microbiology 28, 573–579 (1990).Google Scholar
  82. 82.
    E. P. Diamandis and T. K. Christopoulos, Time-resolved immunofluorometric detection of antigens separated by high-performance liquid chromatography and coated to polystyrene, BioTechniques 10, 646–648 (1991).PubMedGoogle Scholar
  83. 83.
    T. K. Christopoulos and E. P. Diamandis, Enzymatically amplified time-resolved fluorescence immunoassay with terbium chelates, Anal. Chem. 64, 342–346 (1992).CrossRefPubMedGoogle Scholar
  84. 84.
    A. Papanastasiou-Diamandi, T. K. Christopoulos, and E. P. Diamandis, Ultrasensitive thyrotropin immunoassay based on enzymatically amplified time-resolved fluorescence with a terbium chelate, Clin. Chem. 38, 545–548 (1992).PubMedGoogle Scholar
  85. 85.
    R. A. Evangelista, A. Pollak, and E. F. G. Templeton, Enzyme-amplified lanthanide luminescence for enzyme detection in bioanalytical assays, Anal. Biochem. 197, 213–224 (1991).CrossRefPubMedGoogle Scholar
  86. 86.
    P. L. Khanna, Fluorescence energy transfer immunoassays, in: Nonisotopic Immunoassay (T. T. Ngo, ed.), pp. 211–229, Plenum Press, New York (1988).Google Scholar
  87. 87.
    K. Albertsson-Wickland, C. Jansson, S. Rosberg, and Anne Novamo, Time-resolved immunofluorometric assay of human growth hormone, Clin. Chem. 39, 1620–1625 (1993).Google Scholar
  88. 88.
    S. E. Kakabakos, T. K. Christopoulos, and E. P. Diamandis, Multianalyte immunoassay based on spatially distinct fluorescent areas quantified by laser-excited solid-phase time-resolved fluorometry, Clin. Chem. 38, 338–342 (1992).PubMedGoogle Scholar
  89. 89.
    Y.-Y. Xu, K. Pettersson, K. Blomberg, I. Hemmilä, H. Mikola, and T. Lövgren, Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17 α-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase, Clin. Chem. 38, 2038–2043 (1992).PubMedGoogle Scholar
  90. 90.
    I. Hemmilä, O. Malminen, H. Mikola, and T. Lövgren, Homogeneous time-resolved fluoroimmunoassay of thyroxin in serum, Clin. Chem. 34, 2320–2322 (1988).PubMedGoogle Scholar
  91. 91.
    G Barnard, F. Kohen, H. Mikola, and T. Lövgren, Measurement of estrone-3-glucuronide in urine by rapid, homogeneous time-resolved fluoroimmunoassay, Clin. Chem. 35, 555–559 (1989).PubMedGoogle Scholar
  92. 92.
    E. F. Ullman, M. Schwarzberg, and K. E. Rubenstein, Fluorescent excitation transfer immunoassay. A general method for determination of antigens, J. Biol. Chem. 251, 4172–4178 (1976).PubMedGoogle Scholar
  93. 93.
    I. B. Berlman, in: Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, New York (1971).Google Scholar
  94. 94.
    M. N. Kronick, Phycobiliproteins as labels in immunoassay, in: Nonisotopic Immunoassay (T. Ngo, ed.), pp. 163–185, Plenum Press, New York (1988).Google Scholar
  95. 95.
    P. L. Khanna and E. F. Ullman, 4′,5′-Dimethoxy-6-carboxyfluorescein: A novel dipole-dipole coupled fluorescence energy transfer acceptor useful for fluorescence immunoassays, Anal. Biochem. 108, 156–161 (1980).CrossRefPubMedGoogle Scholar
  96. 96.
    E. F. Ullman and P. L. Khanna, Fluorescence excitation transfer immunoassay (FETI), Methods in Enzymology 74, 28–60 (1981).PubMedGoogle Scholar
  97. 97.
    I. Wieder and R. L. Hale, PCT Patent Application WO 87/07,955 (1987).Google Scholar
  98. 98.
    M. Genet, V. Brandel, M.-P. Lahalle, and E. Simoni, Electronic energy transfer between coumarin 460 and Eu3+ in thorium phosphate xerogel, C. R. Acad. Sci. Paris 311 (Series II), 1321–1325 (1990).Google Scholar
  99. 99.
    E. Gratton and M. Limkeman, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44, 665–669 (1983).Google Scholar
  100. 100.
    J. R. Lakowicz and B. P. Maliwal, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21, 61–78 (1985).CrossRefPubMedGoogle Scholar
  101. 101.
    J. R. Lakowicz, G. Laczko, and 1. Gryczynski, A 2 GHz frequency-domain fluorometer, Rev. Sci. Instrum. 57, 2499–2506 (1986).CrossRefGoogle Scholar
  102. 102.
    R. B. Thompson, J. K. Frisoli, and J. R. Lakowicz, Phase fluorometry using a continuously modulated laser diode, Anal. Chem. 64, 2075–2078 (1992).CrossRefGoogle Scholar
  103. 103.
    R. D. Spencer and G. Weber, Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N.Y. Acad. Sci. 158, 361–376 (1969).Google Scholar
  104. 104.
    J. R. Lakowicz and S. Heating, Binding of an indole derivative to micelles as quantified by phase-sensitive detection of fluorescence, J. Biol. Chem. 5519–5524 (1983).Google Scholar
  105. 105.
    F. V. Bright, T. L. Keimig, and L. B. McGown, Thermodynamic binding parameters evaluated by using phase-resolved fluorescence spectroscopy, Anal. Chim. Acta 175, 189–201 (1985).CrossRefGoogle Scholar
  106. 106.
    Y. R. Tahboub and L. B. McGown, Phase-resolved fluoroimmunoassay of human serum albumin, Anal. Chim. Acta 182, 185–191 (1986).CrossRefGoogle Scholar
  107. 107.
    J. R. Lakowicz, B. Maliwal, A. J. Ozinskas, and R. B. Thompson, Fluorescence lifetime energy-transfer immunoassay quantified by phase-modulation fluorometry. Sensors and Actuators B 12, 65–70 (1993).Google Scholar
  108. 108.
    J. P. O’Connell, R. L. Campbell, B. M. Fleming, T. J. Mercolino, M. D. Johnson, and D. A. McLaurin, A highly sensitive immunoassay system involving antibody-coated tubes and liposome-entrapped dye, clin. Chem. 31, 1424–1426 (1985).Google Scholar
  109. 109.
    A. L. Plant, M. V. Brizgys, L. Locasio-Brown, and R. A. Durst, Generic liposome reagent for immunoassays. Anal. Biochem. 176, 420–426 (1989).CrossRefPubMedGoogle Scholar
  110. 110.
    M. Fiechtner, M. Wong, C. Bieniarz, and M. T. Shipchandler, Hydrophilic fluorescein derivatives: Useful reagents for liposome immunolytic assays, Anal. Biochem. 180, 140–146 (1989).CrossRefPubMedGoogle Scholar
  111. 111.
    M. A. Gerber, M. F. Randolph, and K. K. DeMeo, Liposome immunoassay for rapid identification of group A streptococci directly from throat swabs, J. clin. Microbiol. 28, 1463–1464 (1990).PubMedGoogle Scholar
  112. 112.
    Y. Tatsu, S. Yamamura, and S. Yoshikawa, Fluorescent fibre-optic immunosensing system based on complement lysis of liposome containing carboxyfluorescein, Biosensors and Bioelectronics 7, 741–745 (1992).CrossRefPubMedGoogle Scholar
  113. 113.
    L. Locascio-Brown, A. L. Plant, V. Horvath, and R. A. Durst, Liposome flow injection immunoassay: Implications for sensitivity, dynamic range, and antibody regeneration. Anal. Chem. 62, 2587–2593 (1990).CrossRefPubMedGoogle Scholar
  114. 114.
    M. Umeda, Y. Ishimori, K. Yoshikawa, M. Takada, and T. Yasuda, Liposome immune lysis assay (LILA), J. Immunol. Methods 95, 15–21 (1986).PubMedGoogle Scholar
  115. 115.
    P. Vadgama and P. W. Crump, Biosensors: Recent trends, a review, Analyst 117, 1657–1670 (1992).CrossRefGoogle Scholar
  116. 116.
    D. G. Buerk, Biosensors, Technomic Publishing Co., Lancaster, Pennsylvania (1993).Google Scholar
  117. 117.
    O. S. Wolfbeis, Ed., Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, Florida (1991).Google Scholar
  118. 118.
    F. P. Anderson and W. G. Miller, Fiber optic immunochemical sensor for continuous, reversible measurement of phenytoin, Clin. Chem. 34, 1417–1421 (1988).PubMedGoogle Scholar
  119. 119.
    W. G. Miller and F. P. Anderson, Antibody properties for chemically reversible biosensor applications, Anal. Chim. Acta 227, 135–143 (1989).Google Scholar
  120. 120.
    J. R. Astles and W. G. Miller, Reversible fiber-optic immunosensor measurements, Sensors and Actuators B 11, 73–78 (1993).Google Scholar
  121. 121.
    W. G. Miller and J. R. Astles, First European Conference on Optical Sensors and Biosensors, Graz, Austria, 12–15 April (1992).Google Scholar
  122. 122.
    S. M. Barnard and D. R. Walt, Chemical sensors based on controlled-release polymer systems, Science 251, 927–929 (1991).PubMedGoogle Scholar
  123. 123.
    F. V. Bright, T. A. Betts, and K. S. Litwiler, Regenerable fiber-optic-based immunosensor, Anal. Chem. 62, 1065–1069 (1990).CrossRefPubMedGoogle Scholar
  124. 124.
    B. Reck, K. Himmelspach, N. Opitz, and D. W. Lübbers, Possibilities and limitations of continuous thyroxine measurement in an optode using the principle of homogeneous fluoroimmunoassay, Analyst 113, 1423–1426 (1988).CrossRefPubMedGoogle Scholar
  125. 125.
    R. D. Petrea, M. J. Sepaniak, and T. Vo-Dinh, Fiber-optic time-resolved fluorimetry for immunoassays, Talanta 35, 139–144 (1988).CrossRefGoogle Scholar
  126. 126.
    R. Sutherland. C. Dähne, R. Slovacek, and B. Bluestein, Interface immunoassays using the evanescent wave, in: Alternative Immunoassays (W. P. Collins, ed.). pp. 331–357, John Wiley & Sons, New York (1985).Google Scholar
  127. 127.
    E. H. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation, Appl. Optics 18, 862–870 (1979).Google Scholar
  128. 128.
    C. K. Carniglia, L. Mandel, and H. Drexhage, Absorption and emission of evanescent photons, J. Opt. Soc. Am. 62, 479–486 (1972).Google Scholar
  129. 129.
    J. N. Herron, K. D. Caldwell, D. A. Christensen, S. Dyer, V. Hlady, P. Huang, V. Janatova, H.-K. Wang, and A.-P Wei, Fluorescent irnmunosensors using planarwaveguides, Proc. SPIE 1885, 28–39 (1993).Google Scholar
  130. 130.
    B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, and G. D. Griffin, Fiber-optic chemical sensors for competitive binding fluoroimmunoassay. Anal. Chem. 59, 1226–1230 (1987).CrossRefPubMedGoogle Scholar
  131. 131.
    R. A. Ogert, L. C Shrivcr-Lake, and F S. Ligler, Toxin detection using a fiber optic-based biosensor, Proc. SPIE 1885, 11–17 (1993).Google Scholar
  132. 132.
    R. A. Hadley, R. A. L. Drake, 1. A. Shanks, F. R. S., A. M. Smith, and P. R. Stephenson, Optical biosensors for immunoassays: The fluorescence capillary fill device, Phil. Trans. R. Soc. Lond. B 316, 143–160 (1987)Google Scholar
  133. 133.
    Y. Zhou, J. V. Magill, R. M. De La Rue. P. J. R. Laybourn, and W. Cushley, Evanescent fluorescence immunoassays performed with a disposable ion-exchanged patterned waveguide, Sensors and Actuators B 11, 245–250 (1993).Google Scholar
  134. 134.
    V. Hlady, J. N. Lin, and J. D. Andrade, Spatially resolved detection of antibody-antigen reaction on solid/liquid interlace using total internal reflection excited antigen fluorescence and charge-coupled device detection, Biosens. Bioelectron. 5, 291–301 (1990).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alvydas J. Ozinskas
    • 1
  1. 1.Becton Dickinson Diagnostic Instrument SystemsSparksUSA

Personalised recommendations