Part of the The Information Retrieval Series book series (INRE, volume 9)


Image Query Color Histogram Multimedia Data Multimedia Object Photo Album 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Crevier, R. Lepage, “Knowledge-based Image Understanding Systems: A Survey”, Computer Vision and Image Understanding, Vol. 67, No. 2, pp. 161–185, 1997CrossRefGoogle Scholar
  2. 2.
    J. R. Smith, “Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression”, Thesis of PhD, Graduate School of Arts and Science, Columbia University, 1997Google Scholar
  3. 3.
    D. Hong, S. Singh, Y. W. Zhu, J. K. Wu, “Customisable Image Categorisation and Retrieval with Interactive User Interface”, Intern. Conf on Multimedia Modeling, Ottawa, Canada, pp. 441–462, 1999Google Scholar
  4. 4.
    M. D. Marsicoi, L. Cinque, S. Levialdi, “Indexing Pictorial Documents by Their Content: A Survey of Current Techniques”, Image and Vision Computing, vol. 15, pp. 119–141, 1997Google Scholar
  5. 5.
    Advanced Television Systems Committee,
  6. 6.
    The Digital Television Group,
  7. 7.
    The Secure Digital Music Initiative Website,
  8. 8.
    MP3 Website,
  9. 9.
    Home site of the JPEG and JBIG committees,
  10. 10.
    The MPEG Home Page,
  11. 11.
  12. 12.
    DVB Service Information,
  13. 13.
    Information Society Standardization System,
  14. 14.
    W. Niblack,, “The QBIC project: Querying Image by content using color, texture and shape”, SPIE: Storage and Retrieval for Images and Video Database, San Jose, 1993Google Scholar
  15. 15.
    J. Yang and A. Waibel, “A Real-Time Face Tracker”, Proceedings of Third IEEE Workshop on Applications of Computer Vision, Sarasota, Florida, pp. 142–147, 1996Google Scholar
  16. 16.
    A. Pentland, R. Picard, S. Sclaroff, “Photobook: Content-based Manipulation of Image Databases”, Int. Journal of Computer Vision, vol. 18, no. 3, pp. 233–254, 1996Google Scholar
  17. 17.
    P. Brodatz, “Texture: A Photographic Album for Artists and Designers”, Dover: New York, 1966Google Scholar
  18. 18.
    S. Belongie and C. Carson and H. Greenspan and J. Malik, “Recognition of Images in Large Databases Using a Learning Framework”, Computer Science Division, University of California, Berkeley, Technical Report, No. 939, 1997Google Scholar
  19. 19.
    J. K. Wu, A. D. Narasimhalu, B. M. Mehtre, C. P. Lam, Y. J. Gao, “CORE: A content-based retrieval engine for multimedia information systems”, ACM Multimedia Systems, Vol. 3, pp. 3–25, 1995Google Scholar
  20. 20.
    J. K. Wu, Y. H. Ang, C. P. Lam, A. D. Narasimhalu, “Inference and retrieval of facial images”, ACM Multimedia Journal, Vol. 2, No. 1, pp. 1–14, 1994Google Scholar
  21. 21.
    T. P. Minka and R. W. Picard, Interactive learning using a “society of Models”, Media Lab, Massachusetts Institute of Technology, Technical Report, No. 349, 1995Google Scholar
  22. 22.
    R. Smith, S.-F. Chang, “Querying by color Regions using the VisualSEEK Content-based visual query system”, M. T. Maybury, Intelligent Multimedia Information Retrieval, 1997Google Scholar
  23. 23.
    A. Gupta, “Visual information retrieval technology: A Virage Perspective”, May, 1996Google Scholar
  24. 24.
    V. Guigueno, L’identite de l’image: expression et syst. emes documentaires, IRIT rapport d’option, Ecole polytechnique, Palaiseau, France, Juilet, 1991Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations