Skip to main content

Mixing: Kinetics and Geometry

  • Conference paper
Mechanics for a New Mellennium

Abstract

We review the different facets of the phenomenon of mixing, including its geometrical, temporal, and structural aspects. Then we suggest that a complex mixture can be viewed as the superposition of independent sources. Kinetics and geometry are shown to be closely linked to each other when following the transient mixing of an isolated scalar source in a turbulent flow. The composition law between multiple interacting sources is established experimentally, therefore allowing one to reconstruct any scalar field from well defined elementary contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G. K. 1959. Small-scale variation of convected quantities like temperature in a turbulent fluid—Part 1. General discussion and the case of small conductivity. Journal of Fluid Mechanics 5, 113–133.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Batchelor, G. K., I. D. Howells, and A. A. Townsend. 1959. Small-scale variation of convected quantities like temperature in a turbulent fluid—Part 2. The case of large conductivity. Journal of Fluid Mechanics 5, 134–139.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Batchelor, G. K., and A. A. Townsend. 1956. Turbulent diffusion. In Surveys in Mechanics, Batchelor, G. K., and R. M. Davis (eds.). Cmbridge: Cambridge University Press, 352–399.

    Google Scholar 

  • Betchov, R. 1956. An inequality concerning the production of vorticity in isotropic turbulence. Journal of Fluid Mechanics 1, 497–504.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Breidenthal, R. 1981. Structure in turbulent mixing layers and wakes using a chemical reaction. Journal of Fluid Mechanics 109, 1–24.

    Article  ADS  Google Scholar 

  • Brown, G. L., and A. Roshko. 1974. On density effects and large scale structures in turbulent mixing layers. Journal of Fluid Mechanics 64(4), 775–815.

    Article  ADS  Google Scholar 

  • Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. Journal of Applied Physics 22, 469–473.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Corrsin, S. 1964. The isotropic turbulent mixer: Part II. Arbitrary Schmidt number. American Institute of Chemical Engineers Journal 10(6), 870–877.

    Google Scholar 

  • Damkohler, D. 1940. Der Einfluss der Turbulenz auf die Flammen-geschwindigkeit in Gasgemischen. Zeitschrift fur Elektrochemie 46(11), 601–652.

    Google Scholar 

  • Danckwerts, P. V. 1952. The definition and measurement of some characteristic mixtures. Applied Scientific Research A 3, 279–296.

    Google Scholar 

  • Danckwerts, P. V. 1953. Continuous flow systems. Distribution of residence times. Chemical Engineering Science 2, 1–13.

    Article  Google Scholar 

  • Dimotakis, P. E. 2000. The mixing transition in turbulent flows. Journal of Fluid Mechanics 409, 69–98.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Duplat, J., and E. Villermaux. 2000. In preparation.

    Google Scholar 

  • Epstein, I. R. 1990. Shaken, stirred—but not mixed. Nature 346, 16–17.

    Article  ADS  Google Scholar 

  • Hawthorne, W. R., D. S. Wendell, and H. C. Hottel. 1949. Mixing and combustion in turbulent gas jets. In Third Symposium on Combustion and Flame and Explosion Phenomena. Baltimore: Williams and Wilkins, 266–288.

    Google Scholar 

  • Mandelbrot, B. B. 1975. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics 72(2), 401–416.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Nagata, S. 1975. Mixing, Principles and Applications. New York: John Wiley & Sons.

    Google Scholar 

  • Oboukhov, A. M. 1949. Structure of the temperature field in a turbulent flow. Izvestiia Academii Nauk USSR, Seriia Geograficheskaia i Geofizicheskaia 13, 58–69.

    Google Scholar 

  • Ottino, J. M. 1989. The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Prandtl, L. 1925. Uber die ausgebildete Turbulenz. Zeitschrift für angewandte Mathematik und Mechanik 5, 136–139.

    MATH  Google Scholar 

  • Ranz, W. E. 1979. Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows. American Institute of Chemical Engineers Journal 25(1), 41–47.

    Google Scholar 

  • Reynolds, O. 1894. Study of fluid motion by means of coloured bands. Nature 50, 161–164.

    Article  Google Scholar 

  • Richardson, L. F. 1926. Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society of London A 110, 709–737.

    Article  ADS  Google Scholar 

  • Shraiman, B. I., and E. D. Siggia. 2000. Scalar turbulence. Nature 405, 639–646.

    Article  ADS  Google Scholar 

  • Taylor, G. I. 1921. Diffusion by continuous movements. Proceedings of the London Mathematics Society 20, 196–212.

    Article  MATH  Google Scholar 

  • Taylor, G. I. 1953. Dispersion of a soluble matter in a solvent flowing slowly through a tube. Proceedings of the Royal Society of London A 218, 44–59.

    Article  ADS  Google Scholar 

  • Villermaux, E., C. Innocenti, and J. Duplat. 1998. Histogramme des fluctuations scalaire dans le mélange turbulent transitoire. Comptes Rendus à l’Académic des Sciences, Paris 326, Série IIb, 21–26.

    MATH  ADS  Google Scholar 

  • Villermaux, E. and C. Innocenti. 1999. On the geometry of turbulent mixing. Journal of Fluid Mechanics 393, 123–145.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Villermaux, E., H. Chaté, and J. M. Chomaz. 1999. Why mixing? In Mixing: Chaos and Turbulence, Chaté, H., E. Villermaux, and J. M. Chomaz (eds.). New York: Kluwer Academic/Plenum Publishers, 1–8.

    Google Scholar 

  • Villermaux, E., C. Innocenti, and J. Duplat. 2001. Short circuits in the Corrsin-Oboukhov cascade. Physics of Fluids 13(1), 284–289.

    Article  ADS  Google Scholar 

  • Villermaux, E., and H. Rehab. 2000. Mixing in coaxial jets. Journal of Fluid Mechanics 425, 161–185.

    Article  ADS  MATH  Google Scholar 

  • Warhaft, Z. 1984. The interference of thermal fields from line sources in grid turbulence. Journal of Fluid Mechanics 144, 363–387.

    Article  ADS  Google Scholar 

  • Welander, P. 1955. Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus 7(2), 141–156.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Villermaux, E. (2001). Mixing: Kinetics and Geometry. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics