Skip to main content

Software Tools: From Multibody System Analysis to Vehicle System Dynamics

  • Conference paper

Abstract

After successful application to spacecraft and appropriate theoretical examinations, multibody system (MBS) approaches, their formalisms, and software became of interest to the vehicle system dynamicists both for rail and road vehicles. This introductory paper sketches a few important milestones in the MBS general development related to vehicle system dynamics. While at the beginning the absence of system-specific force laws was the major stumbling block, later on the numerical methods and the efficiency of the formalisms became of prime focus. More recently, the transition from system analysis to system design and optimization, as well as the integration into multidisciplinary computer aided engineering (CAE) of vehicle systems, was and still is a challenge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberson, R.E., and J. Wittenburg. 1966. A dynamical formalism for an arbitrary number of interconnected rigid bodies, with reference to the problem of satellite attitude control. Proceedings of the 3rd IFAC Congress, London.

    Google Scholar 

  2. Roberson, R.E., and R. Schwertassek. 1988. Dynamics of Multibody Systems. Berlin: Springer-Verlag.

    Google Scholar 

  3. Schiehlen, W.O. 1985. Technische Dynamik. Stuttgart: Teubner Studienbücher.

    Google Scholar 

  4. Kortüm, W., and W. Schiehlen. 1985. General purpose vehicle system dynamics software based on multibody formalisms. Vehicle System Dynamics 14, 229–263.

    Google Scholar 

  5. Duffek, W., C. Führer, W. Schwartz, and O. Wallrapp. 1986. Analysis and simulation of rail and road vehicles with the program MEDYNA. Proceedings of the 9th IAVSD Symposium (O. Nordström, ed.). Amsterdam: Swets and Zeitlinger, 71–85.

    Google Scholar 

  6. Kortüm, W., and R.S. Sharp, eds. 1993. Multibody Computer Codes in Vehicle System Dynamics (supplement to Vehicle System Dynamics 22), Amsterdam: Swets and Zeitlinger.

    Google Scholar 

  7. Iwnicki, S., ed. 1999. The Manchester Benchmarks for Rail Vehicle Simulation (supplement to Vehicle System Dynamics 31). Lisse: Swets and Zeitlinger.

    Google Scholar 

  8. Schiehlen, W.O. 1992. Multibody dynamics software for controlled vehicle simulation. Proceedings of the International Symposium on Advanced Vehicle Control, AVEC’92, 37–42.

    Google Scholar 

  9. Grüibel, G., and W. Kortüm. 1992. Towards a coherent technology for computational vehicle system dynamics. Proceedings of the International Symposium on Advanced Vehicle Control, AVEC’92, 48–55.

    Google Scholar 

  10. Kortüm, W., W. Schiehlen, and M. Hoffmann. 1994. Progress in integrated system analysis and design software for controlled vehicles. In The Dynamics of Vehicles on Roads and Tracks, Proceedings of the 13th IAVSD Symposium (Z. Shen, ed.) (supplement to Vehicle System Dynamics 22). Amsterdam: Swets and Zeitlinger, 274–296.

    Google Scholar 

  11. Magnus, K., ed. 1978. Dynamics of Multibody Systems, Proceedings of the IUTAM Symposium, Munich, Aug. 29–Sept. 3, 1977. Berlin: Springer-Verlag.

    Google Scholar 

  12. Bianchi, G., and W. Schiehlen, eds. 1986. Dynamics of Multibody Systems, Proceedings of the lUTAM/IFToMM Symposium, Udine, Sept. 16–20, 1985. Berlin: Springer-Verlag.

    Google Scholar 

  13. Schiehlen, W. O., ed. 1990. Multibody Systems Handbook. Berlin: Springer-Verlag.

    Google Scholar 

  14. Schiehlen, W. 1992. Prospects of the German multibody system research project on vehicle dynamics simulation. In The Dynamics of Vehicles, Proceedings of the 12th IAVSD Symposium (G. Sauvage, ed.) (supplement to Vehicle System Dynamics 20). Amsterdam: Swets and Zeitlinger, 537–550.

    Google Scholar 

  15. Orlandea, N. 1973. Development and application of node-analogous sparsity-oriented methods for simulation of mechanical dynamic systems. PhD thesis, University of Michigan.

    Google Scholar 

  16. Leister, G. 1992. Beschreibung und Simulation von Mehrkörpersystemen mit geschlossenen kinematischen Schleifen. Fortschritt-Berichte VDI Reihe 11, Nr. 167. Düsseldorf: VDI-Verlag.

    Google Scholar 

  17. Blajer, W., W. Schiehlen, and W. Schirm. 1994. A projective criterion to the coordinate partitioning method for multibody dynamics. Archive of Applied Mechanics 64, 86–98.

    Google Scholar 

  18. Hairer, E., and G. Wanner. 1996. Solving Ordinary Differential Equations—II. Stiff and Differential-Algebraic Problems, 2nd ed. Berlin: Springer-Verlag.

    Google Scholar 

  19. Eich-Soellner, E., and C. Führer. 1998. Numerical Methods in Multibody Dynamics. Stuttgart: Teubner-Verlag.

    Google Scholar 

  20. von Schwerin, R. 1999. MultiBody System SIMulation—Numerical Methods, Algorithms, and Software. Berlin: Springer.

    Google Scholar 

  21. Wallrapp, O. 1991. Linearized flexible multibody dynamics including geometric stiffening effects. Mechanics of Structures and Machines 19, 385–409.

    MathSciNet  Google Scholar 

  22. Schwertassek, R., and O. Wallrapp. 1999. Dynamik flexibler Mehrkörpersysteme. Braunschweig: Vieweg.

    Google Scholar 

  23. Pfeiffer, F., and Ch. Glocker. 1996. Multibody Dynamics with Unilateral Contacts. New York: John Wiley and Sons.

    Google Scholar 

  24. Wentscher, H., and W. Kortüm. 1996. Multibody model-based multi-objective parameter optimization of aircraft landing gears. Proceedings of the IUTAM Symposium on Optimization of Mechanical Systems (D. Bestle and W. Schiehlen, eds.). Dordrecht: Kluwer Academic Publishers, 325–332.

    Google Scholar 

  25. D. Bestle and P. Eberhard. 1992. Analyzing and optimizing multibody systems. Mechanics of Structures and Machines 20, 67–92.

    Google Scholar 

  26. Gretzschel, M., J. Bals, L. Mauer, and W. Schwartz. 1997. SIMPACK-MOPS, ein neues strategisches Verbundwerkzeug zur Konzeption, Auslegung und Optimierung von Schienenfahrzeugen. In Systemoptimierung im spurgeführten Verkehr, VDI-Berichte 1344. Düsseldorf: VDI-Verlag, 95–111.

    Google Scholar 

  27. Kortüm, W., R. M. Goodall, and J. K. Hedrick. 1998. Mechatronics in ground transportation—Current trends and future possibilities. Annual Reviews in Control 22, 133–144.

    Google Scholar 

  28. Gissinger, G. L., and W. Kortüm. 1997. Simulation of vehicle system dynamics, state of the art and ongoing developments. Proceedings of the 8th IFAC/IFIP/IFORS Symposium on Transportation Systems, Chania, Greece, 215–222.

    Google Scholar 

  29. Valášek, M., and W. Kortüm. 1998. Nonlinear control for semi-active road-friendly truck suspension. Proceedings of the International Symposium on Advanced Vehicle Control, AVEC’98, 275–280.

    Google Scholar 

  30. Kübler, R., and W. Schiehlen. 2000. Two methods of simulator coupling. Mathematical and Computer Modeling of Dynamical Systems 6, 93–113.

    Google Scholar 

  31. Eichberger, A. 1999. Kopplung von SIMPACK mit Hydraulik/Pneumatik-Simulation. Working materials of Seminar TV1.06/99 (W. Kortüm, ed.). Carl-Cranz-Gesellschaft Oberpfaffenhofen.

    Google Scholar 

  32. Sagefka, M. 1999. Untersuchungen luftgefederter PKW-Radaufhängungen durch Kopplung von MKS-und Pneumatik-Simulation. Working materials of Seminar TV1.06/99 (W. Kortüm, ed.). Carl-Cranz-Gesellschaft Oberpfaffenhofen.

    Google Scholar 

  33. Krüger, W., K. Deutrich, and T. Hablowetz. 2000. SIMPACK—Anwendungen eines multidisziplinären Entwurfswerkzeugs für die Luftund Raumfahrt in Industrie und Forschung. In Jahrestagung der DGLR, Leipzig.

    Google Scholar 

  34. Daberkow, A., and W. Schiehlen. 1994. Development and implementation of DAMOS-C: The object oriented approach to multibody systems. Proceedings of the ASME Computers in Engineering Conference, 1994, New York.

    Google Scholar 

  35. Trautenberg, W. 1999. Bidirektionale Kopplung zwischen CAD und Mehrkörpersimulationssystemen. PhD thesis, Department of Mechanical Engineering, Munich University of Technology.

    Google Scholar 

  36. Lubich, Ch., Ch. Engstler, U. Nowak, and U. Pöhle. 1995. Numerical integration of constrained mechanical systems using MEXX. Mechanics of Structures and Machines 23, 473–495.

    Google Scholar 

  37. Rulka, W. 1998. Effiziente Simulation der Dynamik mechatronischer Systeme für industrielle Anwendungen. PhD thesis, Department of Mechanical Engineering, Vienna University of Technology.

    Google Scholar 

  38. Dietz, S. 1999. Vibration and Fatigue Analysis of Vehicle Systems using Component Modes. Fortschritt-Berichte VDI Reihe 12, Nr. 401. Düsseldorf: VDI-Verlag.

    Google Scholar 

  39. Melzer, F. 1996. Symbolic computations in flexible multibody systems. Nonlinear Dynamics 9, 147–163.

    Article  Google Scholar 

  40. Schiehlen, W., and E. Kreuzer. 1977. Rechnergestütztes Aufstellen der Bewegungsgleichungen gewöhnlicher Mehrkörpersysteme. Ingenieurarchiv 46, 185–195.

    Google Scholar 

  41. Leister, G. 1993. Programmsystem NEWEUL’92. Anleitung AN-32, Institute B of Mechanics, University of Stuttgart.

    Google Scholar 

  42. Neubeck, J., and G. Baumann. 2000. Generierung echtzeitfähiger SIMPACK—Modelle und automatische Implementierung auf Echtzeitsystemen fur kraftfahrzeugtechnische Anwendungen. SIMPACK User Meeting Konstanz, April 4–5, 2000, Intec GmbH Wessling, Germany.

    Google Scholar 

  43. Netter, H. 1998. Rad-Systeme-Systeme in differential-algebraischer Darstellung. Fortschritt-Berichte VDI Reihe 12, Nr. 352. Düsseldorf: VDI-Verlag.

    Google Scholar 

  44. Eichberger, A., and M. Schittenhelm. 1999. Assessing the dynamics of different suspension concepts within ISO driving maneuvers by simulation. Fr Les Procédés de Congrés de Dynamique de Véhicule, Centrale Lyon, June 9–10, 1999.

    Google Scholar 

  45. Shabana, A. A. 1998. Dynamics of Multibody Systems, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  46. Simeon, B. 2000. Numerische Simulation gekoppelter Systeme von partiellen und difFerential-algebraischen Gleichungen in der Mehrkörperdynamik. Habilitationsschrift, Department of Mathematics, Karlsruhe University of Technology.

    Google Scholar 

  47. Ambrósio, J. A. C., and M. Kleiber, eds. 2000. Proceedings of the NATO Advanced Research Workshop on Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, Pultusk, Poland, July 2–7, 2000.

    Google Scholar 

  48. Arnold, M., and M. Günther. 2001. Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numerical Mathematics 41, 1–25.

    Article  MathSciNet  Google Scholar 

  49. Eschenauer, H., J. Koski, and A. Osyczka, eds. 1990. Multicriteria Design Optimization. Berlin: Springer-Verlag.

    Google Scholar 

  50. Schiehlen, W. 1997. Multibody system dynamics: Roots and perspectives. Multibody System Dynamics 1, 149–188.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Kortüm, W., Schiehlen, W.O., Arnold, M. (2001). Software Tools: From Multibody System Analysis to Vehicle System Dynamics. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics