Skip to main content

Advances in Electron-gas Potential Models: Applications to Some Candidate Lower Mantle Minerals

  • Chapter
Modelling of Minerals and Silicated Materials

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 15))

  • 247 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ita, J. J., and Stixrude, L. (1992) Petrology, elasticity and Composition of the mantle transition zone, J. Geophys. Res., 97, 6849–6866.

    CAS  Google Scholar 

  2. Jackson, I. (1983) Some geophysical constraints on the chemical composition of the earth’s lower mantle, Earth Planet. Sci. Lett. 62, 91–103.

    Article  CAS  Google Scholar 

  3. Jeanloz, R. and Thompson, A.B. (1983) Phase transitions and mantle discontinuities, Revs. Geophys. Sp. Phys. 21, 51–74.

    CAS  Google Scholar 

  4. Bukowinski, M.S.T. and Wolf, G.H. (1990) Thermodynamically consistent decompression: implications for lower mantle composition, J. Geophys. Res. 95, 12583–12593.

    Google Scholar 

  5. Irifune, T. and Ringwood, A.E. (1987) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In M. H. Manghnani and Y. Syono, (eds.), High-Pressure Research in Mineral Physics, AGU, Washington.

    Google Scholar 

  6. O’Neill, B. and Jeanloz, R. (1990) Experimental petrology of the lower mantle: A natural peridotite taken to 54 GPa, Geophys. Res. Lett. 17, 1477–1480.

    Google Scholar 

  7. Petersen, N., Gossler, J., Kind, R., Stammler, K. and Vinnik, L. (1993) Precursors to SS and structure of transition zone of the northwest Pacific, Geophys. Res. Lett. 20, 281–284.

    Google Scholar 

  8. Kawakatsu, H. and Niu, F. (1994) Seismic evidence for a 920-km discontinuity in the mantle, Nature 371, 301–305.

    Article  ISI  Google Scholar 

  9. Irifune, R., Susaki, J., Yagi, T. and Sawamoto, H. (1989) Phase transformations in diopside CaMgSi2O6 at pressures up to 25 GPa, Geophys. Res. Lett. 16, 187–190.

    CAS  Google Scholar 

  10. Tamai, H. and Yagi, T. (1989) High-pressure and high-temperature phase relations in CaSiO3 and CaMgSi2O6 and elasticity of perovskite-type CaSiO3, Phys. Earth Planet. Int. 54, 370–377.

    CAS  Google Scholar 

  11. Zhang, H. and Bukowinski, M.S.T. (1992) Possible high pressure phases of Al2O3 and Mg-Ca-AI silicates, EOS 73, 521.

    Google Scholar 

  12. Zhao, Y. and Anderson, D.L. (1994) Mineral physics constraints on the chemical composition of the Earth’s lower mantle, Phys. Earth Planet. Int 85, 273–292.

    CAS  Google Scholar 

  13. Boyer, L.L. (1983) Bonding and equation of state of MgO, Phys. Rev. B27, 1271–1275.

    Google Scholar 

  14. Agnon, A. and Bukowinski, M.S.T. (1988) High pressure Shear moduli-A many-body model for oxides, Geophys. Res. Lett. 15, 209–212.

    Google Scholar 

  15. Agnon, A. and Bukowinski, M.S.T. (1990) Thermodynamic and elastic properties of many-body model for simple oxides, Phys. Rev. B141, 7755–7766.

    Google Scholar 

  16. Bukowinski, M.S.T. (1980) Effect of pressure on bonding in MgO, J. Geophys. Res. 85, 285–292.

    CAS  Google Scholar 

  17. Bukowinski, M.S.T. (1982) Pressure effects on bonding in CaO: Comparison with MgO, J. Geophys. Res. 87, 303–310.

    CAS  Google Scholar 

  18. Bukowinski, M.S.T. (1985) First principles equation of state of MgO and CaO, Geophys. Res. Lett. 12, 536–539.

    CAS  Google Scholar 

  19. Cohen, R.E. (1991) Bonding and elasticity of stishovite SiO2 at, high pressures: Linearized augmented Plane Wave calculations, Am. Mineral. 76, 733–742.

    CAS  Google Scholar 

  20. Cohen, R.E. (1992) First-principles predictions of elasticity and phase transitions in high pressure SiO2 and geophysical implications, In Y. Syono and M. H. Manghnani, (teds.), High-Pressure Research: Applications to Earth and Planetary Sciences, Terra Scientific Publishing Company (TERRAPUB), Tokyo, 425–431.

    Google Scholar 

  21. Mehl, M.J., Cohen, R.E. and Krakauer, H. (1988) Linearized Augmented Plane Wave electronic structure calculations for MgO and CaO, J. Geophys. Res. 93, 8009–8022.

    CAS  Google Scholar 

  22. Sherman, D.M. (1993) Equation of state and high-pressure phase transitions of stishovite (SiO2): Ab initio (periodic Hartree-Fock) results, J. Geophys. Res. 98, 11865–11874.

    CAS  Google Scholar 

  23. Stixrude, L. and Cohen, R.E. (1993) First pnciples investigation of the electronic structure and physical properties of solid iron at core pressures (abstract), EOS 74, 305.

    Google Scholar 

  24. Stixrude, L. and Cohen, R.E. (1993) Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle, Nature 364, 613–616.

    Article  CAS  ISI  Google Scholar 

  25. Car, R. and Parrinello, M. (1985) Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471–2474.

    Article  CAS  Google Scholar 

  26. Bukowinski, M.S.T. (1994) Quantum Geophysics, Annu. Rev. Earth Planet. Sci. 22, 167–205.

    Article  Google Scholar 

  27. Mehl, M.J., Hemley, R.J. and Boyer, L.L. (1986) Potential-induced breathing model for the elastic moduli and high-pressure behavior of the cubic alkaline-earth oxides, Phys. Rev. B33, 8685–8695.

    Google Scholar 

  28. Wolf, G.H. and Bukowinski, M.S.T. (1988) Variational stabilization of the ionic charge densities in the electron-gas theory of crystals: Applications to MgO and CaO, Phys. Chem. Minerals 15, 209–220.

    Article  CAS  Google Scholar 

  29. Chizmeshya, A., Zimmermann, F.M., La Violette, R.A. and Wolf, G. (1994) Variational charge relaxation in ionic crystals: An efficient treatment of statics and dynamics, Phys. Rev. B 50, 15559–15574.

    Article  CAS  Google Scholar 

  30. Isaak, D.G., Cohen, R.E. and Mehl, M.J. (1990) Calculated elastic and thermal properties of MgO at high pressures and temperatures, J. Geophys. Res. 95, 7055–7067.

    Google Scholar 

  31. Gordon, R.G. and Kim, Y.S. (1972) A theory for the forces between closed shell atoms and molecules, J. Chem. Phys. 56, 3122–3133.

    Article  CAS  Google Scholar 

  32. Hohenberg, P.C. and Kohn, W. (1964) Inhomogeneous electron gas, Phys. Rev. B136, 864–871.

    Google Scholar 

  33. Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, 1133–1138.

    Article  Google Scholar 

  34. Gordon, R.G. and LeSar, R. (1990) Local density functional theories of ionic and molecular solids, Adv. Quantum Chem. 21, 341–363.

    CAS  Google Scholar 

  35. Zhang, H. (1993) A study of lower mantle mineralogy by ab initio potential methods, PhD thesis, University of California at Berkeley.

    Google Scholar 

  36. Zhang, H. and Bukowinski, M.S.T. (1991) Modified potential-induced breathing model of potentials between closed-shell ions, Phys. Rev. B44, 2495–2503.

    Google Scholar 

  37. Mahan, G.D. and Subbaswamy, K.R. (1990) Local Density Theory of Polarizability, Plenum Press, New York.

    Google Scholar 

  38. Jones, R.O. and Gunnarson, O. (1989) The density functional formalism, Rev. Mod. Phys. 61, 689–746.

    Article  CAS  Google Scholar 

  39. Hedin, L. and Lundqvist, B.I. (1971) Explicit local exchange-correlation potentials, J. Phys. C 4, 2064–2083.

    Article  Google Scholar 

  40. Lundqvist, B.I. and Lundqvist, S. (1972) Local excange-correlation potentials, in F. Herman, L. Dalton, and T. Koehler., (eds.), Computational Solid State Physics, Plenum Press, New York.

    Google Scholar 

  41. Waldman, M. and Gordon., R.G. (1979) Scaled electron gas approximation for intermolecular forces, J. Chem. Phys. 71, 1325–39.

    CAS  Google Scholar 

  42. Clugston, M.J. (1978) The calculation of intermolecular forces. A critical examination of the Gordon-Kim model, Adv. phys. 27, 893–912.

    Article  CAS  Google Scholar 

  43. Pearson, E.W. and Gordon, R.G. (1985) Local asymptotic gradient corrections to the energy functional of an electron gas, J. Chem. Phys. 82, 881–889.

    Article  CAS  Google Scholar 

  44. Plumer, M.L. and Stott, M.J. (1985) Approximate kinetic energy functionals for atoms in extended systems, J. Phys. C: Sol. St. Phys. 18, 4143–4163.

    CAS  Google Scholar 

  45. Muhlhausen, C. and Gordon, R.G. (1981) Density-functional theory for the energy of crystals: test of the ionic model, Phys. Rev. B24, 2147–2160.

    Google Scholar 

  46. Hemley, R.J. and Gordon, R.G. (1985) Theoretical study of solid NaF and NaCl at high pressures and temperatures, J. Geophys. Res. 90, 7803–7813.

    CAS  Google Scholar 

  47. Boyer, L.L., Mehl, M.J., Feldman, J.L., Hardy, J.R., Flocken, J.W. and Fong, C.Y. (1985) Beyond the rigid-ion approximation with spherically symmetric ions, Phys. Rev. Lett. 54, 1940–1943.

    CAS  Google Scholar 

  48. Herman, F. and Skillman, S. (1963) Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs (New Jersey).

    Google Scholar 

  49. Aidun, J., Bukowinski, M.S.T. and Ross, M. (1984) Equation of state and metallization of CsI, Phys. Rev. B29, 2611–2621.

    Google Scholar 

  50. Wallace, D.C. (1972) Thermodynamics of Crystals, Wiley and Sons, New York.

    Google Scholar 

  51. Cohen, A.J. and Gordon, R.G. (1976) Modified electron-gas study of the stability, elastic properties, and high-pressure behavior of MgO and CaO crystals, Phys. Rev. B14, 4593–4605.

    Google Scholar 

  52. Jackson, I., and Niesler, H. (1982) The elasticity of periclase to 3 GPa and some geophysical implications.” In High-pressure Research in Geophysics, in S. Akimoto and M. H. Manghnani, (eds.), High-pressure Research in Geophysics, Center for Academic Publications Japan with Reidel Publishing Company, Tokyo.

    Google Scholar 

  53. Vassiliou, M.S. and Ahrens, T.J. (1981) Hugoniot equation of state of periclase to 200 GPa, Geophys. Res. Lett. 8, 729–733.

    CAS  Google Scholar 

  54. Mammone, J.F., Mao, H.K. and Bell, P.M. (1981) Equation of state of CaO under static pressure conditions, Geophys. Res. Lett 79, 140–143.

    Google Scholar 

  55. Richet, P., Mao, H.K. and Bell, P.M. (1988) Static compression and equation of state of CaO to 1.35 Mbar, J. Geophys. Res 93, 15279–15288.

    CAS  Google Scholar 

  56. Richet, P., Xu, J.-A. and Mao, H.-K. (1988) Quasi-hydrostatic compression of ruby to 500 Kbar, Phys. Chem. Minerals 16, 207–211.

    Article  CAS  Google Scholar 

  57. Cynn, H., Isaak, D.G., Cohen, R.E., Nicol, M.F. and Anderson, O.L. (1990) A highpressure phase transition of corundum predicted by the potential induced breathing model, Am. Mineral. 75, 439–442.

    CAS  Google Scholar 

  58. Marton, F.C. and Cohen, R.E. (1994) Prediction of a high-pressure phase transition in Al2O3, Amer. Mineral. 79, 789–792.

    CAS  Google Scholar 

  59. Cohen, R.E. (1987) Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model, Geophys. Res. Lett. 14, 37–40.

    Google Scholar 

  60. Cohen, R.E. (1987) Elasticity and equation of state of MgSiO3 perovskite, Geophys. Res. Lett. 14, 1053–1056.

    CAS  Google Scholar 

  61. Zhang, H. and Bukowinski, M.S.T. (1995) Electron-gas model properties of MgSiO3 and CaSiO3 perovskites and their perovskite-like solid solutions, Phys. Chem. Minerals (submitted).

    Google Scholar 

  62. Bukowinski, M.S.T., and Zhang, H. (1995)

    Google Scholar 

  63. Bukowinski, M.S.T., and Zhang, H. (1995) to be published.

    Google Scholar 

  64. Finger, L.W. and Hazen, R.M. (1978) Crystal structure and compression of ruby to 46 kbar, J. Appl. Phys. 49, 5823–5826.

    Article  CAS  Google Scholar 

  65. Wolf, G.H. and Bukowinski, M.S.T. (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: Implications for lower mantle composition, in M. H. Manghnani and Y. Syono.a, (eds.), High-Pressure Research in Mineral Physics, Terra Scientific Company (TERRAPUB), Tokyo.

    Google Scholar 

  66. Ross, N.L. and Hazen, R.M. (1990) High-pressure crystal chemistry of MgSiO3 perovskite, Phys. Chem. Minerals 17, 228–237.

    Article  CAS  Google Scholar 

  67. Knittle, E. and Jeanloz, R. (1987) Synthesis and equation of state of (Mg,Fe)SiO3 perovskite to over 100 GPa, Science 235, 669–670.

    Google Scholar 

  68. Wolf, G.H. and Bukowinski, M.S.T. (1985) Ab initio structural and thermoelastic properties of orthorhombic MgSiO3 perovskite, Geophys. Res. Lett. 12, 809–812.

    CAS  Google Scholar 

  69. Hemley, R.J., Jackson, M.D. and G., G.R. (1987) Theoretical study of the structure, lattice dynamics, and equations of state of perovskite-type MgSiO3 and CaSiO3, Phys. Chem. Minerals 14, 2–12.

    Article  CAS  Google Scholar 

  70. Mao, H.K., Chen, L.C., Hemley, R.J., Jephcoat, A.P., Wu, Y. and Bassett, W.A. (1989) Stability and equation of state of CaSiO3-perovskite to 134 GPa, J. Geophys. Res. 94, 17889–17894.

    Google Scholar 

  71. Tarrida, H. and Richet, P. (1989) Equation of state of CaSiO3 perovskite to 96 GPa, Geophys. Res. Lett. 16, 1351–1354.

    CAS  Google Scholar 

  72. Kapusta, B. and Guillope, M. (1993) Molecular dynamics study of the perovskite MgSiO3 at high temperature: structural, elastic and thermochemical properties, Phys. Earth Planet. Int. 75, 205–224.

    Google Scholar 

  73. Hu, J., Meade, C., and Mao, H.K. (1994) High temperature phase transition and dissociation of (Mg,Fe)SiO3 perovskite at lower mantle pressures, EOS 75, 605.

    Google Scholar 

  74. D’Arco, P., Sandrone, G., Dovesi, R., Orlando, R. and Saunders, V.R. (1993) A quantum mechanical study of the perovskite structure type of MgSiO3, Phys. Chem. Minerals 20, 407–414.

    Google Scholar 

  75. Wentzcovitch, R.M., Martins, J.L. and Price, G.D. (1993) Ab initio molecular dynamics with variable cell shape: applications to MgSiO3, Phys. Rev, Lett. 70, 3947–3950.

    Article  CAS  Google Scholar 

  76. Ross, N.L. and Hazen, R.M. (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K, Phys. Chem. Minerals 16, 415–420.

    CAS  Google Scholar 

  77. Knittle, E., Jeanloz, R., and Smith, G. L. (1986) Thermal expansion of silicate perovskite and stratification of the earth’s mantle, Nature, 319, 214–216.

    Article  CAS  ISI  Google Scholar 

  78. Hemmati, M., Chizmeshya, A., Wolf, G.H., Poole, P.H., Shao, J. and Angell, C.A. (1995) Crystalline-amorphous transition in silicate perovskites, Phys. Rev. B51, (in press).

    Google Scholar 

  79. Ottonello, C. (1987) Energies and interactions in binary (Pbmn) orthosilicates: a Born parametrization, Geochim. Cosmochim. Acta, 51, 3129–3135.

    Article  Google Scholar 

  80. Francisco, E., Recio, J.M., Blanco, M.A., Pendas, A.M. and Pueyo, L. (1995) Derivation of electron-gas interatomic potentials from quantum-mechanical description of ions in crystals, Phys. Rev. B51, 2703–2714.

    Google Scholar 

  81. Jephcoat, A.P., Hemley, R.J. and Mao, H.K. (1988) X-ray diffraction of ruby (Al2O3∶Cr3+) to 175 GPa, Physica B150, 115–121.

    Google Scholar 

  82. Mao, H.-Kand Bell, P.M. (1979) Equations of state of MgO and Fe under static pressure conditions, J. Geophys. Res. 84, 4533–4536.

    Article  CAS  Google Scholar 

  83. Perez-Albuerne, E.A. and Drickamer, H.G. (1965) Effect of high pressure on the compressibility of seven crystals having the NaCl or CsCl structure, J. Chem. Phys. 43, 1381–1387.

    Article  CAS  Google Scholar 

  84. Yagi, T., Mao, H.K. and Bell, P.M. (1978) Structure and crystal chemistry of perovskite-type MgSiO3, Phys. Chem. Minerals 3, 97–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bukowinski, M.S.T., Chizmeshya, A., Wolf, G.H., Zhang, H. (1997). Advances in Electron-gas Potential Models: Applications to Some Candidate Lower Mantle Minerals. In: Silvi, B., D’Arco, P. (eds) Modelling of Minerals and Silicated Materials. Topics in Molecular Organization and Engineering, vol 15. Springer, Dordrecht. https://doi.org/10.1007/0-306-46933-2_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46933-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4333-2

  • Online ISBN: 978-0-306-46933-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics