Advertisement

Temperature-driven Power and Timing Analysis

Chapter
  • 107 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. J. Pilling, and H. B. Sun, “Computer-aided prediction of delays in LSI logic systems,” in Proceedings of the ACM/IEEE Design Automation Workshop, pp. 182–186, 1973.Google Scholar
  2. [2]
    M. A. Wold, “Design verification and performance analysis,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 264–270, 1978.Google Scholar
  3. [3]
    R. Kamikawai, M. Yamada, T. Chiba, K. Furumaya, and Y. Tsuchiya, “A critical path delay check system,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 118–123, 1981.Google Scholar
  4. [4]
    R. B. Hitchcock, G. L. Smith, and D. D. Cheng, “Timing analysis of computer hardware,” IBM Journal of Research and Development, vol. 26, pp. 100–105, Jan. 1982.Google Scholar
  5. [5]
    J. Ousterhout, “A switch-level timing verifier for digital MOS VLSI,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 4, pp. 336–349, July 1985.Google Scholar
  6. [6]
    H. C. Yen, D. H. Du, and S. Ghanta, “Efficient algorithms for extracting the k-most critical paths in timing analysis,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 649–654, June 1989.Google Scholar
  7. [7]
    Y. C. Ju and R. A. Saleh, “Incremental techniques for the identification of statically sensitizable critical paths,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 541–546, June 1991.Google Scholar
  8. [8]
    D. H. Du, S. H. Yen, and S. Ghanta, “On the general false path problem in timing analysis,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 555–560, June 1989.Google Scholar
  9. [9]
    J. Benkoski, E. V. Meersch, L. J. Claesen, and H. DeMan, “Timing verification using statically sensitizable paths,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, pp. 1073–1084, Oct. 1990.Google Scholar
  10. [10]
    R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE Transactions on Computers, vol. 35, pp. 677–691, Aug. 1986.Google Scholar
  11. [11]
    K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a BDD package,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 40–45, June 1990.Google Scholar
  12. [12]
    P. C. McGeer and R. K. Brayton, Integrating Functional arid Temporal Domains in Logic Design. Kluwer Academic, New York, 1991.Google Scholar
  13. [13]
    P. C. McGeer and R. K. Brayton, “Efficient algorithms for computing the longest viable path in a combinational network,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 561–567, June 1989.Google Scholar
  14. [14]
    T. G. Szymanski, “Computing optimal clock schedules,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 399–404, 1990.Google Scholar
  15. [15]
    T. M. Burks, K. A. Sakallah, and T. N. Mudge, “Identification of critical paths in circuits with level-sensitive latches,” in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design, pp. 137–141, 1992.Google Scholar
  16. [16]
    T. M. Burks and K. A. Sakallah, “Optimization of critical paths in circuits with level-sensitive latches,” in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design, pp. 468–473, 1994.Google Scholar
  17. [17]
    H. Y. Chen and S. Dutta, “A timing model for static CMOS gates,” in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design, 1989.Google Scholar
  18. [18]
    T. Sakurai and A. R. Newton, “Delay analysis of series connected MOSFETs,” IEEE Journal of Solid-state Circuits, vol. 26, pp. 122–131, Feb. 1991.Google Scholar
  19. [19]
    J. T. Kong and D. Overhauser, “Methods to improve digital MOS macro-model accuracy,” IEEE Transactions on Computer-Aided Design of Integrated Circuits arid Systems, vol. 14, pp. 868–881, July 1995.Google Scholar
  20. [20]
    A. Nabavi-Lishi and N. C. Rumin, “Inverter models of CMOS gates for supply current and delay evaluation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits arid Systems, pp. 1271–1279, 1994.Google Scholar
  21. [21]
    S. Z. Sun, D. H. Du, and H. C. Chen, “Efficient timing analysis for CMOS circuits considering data dependent delays,” in Proceedings of the IEEE International Conference on Computer Design, 1994.Google Scholar
  22. [22]
    V. Chandramouli and K. A. Sakallah, “Modeling the effects of temporal proximity of input transitions on gate propagation delay and transition time,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 617–622, 1996.Google Scholar
  23. [23]
    M. G. Xakellis and F. N. Najm, “Statistical estimation of the switching activity in digital circuits,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 728–733, June 1994.Google Scholar
  24. [24]
    P. L. Meyer, Introductory Probability and Statistical Applications. Addison-Wesley, 1970.Google Scholar
  25. [25]
    Y. K. Cheng and S. M. Kang, “Temperature-driven power and timing analysis for CMOS VLSI circuits,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 6, pp. 214–217, May 1999.Google Scholar
  26. [26]
    Y. H. Shih and S. M. Kang, “Analytic transient solution of general MOS circuit primitives,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 11, pp. 719–73l, June 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations