Skip to main content

Fluorescence Polarization from Oriented Systems

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. P. Burghardt, T. Ando, and J. Borejdo, Evidence for cross-bridge order in contraction of glycerinated skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 80, 7515–7519 (1983).

    CAS  Google Scholar 

  2. K. Ajtai and T. P. Burghardt, Probe studies of the MgADP state of muscle cross-bridges: Microscopic and wavelength-dependent fluorescence polarization from 1,5-IAEDANS labeled myosin subfragment 1 decorating muscle fibers, Biochemistry 26, 4517–4523 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. A. Huxley, Reflections on Muscle, Princeton University Press, Princeton, New Jersey (1980).

    Google Scholar 

  4. M. F. Morales, J. Borejdo, J. Botts, R. Cooke, R. A. Mendelson, and R. Takashi, Some physical studies of the contractile mechanism in muscle, Annu. Rev. Phys. Chem. 33, 319–351 (1982).

    Article  CAS  Google Scholar 

  5. R. Cooke, The mechanism of muscle contraction, CRC Crit. Rev. Biochem. 21, 53–117 (1986).

    CAS  PubMed  Google Scholar 

  6. H. E. Huxley, The mechanism of muscular contraction, Science 164, 1356–1366 (1969).

    CAS  PubMed  Google Scholar 

  7. A. F. Huxley and R. M. Simmons, Proposed mechanism of force generation in striated muscle, Nature 233, 533–538 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. T. P. Burghardt, Model-independent fluorescence polarization for measuring order in a biological assembly, Biopolymers 23, 2383–2406 (1984).

    CAS  PubMed  Google Scholar 

  9. T. P. Burghardt and N. L. Thompson, Effect of planar dielectric interfaces on fluorescence emission and detection: Evanescent excitation and high-aperture collection, Biophys. J. 46, 729–737 (1984).

    CAS  PubMed  Google Scholar 

  10. A. S. Davydov, Quantum Mechanics, NEO Press, Ann Arbor, Michigan (1963).

    Google Scholar 

  11. F. Tanaka and N. Mataga, Fluorescence quenching dynamics of tryptophan in proteins: Effect of internal rotation under potential barrier, Biophys. J. 51, 487–495 (1987).

    CAS  PubMed  Google Scholar 

  12. M. R. Eftink and C. A. Ghiron, Fluorescence quenching studies with proteins, Anal. Biochem. 114. 199–227 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. T. J. Chuang and K. B. Eisenthal, Theory of fluorescence depolarization by anisotropic rotational diffusion, J. Chem. Phys. 57, 5094–5097 (1972).

    Article  CAS  Google Scholar 

  14. M. Ehrenberg and R. Rigler, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14, 539–544 (1972).

    Article  CAS  Google Scholar 

  15. R. A. Mendelson, S. Putnam, and M. F. Morales, Time-dependent fluorescence depolarization and lifetime studies of myosin subfragment-one in the presence of nucleotide and actin, J. Supramol, Struct. 3, 162–168 (1975).

    Article  CAS  Google Scholar 

  16. J. Botts. A. Muhlrad, R. Takashi, and M. F. Morales, Effects of tryptic digestion on myos in subfragment 1 and its actin-activated adenosinetriphosphatase, Biochemistry 21, 6903–6905 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. J. Borejdo, O. Assulin, T. Ando, and S. Putnam, Cross-bridge orientation in skeletal muscle measured by linear dichroism of an extrinsic chromophore, J. Mol. Biol. 158, 391–414 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. K. Ajtai and T. P. Burghardt, Observation of two orientations from rigor cross-bridges in glycerinated muscle fibers, Biochemistry 25, 6203–6207 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. R. Cooke, M. S. Crowder, and D. D. Thomas, Orientation of spin labels attached to cross-bridges in contracting muscle fibers, Nature 300, 776–778 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. D. D. Thomas and R. Cooke, Orientation of spin-labeled myosin heads in glycerinated muscle fibers, Biophys. J. 32, 891–906 (1980).

    CAS  PubMed  Google Scholar 

  21. T. P. Burghardt and K. Ajtai, Fraction of myosin cross-bridges bound to actin in active muscle fibers: Estimation by fluorescence anisotropy measurements, Proc. Natl. Acad. Sci. U.S.A. 82, 8478–8482 (1985).

    CAS  PubMed  Google Scholar 

  22. E. N. Hudson and G. Weber, Synthesis and characterization of two fluorescent sulfhydryl reagents, Biochemistry 12, 4154–4161 (1973).

    CAS  PubMed  Google Scholar 

  23. K. Kinosita, S. Kawato, and A. Ikegami, A theory of fluorescence polarization decay in membranes. Biophys. J. 20, 289–305 (1977).

    CAS  PubMed  Google Scholar 

  24. A. Szabo, Theory of polarized fluorescent emission in uniaxial liquid crystals, J. Chem. Phys. 72, 4620–4626 (1980).

    CAS  Google Scholar 

  25. A. Szabo, Theory of fluorescence depolarization in macromolecules and membranes, J. Chem, Phys. 81, 150–167 (1984).

    Article  CAS  Google Scholar 

  26. C. Zannoni, A. Arcioni, and P. Cavatorta, Fluorescence depolarization in liquid crystals and membrane bilayers, Chem. Phys. Lipids 32, 179–250 (1983).

    CAS  Google Scholar 

  27. T. P. Burghardt, Time-resolved fluorescence polarization from ordered biological assemblies, Biophys. J. 48, 623–631 (1985).

    CAS  PubMed  Google Scholar 

  28. W. L. Hubbell and H. M. McConnell, Orientation and motion of amphiphilic spin labels in membranes, Proc. Natl. Acad. Sci. U.S.A. 64, 20–27 (1969).

    CAS  PubMed  Google Scholar 

  29. S. A. Goldman, G. W. Bruno, C. F. Polnaszek, and J. H. Freed, An ESR study of anisotropic rotational reorientation and slow tumbling in liquid and frozen media, J. Chem. Phys. 56, 716–735 (1972).

    Article  CAS  Google Scholar 

  30. C. F. Polnaszek and J. Freed, Electron spin resonance studies of anisotropic ordering, spin relaxation, and slow tumbling in liquid crystalline solvents, J. Phys. Chem. 79, 2283–2306 (1975).

    Article  CAS  Google Scholar 

  31. T. P. Burghardt and K. Ajtai, Model-independent time-resolved fluorescence depolarization from ordered biological assemblies applied to restricted motion of myosin cross-bridges in muscle fibers, Biochemistry 25, 3469–3478 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. M. Abramowitz and I. E. Stegun (eds.) Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C. (1970).

    Google Scholar 

  33. T. P. Burghardt and N. L. Thompson, Model-independent electron spin resonance for measuring order of immobile components in a biological assembly, Biophys. J. 48, 401–409 (1985).

    CAS  PubMed  Google Scholar 

  34. B. Brenner, M. Schoenberg, J. M. Chalovich, L. E. Green, and E. Eisenberg, Evidence for cross-bridge attachment in relaxed muscle at low ionic strength, Proc. Natl. Acad. Sci. U.S.A. 79, 7288–7291 (1982).

    CAS  PubMed  Google Scholar 

  35. B. Brenner, J. M. Chalovich, L. E. Green, E. Eisenberg, and M. Schoenberg, Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution, Biophys. J. 50, 685–691 (1986).

    CAS  PubMed  Google Scholar 

  36. J. Borejdo and S. Putnam, Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation, Biochim. Biophys. Acta 459, 578–595 (1977).

    CAS  PubMed  Google Scholar 

  37. J. Duke, R. Takashi, K. Ue, and M. F. Morales, Reciprocal reactivities of specific thiols when actin binds to myosin, Proc. Natl. Acad. Sci. U.S.A. 73, 302–306 (1976).

    CAS  PubMed  Google Scholar 

  38. T. Nihei, R. A. Mendelson, and J. Botts, The site of force generation in muscle contraction as deduced from fluorescence polarization studies, Proc. Natl. Acad. Sci. U.S.A. 71, 274–277 (1974).

    CAS  Google Scholar 

  39. R. A. Mendelson, M. F. Morales, and J. Botts, Segmental fiexibility of the S-1 moeity of myosin, Biochemistry 12, 2250–2255 (1973).

    Article  CAS  PubMed  Google Scholar 

  40. M. G. A. Wilson and R. A. Mendelson, A comparison of order and orientation of cross-bridges in rigor and relaxed muscle fibres using fluorescence polarization, J. Muscle Res. Cell Motil. 4, 671–693 (1983).

    CAS  PubMed  Google Scholar 

  41. K. Ajtai, A. R. French and T. P. Burghardt, Myosin cross-bridge orientation in rigor and in the presence of nucleotide studied by electron spin resonance, Biophys. J. 56, 535–542 (1989).

    CAS  PubMed  Google Scholar 

  42. R. Hentschel, J. Schlitter, H. Sillescu, and H. W. Speiss, Orientational distributions in partially ordered solids as determined from NMR and ESR line shapes, J. Chem. Phys. 68, 56–66 (1978).

    Article  CAS  Google Scholar 

  43. R. Friesner, J. A. Nairn, and K. Sauer, Direct calculation of the orientational distribution function of partially ordered ensembles from the EPR line shape, J. Chem. Phys. 71, 358–365 (1979).

    CAS  Google Scholar 

  44. R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc., Eugene, Oregon (1985).

    Google Scholar 

  45. T. Sekine and M. Yamaguchi, Effect of ATP binding of N-ethylmaleimide to SH groups in the active site of myosin, J. Biochem. (Tokyo) 54, 196–198 (1963).

    CAS  Google Scholar 

  46. E. Reisler, Sulfhydryl modification and labeling of myosin, Methods Enzymol. 85, 84–93 (1982).

    CAS  PubMed  Google Scholar 

  47. T. Nihei, R. A. Mendelson, and J. Botts, Use of fluorescence polarization to observe changes in attitude of S1 moieties in muscle fibers, Biophys. J. 14, 236–242 (1974).

    CAS  PubMed  Google Scholar 

  48. J. Borejdo, S. Putnam, and M. F. Morales, Fluctuations in polarized fluorescence: Evidence that muscle cross-bridges rotate repetitively during contraction, Proc. Natl. Acad. Sci. U.S.A. 76, 6346–6350 (1979).

    CAS  PubMed  Google Scholar 

  49. E. Reisler, M. Burke, and W. F. Harrington, Cooperative role of two sulfhydryl groups in myosin adenosine triphosphatase, Biochemistry 13, 2014–2022 (1974).

    CAS  PubMed  Google Scholar 

  50. R. Mahmood, C. Cremo, K. L. Nakamaye, and R. G. Yount, The interaction and photolabeling of myosin subfragment 1 with 3′(2′)-O-(4-benzoyl)benzoyladenosine 5′-triphosphate, J. Biol. Chem. 262, 14479–14486 (1987).

    CAS  PubMed  Google Scholar 

  51. W. J. Perkins, J. Weiel, J. Grammer, and R. G. Yount, Introduction of a donor-acceptor pair by a single protein modification. Förster energy transfer distance measurements from trapped 1, N6-ethenoadenosine diphosphate to chromophoric cross-linking reagents on the critical thiols of myosin subfragment 1, J. Biol. Chem. 259, 8786–8793 (1984).

    CAS  PubMed  Google Scholar 

  52. P. M. G. Curmi, J. Barden, and C. G. dos Remedios, Conformational studies of G-actin containing bound lanthanide, Eur. J. Biochem. 122, 239–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  53. T. Yanagida, Angles of nucleotides bound to cross-bridges in glycerinated muscle fibers at various concentrations of ε-ATP, ε-ADP, and ε-,AMPPNP detected by polarized fluorescence, J. Mol. Biol. 146, 539–549 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. T. Yanagida, T. Arata, and F. Oosawa, Sliding distance of actin filaments induced by a myosin cross-bridge during one ATP hydrolysis cycle, Nature 316, 366–369 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. S. J. Kron and J. M. Spudich, Fluorescent actin filaments move on myosin fixed to a glass surface, Proc. Natl. Acad. Sci. U.S.A. 83, 6272–6276 (1986).

    CAS  PubMed  Google Scholar 

  56. H. M. McConnell, T. H. Watts, R. M. Weis, and A. A. Brian, Supported planar membranes in studies of cell-cell recognition in the immune system, Biochem. Biophys. Acta 864, 95–106 (1986).

    CAS  PubMed  Google Scholar 

  57. M. Bálint, I. Wolf, A. Tarcsafalvi, J. Gergely, and F. Sréter, Location of SH 1 and SH 2 in the heavy chain segment of heavy meromyosin, Arch. Biochem. Biophys. 190, 793–799 (1978).

    PubMed  Google Scholar 

  58. K. Sutoh, Location of SH 1 and SH 2 along a heavy chain of myosin subfragment 1, Biochemistry 20, 3281–8285 (1981).

    Article  CAS  PubMed  Google Scholar 

  59. M. S. Crowder and R. Cooke, The effect of myosin sulfhydryl modification on the mechanics of fibre contraction, J. Muscle Res. Cell Motil. 5, 131–146 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. N. J. Harrick, Internal Reflection Spectroscopy, Harrick Scientific, Ossining, New York (1979).

    Google Scholar 

  61. K. H. Drexhage, Interaction of light with monomolecular dye layers, Prog. Optics XII, 163–232 (1974).

    Google Scholar 

  62. C. Allain, D. Ausserreé, and F. Rondelez, Direct observation of interfacial depletion layers in polymer solutions, Phys. Rev. Lett. 49, 1694–1697 (1982).

    Article  CAS  Google Scholar 

  63. D. Ausserreé, H. Hervet, and F. Rondelez, Concentration profile of polymer solutions near a solid wall, Phys. Rev. Lett. 54, 1948–1951 (1985).

    CAS  Google Scholar 

  64. F. Lanni, A. S. Waggoner, and D. L. Taylor, Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy, J. Cell Biol. 100, 1091–1102 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. D. Gingell, I. Todd, and J. Bailey, Topography of cell-cell apposition revealed by total internal reflection fluorescence of volume markers, J. Cell Biol. 100, 1334–1338 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence, J. Cell Biol. 89, 141–145 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. T. P. Burghardt and D. Axelrod, Total internal reflection fluorescence study of energy transfer in surface-adsorbed and dissolved bovine serum albumin, Biochemistry 22, 979–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  68. T. P. Burghardt and D. Axelrod, Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics, Biophys. J. 33, 455–468 (1981).

    CAS  PubMed  Google Scholar 

  69. N. L. Thompson, T. P. Burghardt, and D. Axelrod, Measuring surface dynamics of biomolecules by total internal reflection fluorescence photobleaching recovery or correlation spectroscopy, Biophys. J. 33, 435–454 (1981).

    CAS  PubMed  Google Scholar 

  70. N. L. Thompson, H. M. McConnell, and T. P. Burghardt, Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination, Biophys. J. 46, 739–747 (1984).

    CAS  PubMed  Google Scholar 

  71. W. Lukosz and R. E. Kunz, Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power, J. Opt. Soc. Am. 67, 1607–1614 (1977).

    Google Scholar 

  72. W. Lukosz and R. E. Kunz, Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles, J. Opt. Soc. Am. 67, 1615–1619 (1977).

    Google Scholar 

  73. C. K. Carniglia, L. Mandel, and K. H. Drexhage, Absorption and emission of evanescent photons, J. Opt. Soc. Am. 62, 479–486 (1972).

    CAS  Google Scholar 

  74. C. K. Carniglia and L. Mandel, Quantization of evanescent electromagnetic waves, Phys. Rev. D 3, 280–296 (1971).

    Article  Google Scholar 

  75. E. H. Hellen and D. Axelrod, Fluorescence emission at dielectric and metal film interfaces, J. Opt. Soc. Am., B4, 337–350 (1987).

    Google Scholar 

  76. D. Axelrod, R. M. Fulbright, and E. H. Hellen, Adsorption kinetics on biological membranes: Measurement by total internal reflection fluorescence, in: Application of Fluorescence in the Biological Sciences (L. Taylor, A. S. Waggoner, F. Lanni, R. F. Murphy and R. Birge eds.), pp. 461–476, Alan R. Liss, New York (1986).

    Google Scholar 

  77. N. L. Thompson and T. P. Burghardt, Total internal reflection fluorescence: Measurement of spatial and orientational distributions of fluorophores near planar dielectric interfaces, Biophys. Chem. 25, 91–97 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York (1975).

    Google Scholar 

  79. P. M. Rentzepis, Advances in picosecond spectroscopy, Science 218, 1183–1189 (1982).

    CAS  Google Scholar 

  80. T. M. Nordlund and D. A. Podolski, Streak camera measurement of tryptophan and rhodamine motions with picosecond time resolution, Photochem. Photobiol. 38, 665–669 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Burghardt, T.P., Ajtai, K. (2002). Fluorescence Polarization from Oriented Systems. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-47058-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47058-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43875-2

  • Online ISBN: 978-0-306-47058-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics