Skip to main content

Theory of Exact Exchange Relations for a Single Excited State

  • Chapter
Book cover New Trends in Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 6))

  • 255 Accesses

Abstract

A recently proposed theory for a single excited state based on Kato’s theorem is reviewed. The concept of adiabatic connection is extended and the validity of Kato’s theorem along the adiabatic path is discussed. Exchange identities are derive dutilizing the principle of adiabatic connection and coordinate scaling. A generalized ‘Koopmans’ theorem’ is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hohenberg, P. and Kohn, W., Phys. Rev. B 136, 864 (1964).

    Google Scholar 

  2. Theophilou, A.K., J. Phys. C 12, 5419 (1978).

    Google Scholar 

  3. Gross, E.K.U., Oliveira, L.N. and Kohn, W., Phys. Rev. A 37, 2805, 2809, 2821 (1988).

    Google Scholar 

  4. Nagy, Á., Phys. Rev. A 42, 4388 (1990).

    Google Scholar 

  5. Nagy, Á,, J. Phys. B 24, 4691 (1991).

    Google Scholar 

  6. Nagy A. and Andrejkovics, I., J. Phys. B 27, 233 (1994).

    Google Scholar 

  7. Nagy, Á., Int. J. Quantum. Chem. 56, 225 (1995).

    CAS  Google Scholar 

  8. Nagy Á., J. Phys. B 29, 389 (1996).

    Google Scholar 

  9. Nagy, Á., Int. J. Quantum. Chem. S. 29, 297 (1995).

    CAS  Google Scholar 

  10. Nagy, Á., Adv. Quantum. Chem. 29, 159 (1997).

    CAS  Google Scholar 

  11. Nagy, Á., Phys. Rev. A 49, 3074 (1994).

    Google Scholar 

  12. Görling, A., (1996) Phys. Rev. A 54, 3912 (1996).

    Google Scholar 

  13. Görling, A. and Levy, M., Phys. Rev. A 47, 13105 (1993); Phys. Rev. A 47, 196 (1994); Int. J. Quantum. Chem. S. 29, 93 (1995).

    Google Scholar 

  14. Gross, E. U. K., Dobson, J. F. and Petersilka, M., in Density Functional Theory, (Topics in Current Chemistry) (ed.) Nalewajski, R. Springer-Verlag, Heidelberg, vol. 181. p. 81 (1996).

    Google Scholar 

  15. Casida, M. F., in Recent advances in the density functional methods, (Recent Advances in Computational Chemistry) (ed) Chong, D. P., World Scientific, Singapore vol.1 p.155 (1996); Casida, M. E., Jamorski, Casida, K. C. and Salahub, D. R., J. Chem. Phys. 108, 5134 (1998).

    Google Scholar 

  16. Harbola, M. K. and Sahni, V., Phys. Rev. Lett. 62, 489 (1989); see also Sahni, V., in Density Functional Theory (Topics in Current Chemistry) (ed.) Nalewajski, R, Springer-Verlag, Berlin vol.182. p.1 (1996).

    Article  CAS  Google Scholar 

  17. Sen, K. D., Chem. Phys. Lett. 168, 510 (1992); Singh, R. and Deb, B. M., Proc. Indian Acad. Sci. 106, 1321 (1994); J. Mol. Struc. Theochem 361, 33 (1996); J. Chem. Phys. 104, 5892 (1996); Roy, A. K., Singh, R. and Deb, B. M., J. Phys. B 30, 4763 (1997); Int. J. Quantum. Chem. 65, 317 (1997); Roy, A. K. and Deb, B. M., (1997) Phys. Lett. A 234, 465 (1997).

    Google Scholar 

  18. Görling, A., Phys. Rev. A 59, 3359 (1999).

    Google Scholar 

  19. Nagy, Á., Int. J. Quantum. Chem. 70, 681, (1998).

    Article  CAS  Google Scholar 

  20. Nagy, Á., in Electron Correlations and Materials Properties, (eds.) Gonis, A., Kioussis, N. and Ciftan, M., Plenum, New York, 451 (1999).

    Google Scholar 

  21. Kato, T., Commun. Pure Appl. Math. 10, 151 (1957).

    Google Scholar 

  22. Steiner, E. J., Chem. Phys. 39, 2365 (1963); March, N. H., Self-consistentfields in atoms, Pergamon, Oxford (1975).

    CAS  Google Scholar 

  23. Handy, N. C., in Quantum Mechanical Simulation Methods for Studying Biological Systems, (eds) Bicout D. and Field, M., Springer-Verlag, Heidelberg p.1. (1996).

    Google Scholar 

  24. Gunnarsson, 0. and Lundqvist, B.I., Phys. Rev. B 13, 4274 (1976).

    Google Scholar 

  25. Harris J. and Jones, JR.O., Phys. F 4, 1170 (1984); Harris, J., Phys. Rev. A 29, 1648 (1984).

    Google Scholar 

  26. Nagy, Á., J. Phys. B 26, 43 (1993); Phil. Mag. B 69, 779 (1994).

    Google Scholar 

  27. Nagy, A. and March, N. H., Phys. Rev. A 39, 5512 (1989); Phys. Rev. A 40, 5544 (1989).

    Google Scholar 

  28. Zhao, Q. and Parr, R. G., J. Chem. Phys. 98, 543 (1993); Parr, R. G., Phil. Mag. B 69, 737 (1994); Zhao, Q., Morrison, R. C. and Parr, R. G., Phys. Rev. A 50, 2138 (1994). Morrison, R. C. and Zhao, Q., Phys. Rev. A 51, 1980 (1995). Parr. R. G. and Liu, S., Phys. Rev. A 51, 3564 (1995).

    CAS  Google Scholar 

  29. Almbladh, C. 0. and Pedroza, A. P., Phys. Rev. A 29, 2322 (1984).

    Google Scholar 

  30. Arysetiawan, F. and Stott, M. J., Phys. Rev. B 34, 4401 (1986).

    Google Scholar 

  31. Arysetiawan, F. and Stott, M. J., Phys. Rev. B 38, 2974 (1988).

    Google Scholar 

  32. Chen, J. and Stott, M. J., Phys. Rev. A 44, 2816 (1991); Chen, J. Esquivel, R. 0. and Stott, M. J., Phil. Mag. B 69, 1001 (1994).

    Google Scholar 

  33. Görling, A,, Phys. Rev. A 46, 3753 (1992); Görling, A. and Ernzerhof, M., Phys. Rev. A 51, 4501 (1995).

    Google Scholar 

  34. van Leeuwen, R. and Baerends, E. J., Phys. Rev. A 49, 2421 (1994).

    Google Scholar 

  35. Levy, M., Phys. Rev. A 28, 1200 (1982).

    Google Scholar 

  36. Lieb, E. H., in Physics as a Natural Pliosophy, (eds) Shimony, A. and Feshback, H., MIT Press, Cambridge, MA. (1982).

    Google Scholar 

  37. Levy, M. and Görling A., Phys. Rev. A 53, 3140 (1996).

    Google Scholar 

  38. Perdew, J. P., in Density Functional Methods in Physics, NATO Advanced Study Institute, Series B: Physics, (ed.) Dreizler, R. M. and da Providencia, J., Plenum, New York, vol. 123 (1985) and references therein.

    Google Scholar 

  39. Sharp R. T. and Horton, G. K., Phys. Rev. 30, 317 (1953); Talman, J. D. and Shadwick, W. F., Phys. Rev. A 14, 36 (1976); Aashamar, K., Luke, T. M. and Talman, J. D., At. Data Nucl. Data Tables 22, 443 (1978).

    Google Scholar 

  40. Krieger, J. B., Li, Y. and Iafrate, G. J., Phys. Lett. A 146, 256 (1990); Int. J. Quantum. Chem. 41, 489 (1992); Phys. Rev. A 45, 101 (1992); Phys. Rev. A 46, 5453 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nagy, Á. (2001). Theory of Exact Exchange Relations for a Single Excited State. In: New Trends in Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-46951-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46951-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6708-6

  • Online ISBN: 978-0-306-46951-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics