Skip to main content

On the Study of Creep Rupture of Structure

  • Conference paper
IUTAM Symposium on Rheology of Bodies with Defects

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 64))

  • 185 Accesses

Abstract

The study of creep rupture and the life expectancy of structures has long been a subject of interest. The paper makes a brief survey of the continuum damage mechanics approach to this subject which began in the early fifties and has achieved quite satisfactory progress especially for metallic structures. In recent years due to the need for prolonging the lifetime of existing structures and the application of new materials, especially polymer materials, it is still under vigorous development. This paper begins from some early basic work, introduces the development of constitutive relations from uni-axial stress state to multi-axial stress state, and methods for calculating the creep life together with estimating it by upper and lower bounds. In an attempt to assess the creep rupture process of fiber reinforced composites, an analytic calculation of creep rupture lifetime of a bi-material 3-bar truss under vertical and horizontal loads is presented as an example. Finally, subjects for future research are mentioned.

Supported by National Natural Science Foundation of China

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelly A., Cook, A.H. and Greenwood, G.W. (1978) Creep of Engineering Materials and of the Earth, Royal Soc. London.

    Google Scholar 

  2. Brinson, L.C. and Gates, T.S. (1995) Effects of physical aging on long term creep of polymers and polymer matrix composites, Int. J. Solids Structures, 32, 827–846.

    Article  MATH  Google Scholar 

  3. Li, J. and Dasgupta, A. (1993) Failure mechanism models for creep and creep rupture, IEEE Trans. on Reliability, 42, 339–353.

    Article  Google Scholar 

  4. Otani, H. Phoenix S.L. and Petrina, P. (1991) Matrix effects on lifetime statistics for carbon fibreepoxy micro-composites in creep rupture, J. Mater. Sci. 26, 1955–1970.

    Article  ADS  Google Scholar 

  5. Findley, W.N. (1987) 26-year creep and recovery of Poly(Vinyl-Chloride) and Polyethylene, Polymer Engrg. Sci., 27, 582–585.

    Article  Google Scholar 

  6. Wilshire, B. (1991) Microscopic models and macroscopic constitutive laws for high temperature creep and creep fracture of metallic and ceramic materials, in Cocks, A. C. F. and Ponter, A. R. S. (eds.) Mechanics of Creep Brittle Materials-2, Elsevier Sci. Publ., New York, pp. 112–123.

    Google Scholar 

  7. Hayhurst, D.R. (J972) Creep rupture under multi-axial states of stress, J. Mech. Phys. Solids, 20, 381–390.

    Article  Google Scholar 

  8. Golub, V.P. Non-linear models of creep damage accumulation, in Cocks, A. C. F. and Ponter, A. R. S. (eds.) Mechanics of Creep Brittle Materials-2, Elsevier Sci. Publ., New York, pp. 254–267.

    Google Scholar 

  9. Kachanov, L.M. (1961) Rupture time under creep conditions, in Radok, J. R. M. (ed.) Problems in Continuum Mechanics, JIAM, 202–218.

    Google Scholar 

  10. Hoff, N. J. (1954) Approximate analysis of structures in the presence of moderately large creep deformation, Q. J. Appl. Math. 12, 49–55.

    MathSciNet  MATH  Google Scholar 

  11. Rabotnov, Yu. N. (1969) Creep Problems in Structural members, North-Holland Publ. Co. Amsterdam.

    MATH  Google Scholar 

  12. Lemaitre, J. and Plumtree, A., (1979) Application of damage concept to predict creep-fatigue failures, J. of Engineering Materials and Technology, Trims. ASME, 101, 284–292.

    Article  Google Scholar 

  13. Cocks A. C. F. and Leckie, F. A., (1987) Creep constitutive equations for damaged materials in Wu, T. Y. and Hutchinson J. W. (eds.) Advances in Applied Mechanics,. 25, 239–295.

    Google Scholar 

  14. Othman, A. M. and Hayhurst D. R. (1990) Multi-axial creep rupture of a model structure using a two parameter material model, Int. J. Mech. Sci. 32, 35–48.

    Article  Google Scholar 

  15. Leckie, F. A. and Hayhurst, D. R. (1974) Creep rupture of structures, Proc. R. Soc. London A340, 323–347.

    ADS  Google Scholar 

  16. Trivaudey F. and Delobelle P. (1993) Experimental study and modelization of creep damage under multi-axial loadings at high temperature, in Wilshire, B. and Evans, R. W. (eds,) Creep and Fracture of Engineering Materials and Structures, The institute of Materials, London, 137–147.

    Google Scholar 

  17. Murakami, S. and Ohno, N. (1982) A constitutive equation of creep based on the concept of a creep-hardening surface, Int. J. Solids Structures, 18, 597–609.

    Article  MATH  Google Scholar 

  18. Boyle, J. T. and Spence J. (1983) Stress Analysis for Creep, Butterworths, London.

    Google Scholar 

  19. Kachanov, L.M. (1984) in Dvorak, G. J. and Shield, R.T. (eds.) Mechanics of Material Behavior, Elsevier, Amsterdam, pp. 191–199.

    Google Scholar 

  20. Conway, J.B.(I967) Numerical Methods for Creep and Rupture Analysis, Gordon and Breach Sci. Publ., New York, Ch.VIII Stress rupture analysis.

    Google Scholar 

  21. Singh, R. N. and Ramakrishnan, C. V. (1995) Fracture Behavior of creeping materials under biaxial loading by finite element method, Engrg. Fracture Mech., 51, 637–648.

    Article  Google Scholar 

  22. Hall, F.R. and Hayhurst, D.R. (1991) Continuum damage mechanics modelling of high temperature deformation and failure in a pipe weldment, Proc. R. Soc. London A433, 383–403.

    ADS  Google Scholar 

  23. Needleman, A. (1994) Computational modelling of material failure, Appl. Mech. Rev. 47 no.6 part 2 S34–S42.

    Article  Google Scholar 

  24. Ponter, A.R.S. (1977) Upper bounds on the creep rupture life of structures subjected to variable load and temperature, Int. J. Mech. Sci. 79–92.

    Google Scholar 

  25. Liaw, P. K., Saxena, A. and Schaefer, J. (1997) Creep crack growth behavior of steam pipe steels: Effects of inclusion content and primary creep, Engrg. Fracture Mech., 57, 105–130.

    Article  Google Scholar 

  26. Wang, R. (1996) A review on creep failure of polymer and polymer composite, in Abe, T. and Tsuta, T. (eds.) Advances in Engineering Plasticity and its Applications, Pergamon Press, 43–52.

    Google Scholar 

  27. Raghavan, J. and Meshii, M. (1997) Creep rupture of polymer composites, Composites Sci. & Tech. 57, 375–388.

    Article  Google Scholar 

  28. Bardenhagen, S. G., Stout, M. G. and Gray, G.T. (1997) Three-dimensional, finite deformation, viscoplastic loading, Mechanics of composite materials, 31, 511–518.

    Google Scholar 

  29. Zhang C. and Moore I. D. (1997), Nonlinear mechanical response of high density polyethylene, Part I: experimental investigation and model evaluation, Part II: uniaxial constitutive modeling, Potymeer Engrg. and Sci., 404–413, 414–420.

    Google Scholar 

  30. Altennbach, H., Altenbach, J. and Zolochevsky, A. (1995) A generalized constitutive equation for creep of polymers at multiaxial constitutive models for polymeric materials Mechanics of Materials, 25, 235–253.

    Google Scholar 

  31. Schapery, R. A. (1994) Nonlinear viscoelastic constitutive equations for composites based on work potentials, Appl. Mech. Rev. 47 no.6 part 2, S269–S275.

    Article  Google Scholar 

  32. Chen, X.-H. (1995) Statistical mechanics of fuzzy random polymer networks, Science in China Ser.A v.38 (Eng. ed.), 1095–1104.

    ADS  Google Scholar 

  33. Chen, X.-H., Tong P. and Wang R. (1998) Non-equilibrium statistical thermodynamic theory for viscoelasticity of polymers, 7. Mech. Phys. Solids, 46, 139–152.

    MATH  Google Scholar 

  34. Vujosevic, M. and Krajcinovic D. (1997) Creep rupture of polymer: A statistical model, Int. J. Solid Structures, 34, 1105–1122.

    Article  MATH  Google Scholar 

  35. Teoh, S. H. Cherry, B.W. and Kausch, H. H. (1992) Creep rupture modelling of polymers, Int. J. Damage Mech., 1, 245–256.

    Article  Google Scholar 

  36. Brueller, O. S. (1981) Energy related failure criteria of thermoplastics, Polymer Engrg. and Sci. 21, 145–150.

    Article  Google Scholar 

  37. Mai, Y. W. and Powell, P. (1991) Essential work of fracture and J-integral measurements for ductile polymers, J. Polymer Sci.. Part B polymer physics, 29, 785–793.

    Article  ADS  Google Scholar 

  38. Wu, J. and Mai, Y. W. (1996) The essential fracture work concept for toughness measurement of ductile polymers, Polymer Engrg. and Sci. 36, 2275–2288.

    Article  Google Scholar 

  39. Yang, T. Q. (1998) Rheological behavior and failure characteristics of viscoelastic solids with defects, this volume.

    Google Scholar 

  40. Ganclaves Filho, O. J. A. (1995) Closed form solution for the isothermal creep rupture behavior of a two bar structure under constant load, Int. J. Solids Structures, 32, 3087–3104.

    Article  Google Scholar 

  41. Chun, H.J. and Daniel, A.J. (1997) Transverse creep behavior of a unidirectional metal matrix composite, Mechanics of Materials, 25, 37–46.

    Article  ADS  Google Scholar 

  42. Cane, B.J. and Aplin P. F. (1994) Creep life assessment methods, J. Strain Analysis, 29, 225–232.

    Article  Google Scholar 

  43. Wilshire, B. and Evans, R. W. (1993) Creep and Fracture of Engineering Materials and Structures, The institute of Materials, London.

    Google Scholar 

  44. Chattopadhyay, L. and Ghosh, R. N. (1996) CLIP computer software for creep life prediction of engineering materials, Engrg. Fracture Mech., 54, 71–73.

    Article  Google Scholar 

  45. Yokobori Jr., A. T. and Yokobori, T. (1993) A new concept on high temperature creep crack initiation, growth and creep fracture life, in Wilshire, B. and Evans, R.W.(eds.) Creep Fracture of Engineering Materials and Structures, The institute of Materials, London, 81–97.

    Google Scholar 

  46. Bradshaw, R. D. and Brinson, L. C. (1997) Physical aging in polymer and polymer composites: An analysis and method for time-aging time superposition, Polymer Engrg. and Sci. 37, 31–44.

    Article  Google Scholar 

  47. Veazie, D. R. (1997) Compressive creep of IM7-K3B composite and the effect of physical aging on viscoelastic behavior, Experimental Mech. 37, 62–68.

    Article  Google Scholar 

  48. Zyczkowski, M. (1996) Optimal structural design under creep conditions, Appl. Mech. Rev. 49, 433–446.

    Article  Google Scholar 

  49. Mai, Y.-W., Chen, X.-H. and Wong, S.-C. (1998) Fracture Characterization of Structure-Property Relationship of Polymer Blends, book chapter for Polymer Characterization Techniques and Their Application to Blends, Simon, G. P. (ed.), American Chemical Society, Washington, DC, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Wang, R. (1999). On the Study of Creep Rupture of Structure. In: Wang, R. (eds) IUTAM Symposium on Rheology of Bodies with Defects. Solid Mechanics and its Applications, vol 64. Springer, Dordrecht. https://doi.org/10.1007/0-306-46937-5_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-46937-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5297-6

  • Online ISBN: 978-0-306-46937-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics