Skip to main content

A Comprehensive Model for Solid State Sintering and Its Application to Silicon Carbide

  • Chapter
Multiscale Deformation and Fracture in Materials and Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 84))

Abstract

Previous models for partial aspects of solid state sintering and grain coarsening are combined to give a comprehensive model consisting of a set of equations. A series of sinter forging tests with a SiC powder is carried out, and the model is successfully adjusted to the experimental results. The resulting activation energy for bulk diffusion is substantially higher than activation energies reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouaf, M., Chenot, J.L., Raisson, G., and Baudin, P.: Finite element simulation of hot isostatic pressing of metal powders, Int. J. Numer. Methods Engng. 25 (1988) 191–212.

    Article  MATH  Google Scholar 

  2. Chenot, J.L., in: Numerical Methods in Industrial Forming Processes, Numiform 89, Thompson, E.G., Wood, R.D., Zienkiewicz, O.C., and Samuelson, H., A.A. Balkema, Rotterdam, 1989, p. 1.

    Google Scholar 

  3. Jagota, A., Mikeska, K.R., and Bordia, R.K.: Isotropic constitutive model for sintering particle packings, Am. Ceram. Soc. 73 (1990) 2266–2273.

    Article  Google Scholar 

  4. Mori, K., Finite element simulation of nonuniform shrinkage in sintering of ceramic powder compact, in: Numerical Methods in Industrial Forming Processes, Numiform 92, Chenot, J.L., Wood, R.D., Zienkiewicz, O.C., A.A. Balkema, Rotterdam, 1992, pp. 69–78.

    Google Scholar 

  5. Cocks, A.C.F., and Du, Z.Z.: Pressureless sintering and hiping of inhomogeneous ceramic compacts, Acta metall. mater. 41 (1993) 2113–2126.

    Article  Google Scholar 

  6. Gillia, O., Bouvard, D., Doremus, P., and Imbault D.: Numerical simulation of compaction and sintering of cemented carbide, in: European Conference on Advances in Hard Materials Production, 1996, pp. 61–68.

    Google Scholar 

  7. Shinagawa, K.: Finite element analysis of microscopic material behavior in sintering and prediction of macroscopic shape change in sintered bodies, in: Proceedings of 3 rd Asia-Pacific Symposium AEPA, 1996, pp. 439–444.

    Google Scholar 

  8. Olevsky, E.A.:Theory of sintering: From discrete to continuum, Mater. Sci. Engng. R23 (1998) 41–100.

    Google Scholar 

  9. Riedel, H., and Sun, D.-Z.: Simulation of die pressing and sintering of powder metals, hard metals and ceramics, in: Numerical Methods in Industrial Forming Processes, Numiform 92, Chenot, J.L., Wood, R.D., and Zienkiewicz, O.C., Eds., A.A. Balkema, Rotterdam, 1992, pp. 883–886.

    Google Scholar 

  10. Sun, D.-Z., and Riedel, H.: Prediction of shape distortions of hard metal parts by numerical simulation of pressing and sintering, Simulation of Materials Processing: Theory, Methods and Applications, Numiform 95, Shen, S.-F. and Dawson, P.R., Balkema, Rotterdam, 1995, pp. 881–886.

    Google Scholar 

  11. McHugh, P.E., and Riedel, H.: A liquid phase sintering model-application to Si3N4 and WC-Co, Acta metall. mater. 45 (1997) 2995–3003.

    Google Scholar 

  12. Plankensteiner, A.F., Parteder, E., Riedel, H., and Sun, D.-Z.: Micromechanism based finite element analysis of the sintering behavior of refractory metal parts using ABAQUS, in: ABAQUS User World Congress, Chester, 1999, pp. 643–657.

    Google Scholar 

  13. Kraft, T., Riedel, H., Stingl, P., and Wittig, F.: Finite element simulation of die pressing and sintering, Adv. Engng. Mater. 1(1999) 107–109.

    Article  Google Scholar 

  14. Svoboda, J., and Riedel, H.: New solutions describing the formation of interparticle necks in solid-state sintering, Acta metall. mater. 43 (1995) 1–10.

    Google Scholar 

  15. Svoboda, J., Riedel, H., and Zipse H.: Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering-Part I: Computation of equilibrium surfaces, Acta metall. mater. 42 (1994) 435–443.

    Article  Google Scholar 

  16. Riedel, H., Zipse, H., and Svobada, J.: Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering-Part II: Diffusional densification and creep, Acta metall. mater. 42 (1994) 445–452.

    Article  Google Scholar 

  17. Riedel, H., Kozák V., and Svoboda, J.: Densification and creep in the final stage of sintering, Acta metall. mater. 42 (1994) 3093–3103.

    Article  ADS  Google Scholar 

  18. Riedel, H., Svoboda, J., and Zipse, H.: Numerical simulation of die pressing and sintering-Development of constitutive equations, in: Powder Metallurgy World Congress PM94, D. Francois, Ed., Les Editions de Physique Les Ulis, Paris, 1994, pp. 663–671.

    Google Scholar 

  19. Svoboda, J., and Riedel, H.: Quasi-equilibrium sintering for coupled grain boundary and surface diffusion, Acta metall. mater. 43 (1995) 499–506.

    Article  Google Scholar 

  20. Svoboda, J., and Riedel, H.: Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering, Acta metall. mater. 40 (1992) 2829–2840.

    Article  Google Scholar 

  21. Riedel, H., and Svoboda, J.: A theoretical study of grain coarsening in porous solids, Acta metall. mater. 41 (1993) 1929–1936.

    Article  Google Scholar 

  22. Kanters, J., Eisele, U., and Rödel, J.: Scale dependent sintering trajectories, Acta mater. to be published (2000).

    Google Scholar 

  23. Svoboda, J., Riedel, H., and Gaebel, R.: A model for liquid phase sintering, Acta. metall. mater. 44 (1996) 3215–3226.

    Google Scholar 

  24. Ashby, M.F.: A first report on sintering diagrams, Acta metall. 22 (1974) 275–289.

    Article  Google Scholar 

  25. Ashby, M.F.: HIP 6.0 Background reading, University of Cambridge (1990).

    Google Scholar 

  26. Arzt, E.: The influence of an increasing particle coordination on the densification of spherical powders, Acta metall. 30 (1982) 1883–1890.

    Article  Google Scholar 

  27. Scherer, G.W.: Sintering inhomogeneous glasses: Application to optical waveguides, J. Non-Crystalline Solids 34 (1979) 239–256.

    Article  ADS  Google Scholar 

  28. Jagota, A., and Dawson, P.R.: Micromechanical modeling of powder compacts-Unit problems for sintering and traction induced deformation, Acta metall. 36 (1988) 2551–2561 and 2563–2573.

    Article  Google Scholar 

  29. McMeeking, R.M., and Kuhn, L.T.: A diffusional creep law for powder compacts, Acta metall. mater. 40 (1992) 961–969.

    Article  Google Scholar 

  30. Chuang, T.-J., and Rice, J.R.: The shape of intergranular creep cracks growing by surface diffusion, Acta metall. 21 (1973) 1625–1628.

    Article  Google Scholar 

  31. Chuang, T.-J., Kagawa, K.I., Rice, J.R., and Sills, L.B.: Non-equilibrium models for diffusive cavitation of grain interfaces, Acta metall. 27 (1979) 265–284.

    Article  Google Scholar 

  32. H. Zipse and H. Riedel, The mechanical behavior of sintering powder compacts, in: Ceramic Transactions, Vol. 51, Processing and Technology, H. Hausner, G.L. Messing and S.-I. Hirano, Eds., American Ceramic Society, Westerville, OH, 1995, pp. 489–493.

    Google Scholar 

  33. Hillert, M.: On the theory of normal and abnormal grain growth, Acta metall. 13 (1965) 227–237.

    Article  Google Scholar 

  34. Hon, M.H., and Davis, R.F.: Self-diffusion of 14C in polycrystalline β-SiC, J. Mater. Sci. 14 (1979) 2411–02421.

    Article  ADS  Google Scholar 

  35. Hon, M.H., and Davis, R.F.: Self-diffusion of 30Si in polycrystalline β-SiC, J. Mater. Sci. (1980) 2073–2080.

    Google Scholar 

  36. Hong, J.D., and Davis, R.F.: Self-diffusion of carbon-14 in high-purity and N-doped α-SiC single crystals, J. Am. Ceram. Soc. 63 (1980) 546–551.

    Article  Google Scholar 

  37. Hong, J.D., and Davis, R.F.: Self-diffusion of silicon-30 in α-SiC single crystals, J. Mater. Sci. 16 (1981) 2485–2494.

    Article  ADS  Google Scholar 

  38. Prochazka, S.: The role of B and C in the sintering of SiC, in: Special Ceramics, No. 6, P. Popper, Ed., British Ceramic Research Association, Manchester, 1975, pp. 171–182.

    Google Scholar 

  39. van Rijswijk, W., and Shanefield, D.J.: Effects of carbon as a sintering aid in silicon carbide, J. Am. Ceram. Soc. 73 (1990) 148–149.

    Article  Google Scholar 

  40. Greskovich, C., and Rosolowski, J.H.: Sintering of covalent solids, J. Am. Ceram. Soc. 59 (1976) 336–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Riedel, H., Blug, B. (2000). A Comprehensive Model for Solid State Sintering and Its Application to Silicon Carbide. In: Chuang, T.J., Rudnicki, J.W. (eds) Multiscale Deformation and Fracture in Materials and Structures. Solid Mechanics and Its Applications, vol 84. Springer, Dordrecht. https://doi.org/10.1007/0-306-46952-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46952-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6718-5

  • Online ISBN: 978-0-306-46952-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics