Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 91))

  • 229 Accesses

Abstract

Recent advances in the study of collective effects and particle motions in plasma-dust crystals, ordered structures that form in the cathode sheath region of low temperature gaseous discharges, are presented. Plasma collective processes influence the arrangements and vibrations of dust particles in these Coulomb-lattice structures. One important effect is the wake potential formation due to ion flow, leading to the vertical alignment of dust grains in experiments. The oscillations of dust particles in the lattices are strongly affected by collective processes in the ambient plasma, in particular by the wake. Modes associated with vertical vibrations of dust grains are identified, and their dispersion characteristics are discussed. The modes can provide a useful tool for diagnostics in the sheath region of the discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ikezi, “Coulomb Solid of Small Particles in Plasmas”, Phys. Fluids 29, 1764 (1986).

    Article  ADS  Google Scholar 

  2. J.H. Chu and Lin I, “Direct Observation of Coulomb Crystals and Liquids in Strongly Coupled RF Dusty Plasmas”, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  3. J.H. Chu, J.B. Du, and Lin I, “Coulomb Solids and Low-frequency Fluctuations in RF Dusty Plasmas”, J. Phys. D: Appl. Phys. 27, 296 (1994).

    Article  ADS  Google Scholar 

  4. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, “Plasma Crystal: Coulomb Crystallization in a Dusty Plasma”, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  5. Y. Hayashi and K. Tachibana, “Observation of Coulomb-crystal Formation from Carbon Particles Grown in a Methane Plasma”, Jpn. J. Appl. Phys. 33, L804 (1994).

    Article  ADS  Google Scholar 

  6. A. Melzer, T. Trottenberg, and A. Piel, “Experimental Determination of the Charge on Dust Particles Forming Coulomb Lattices”, Phys. Lett. A 191, 301 (1994).

    ADS  Google Scholar 

  7. H.M. Thomas and G.E. Morfill, “Melting Dynamics of a Plasma Crystal”, Nature 379, 806 (1996).

    Article  ADS  Google Scholar 

  8. S.V. Vladimirov and M. Nambu, “Attraction of Charged Particulates in Plasmas with Finite Flows”, Phys. Rev. E 52, R2172 (1995)

    ADS  Google Scholar 

  9. S.V. Vladimirov and O. Ishihara, “On Plasma Crystal Formation”, Phys. Plasmas 3, 444 (1996)

    Article  ADS  Google Scholar 

  10. O. Ishihara and S.V. Vladimirov, “Wake Potential of a Dust Grain in a Plamsa with Ion Flow”, Phys. Plasmas 4, 69 (1997).

    Article  ADS  Google Scholar 

  11. S.V. Vladimirov, “Propagation of Waves in Dusty Plasmas with Variable Charges on Dust Particles”, Phys. Plasmas 1, 2762 (1994).

    Article  ADS  Google Scholar 

  12. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

    Google Scholar 

  13. S.V. Vladimirov, P.V. Shevchenko, and N.F. Cramer, “Vibrational Modes in the Dust-Plasma Crystal”, Phys. Rev. E, 56, R74 (1997)

    Article  ADS  Google Scholar 

  14. S.V. Vladimirov, P.V. Shevchenko, and N.F. Cramer, “Low-Frequency Modes in the Dust-Plasma Crystal”, Phys. Plasmas 5, 4 (1998).

    Article  ADS  Google Scholar 

  15. S.V. Vladimirov and N.F. Cramer, “Vibrations in Vertical Strings of Dust Grains”, Physica Scripta, 58, 80 (1998).

    Article  ADS  Google Scholar 

  16. J.X. Ma, Jin-yuan Liu and M.Y. Yu, “Fluid Theory of the Boundary of a Dusty Plasma”, Phys. Rev. E 55, 4627 (1997).

    ADS  Google Scholar 

  17. S. Nunomura, T. Misawa, K. Asano, N. Ohno, and S. Takamura, “Observation of Trapping and Fluctuation of a Dust Cloud at a Very Low Gas Pressure”, Proceedings of the Int. Congress on Plasma Physics, (Prague, 1998), Europhysics Conference Abstracts, 22C, 2509 (1998).

    Google Scholar 

  18. N. A. Nicorovici, R. C. McPhedran and Bao Ke-Da, “Propagation of Electromagnetic Waves in Periodic Lattices of Spheres: Green’s Function and Lattice Sums”, Phys. Rev. E 51, 690 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Cramer, N.F., Vladimirov, S.V. (2001). Charged Dust Structures in Plasmas. In: IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media. Solid Mechanics and Its Applications, vol 91. Springer, Dordrecht. https://doi.org/10.1007/0-306-46955-3_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46955-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7038-3

  • Online ISBN: 978-0-306-46955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics