Skip to main content

Application of the Partial Charge Model to the Aqueous Chemistry of Silica and Silicates

  • Chapter
Modelling of Minerals and Silicated Materials

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 15))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iler, R.K. (1979) The chemistry of silica, John Wiley and Sons, New-York.

    Google Scholar 

  2. Dent-Glasser, L.S. and Lachowski, E.E. (1980) Silicate Species in Solution. Part 1. Experimental Observations, J. Chem. Soc. Dalton Trans, 393–398.

    Google Scholar 

  3. Dent-Glasser, L.S. and Lachowski, E.E. (1980) Silicate Species in Solution. Part 2. The Structure of Oligomeric Species, J. Chem. Soc. Dalton Trans, 399–402.

    Google Scholar 

  4. Hoebbel, D. and Wieker, W. (1973) On Condensation Reactions of the Monomeric Silicic Acid, Z. Anorg. Allg. Chemie, 400, 148–160.

    CAS  Google Scholar 

  5. Marsmann, H.C. (1974) 29Si NMR Studies on Aqueous Silicate Solutions, Z. Naturforsch., 29B, 495–499.

    Google Scholar 

  6. Engelhardt, G., Zeigan, D., Jancke, H., Hoebbel, D., and Wieker, W. (1975) 29Si-NMR Spectrocopy of Silicate Solutions. II. On the Dependence of the Structure of Silicate Anions in Water Solutions from the Na∶Si Ratio, Z. Anorg. Allg. Chemie, 418, 17–28 (1975).

    CAS  Google Scholar 

  7. Harris, R.K., Jones, J., and Knight, C.T.G. (1980) Silicon-29 NMR Studies of Aqueous Silicate Solutions. Part II. Isotopic Enrichment., J. Mol. Struct., 69,95–103.

    Article  CAS  Google Scholar 

  8. Harris, R.K., and Newman, R.H. (1977) 29Si NMR Studies of Aqueous Silicate Solutions, J. Chem. Soc. Faraday Trans., 73,1204–1215.

    CAS  Google Scholar 

  9. Harris, R.K., Knight, C.T.G., and Hull, W.E. (1981) Nature of Species Present in an Aqueous Solution of Potassium Silicate, J. Am. Chem. Soc., 103,1577–1578.

    CAS  Google Scholar 

  10. Harris, R.K., Knight, C.T.G., and Hull, W.E. (1982) in J.S. Falcone (ed.), Soluble, Silicates, Am. Chem. Soc. Symp. Ser., 194, 79.

    Google Scholar 

  11. Harris, R.K., and Knight, C.T.G. (1983) Silicon-29 NMR Studies of Aqueous Silicate Solutions. Part 5.-First-order Patterns in Potassium Silicate Solutions Enriched with Silicon-29, J. Chem. Soc. Faraday Trans. II, 79,1525–1538.

    CAS  Google Scholar 

  12. Harris, R.K., and Knight, C.T.G. (1983) Silicon-29 NMR Studies of Aqueous Silicate Solutions. Part 6.-Second-order Patterns in Potassium Silicate Solutions Enriched with Silicon-29, J. Chem. SOC. Faraday Trans. II, 79,1539–1561.

    CAS  Google Scholar 

  13. Harris, R.K., O’Connor, M.J., Curzon, E.H., and Howrath, O.W. (1984) Two-Dimensional Silicon-29 NMR Studies of Aqueous Silicate Solutions, J. Magn. Reson., 57,115–122.

    CAS  Google Scholar 

  14. Knight, C.T.G. (1988) A Two-dimensional Silicon-29 Nuclear Magnetic Resonance Spectroscopic Study of the Structure of the Silicate Anions present in an Aqueous Potassium Silicate Solution, J. Chem. Soc. Dalton Trans., 1457–1460.

    Google Scholar 

  15. Knight, C.T.G., Kirkpatrick, R. J., and Oldfield, E. (1989) Silicon-29 Multiple Quan-tum Filtered N.M.R. Spectroscopic Evidence for the Presence of Only Six Single Site Silicate Anions in a Concentrated Potassium Silicate Solution, J. Chem. Soc. Chem. Commun., 919–921.

    Google Scholar 

  16. Kinrade, S.D., and Swaddle, T.W. (1988) Silicon-29 NMR Studies of Aqueous Silicate Solutions. 1. Chemical Shifts and Equilibria, Inorg. Chem., 27,4253–4259.

    CAS  Google Scholar 

  17. Maciel, G.E., and Sindorf, D.W. (1980) Silicon-29 Nuclear Magnetic Resonance Study of the Surface of Silica Gel by Cross Polarization and Magic-Angle Spinning, J. Am. Chem. Soc., 102,7606–7607.

    CAS  Google Scholar 

  18. Lippmaa, E., Magi, M., Samoson, A., Engelhadt, G., and Grimmer, A.-R. (1980) Structural Study of Silicates by Solid-state High-Resolution 29Si NMR, J. Am. Chem. Soc., 102,4889–4893.

    Article  CAS  Google Scholar 

  19. Knight, C.T.G., Thomson, A.R., Kunwar, A.C., Gutowsky, H.S., Oldfield, E., and Kirkpatrick, R. J. (1989) Oxygen-17 Nuclear Magnetic Resonance Spectroscopic Studies of Aqueous Alkaline Silicate Solutions, J. Chem. Soc. Dalton Trans., 275–281.

    Google Scholar 

  20. Occelli, M.L., and Robson, H.E. (eds.) (1989) Zeolites Synthesis, Am. Chem. Soc. Symp. 398, American Chemical Society, Washington DC.

    Google Scholar 

  21. Engelhardt, G., and Michel D. (1987) High-Resolution Solid-state NMR of Silicates and Zeolites, John Wiley and Sons, pp. 75–105.

    Google Scholar 

  22. Hoebbel, D., and Wieker, W. (1971) On the Constitution of Tetramethylammonium Silicates with Composition 1.0 N(CH3)4OH.1.0 SiO2. 8.0–8.3 H2O, Z. Anorg. Allg. Chemie, 384, 43–52 (1971).

    CAS  Google Scholar 

  23. Harris, R.K., and Knight, C.T.G. (1982) Silicon-29 NMR Studies of Aqueous Silicate Solutions. Part, IV. Tetraalkylammonium hydroxide solutions, J. Mol. Struct., 78,273–278.

    Article  CAS  Google Scholar 

  24. Hoebbel, D., Garzo, G., Engelhardt, G., and Vargha, A. (1982) On the Condensation and Distribution of Silicate Anions in Aqueous Tetramethylammonium Silicate Solutions, Z. Anorg. Allg. Chemie, 494,31–42.

    CAS  Google Scholar 

  25. Knight, C.T.G., Kirkpatrick, R.J., and Oldfield, E. (1986) The Unexpectedly Slow Approach to Thermodynamic Equilibrium of the Silicte Anions in Aqueous Tetramethylammonium Silicate Solutions, J. Chem. Soc. Chem. Commun., 66–67.

    Google Scholar 

  26. Groenen, E.J.J., Kortbeek, A.G.T.G., Mackay, M., and Sudmeijer, O. (1986) Double-ring silicate anions in tetraalkylammonium hydroxide/silicate solutions; their possible role in the synthesis of silicon-rich zeolites, Zeolites, 6,403–411

    Article  CAS  ISI  Google Scholar 

  27. Knight, C.T.G. (1989) High-field Silicon-29 Nuclear Magnetic Resonance Spectroscopic Studies of dilute Methanolic Tetramethylammonium Silicate Solutions, Zeolites, 9,448–450.

    Article  CAS  ISI  Google Scholar 

  28. Smolin, Yu.I., Chepelev, Yu.F., Pomec, R.,,Hoebbel, D., and Wieker, W. (1979) Crystal structure determination of the tetramethylammonium silicate 8[N(CH3)4] Si8O20.64,8 H2O à −10Oc ircC, Kristallografia, 24,38–44 (1979).

    CAS  Google Scholar 

  29. Shepelev, Yu.F., Smolin, Yu.I., Ershov, A.S., Rademacher, O., and Scheler, G. (1987) Crystal structure determination of the sodium-tetramethylammonium silicate Na.7[N(CH3)4]Si8O20.54H2O à12Oc-ircC, Kristallografia, 32, 1399–1403 (1987).

    CAS  Google Scholar 

  30. Wiebcke, M., and Koller, H. (1992) Single-Crystal X-ray Diffraction and Variable-Temperature MAS NMR Study on the Heterogeneous Network Clathrate Na.7[N(CH3)4]Si8O20.54 H2O, Acta Cryst., B48,449–458.

    CAS  Google Scholar 

  31. Engelhardt, G., and Rademacher, O. (1984) Structure-forming Effects of Cations in Sodium Tetramethylammonium Silicate Solutions. A Silicon-29 NMR Study, J. Molecular Liquids, 27,125–131.

    CAS  Google Scholar 

  32. Smolin, Yu. I., Shepelev, Yu.F., and Boutikova, I.K. (1972) Crystal structure determination of 4[CU(NH2CH2CH2NH2)2].Si8O20.38 H2O, Kristallografiya, 17,15–21 (1972).

    CAS  ISI  Google Scholar 

  33. Smolin, Yu. I., Shepelev, Yu.F., Pomec, R., Hoebbel, D., and Wieker, W. (1975) Silicate complex [Si8O18(OH)2] in the crystal 2[Co(NH2CH2CH2NH2)3].Si8O18(OH) 2.16,4 H2O, Kristallografiya, 20,917–924 (1975).

    CAS  ISI  Google Scholar 

  34. Hoebbel, D., and Wieker, W. (1974) On the Constitution of a Silicate with the Anion [Si7O19]10−, Z. Anorg. Allg. Chemie, 405,267–274.

    CAS  Google Scholar 

  35. Wiebcke, M., and Hoebbel, D. (1992) Structural Links between Zeolite-type and Clathrate Hydrate-type Materials: Synthesis and Crystal Structure of [NMe4]16[Si8O20][OH]8.116H2O, J. Chem. Soc. Dalton Trans.,2451–2455.

    Google Scholar 

  36. Hoebbel, D., Garzo, G., Engelhardt,, G., Ebert, R., Lippmaa, E., and Alla, M. (1980) On the Constitution of Silicate Anions in Tetraethylammonium Silicates and their Aqueous Solutions, Z. Anorg. Allg. Chemie, 465,15–33.

    CAS  Google Scholar 

  37. Smolin, Yu. I. (1970) New silicate complex Si6O15 in the crystal [Ni(en)3]Si2O5. 8,7 H2O, Kristallografiya, 15,31–37.

    CAS  Google Scholar 

  38. Hoebbel, D., Vargha, A., Engelhardt, G., and Ujszasky, K. (1984) On the Anion Constitution of Tetrabutylammonium Silicates and their Aqueous Solutions, Z. Anorg. Allg. Chemie, 509,85–94.

    CAS  Google Scholar 

  39. Hoebbel, D., Wieker, Franke, W.P., and Otto, A. (1975) On the Constitution of the New Silicate Anion [Si10O25]10−, Z. Anorg. Allg. Chemie, 418,35–44.

    CAS  Google Scholar 

  40. Engelhardt, G., and Hoebbel, D. (1984) 29Si N.M.R. Spectroscopy reveals Dynamic SiO4 4-Group Exchange between Silicate Anions in Aqueous Alkaline Silicate Solutions, J. Chem. Soc., Chem. Commun., 514–516.

    Google Scholar 

  41. Harris, R.K., Jones, J., Knight, C.T.G., and Newman, R.H. (1984) Silicon-29 NMR Studies of Aqueous Silicate Solutions. Part7: Exchange Rates between Anions, J. Molecular Liquids, 29,63–74.

    Article  CAS  Google Scholar 

  42. Creswell, C.J., Harris, R.K., and Jageland, P.T. (1984) Exchange Rates between Silicate Anions in Alkaline Aqueous Solutions, J. Chem. Soc., Chem. Commun., 1261–1263.

    Google Scholar 

  43. Knight, C.T.G., Kirkpatrick, R. J., and Oldfield, E. (1988) Two-Dimensional Silicon-29 Nuclear Magnetic Resonance Study of Chemical Exchange Pathways in Potassium Silicate Solutions, J. Magn. Reson., 78,31–40.

    CAS  Google Scholar 

  44. Kinrade, S.D., and Swaddle, T.W. (1988) Silicon-29 NMR Studies of Aqueous Silicate Solutions. 2. Transverse 29Si Relaxation and the Kinetics and Mechanism of Silicate Polymerization, Inorg. Chem., 27,4259–4264.

    CAS  Google Scholar 

  45. Koller, H., Engelhardt, G., and Felsche, J. (1990) 29Si NMR Studies of the Transformation of Silicate Anions in the System Na2O.SiO2.nH2O (n=9,5) in Crystals, melts and Solution, J. Chem. Soc., Chem. Commun., 371–372.

    Google Scholar 

  46. Tossell, J.A. (1973) Molecular Orbital Interpretation of X-ray Emission and ESCA Spectral Shifts in Silicates, J. Phys. Chem. Solids, 34,307–319.

    CAS  Google Scholar 

  47. Collins, G.A.D., Cruickshank, D.W.J., and Breeze, A. (1972) Ab Initio Calculations on the Silicate ion, Orthosilicic Acid and their L2,3 X-ray Spectra, J. Chem. Soc. Faraday Trans. II,68,1189–1195.

    CAS  Google Scholar 

  48. Wyckoff, R.W.G. (1968) Crystal Structures Second edition, Vol.4, John Wiley and Sons, New-York, pp.157–215.

    Google Scholar 

  49. Handke, M. (1984) Force Constants and Chemical bond Character in (SiO4) and (GeO4) Anions in Orthosilicates and Orthogermanates, J. Molecular Structure, 114,187–190.

    CAS  Google Scholar 

  50. Fujino, K., Sasaki, S., Takéuchi, Y., and Sadanaga, R. (1981) X-ray Determination of Electron Distributions in Forsterite, Fayalite and Tephroite, Acta Cryst., B37,513–518.

    CAS  Google Scholar 

  51. Tamada, O., Fujino, K. and Sasaki, S. (1983) Structures and Electron Distributions of α-Co2SiO4 and α-Ni2SiO4 (Olivine Structure), Acta Cryst., B39,692–697.

    CAS  Google Scholar 

  52. Julg, A,, Ozias, Y., and Pellegatti, A. (1985) An Ab Initio-C.I. Comparative Study of some First and Second Row Tetraoxy-ions, New. J. Chem., 9,675–680.

    CAS  Google Scholar 

  53. Tossell, J.A. (1975) The Electronic Structures of Silicon, Aluminum, and Magnesium in Tetrahedral Coordination with Oxygen from SCF-Xa MO Calculations, J. Am. Chem. Soc., 97,4840–4844.

    Article  CAS  Google Scholar 

  54. Sauer, J. (1983) Molecular Structure of Orthosilicic Acid and Importance of (p-d)π Bonding. An Ab Initio Molecular Orbital Study, Chem. Phys. Letts., 97,275–278.

    CAS  Google Scholar 

  55. Uchino, T., Sakka, T., Ogata, Y., and Iwasaki, M. (1992) Changes in the Structure of Alkali-Metal Silicate Glasses with the type of NetworkModiferCation: An ab initio Molecular Orbital Study, J. Phys. Chem., 96,2455–2463.

    CAS  Google Scholar 

  56. Lopez, J.P., Yang, C.Y., and Helms, C.R. (1987) Electronic Structure of Clusters Modeling Silica, J. Comput. Chem., 8,198–203 (1987).

    CAS  Google Scholar 

  57. Wolff, R., Radeglia, R., and Sauer, J. (1986) Charge Differences between silicon Atoms in Aluminosilicates and their Relation to 29Si NMR Chemical Shofts. A Quantum-mechanical Study, J. Molecular Structure, 139,113–124.

    Google Scholar 

  58. Clark, T. (1985) A Handbook of Computational Chemistry, John Wiley and Sons, New York.

    Google Scholar 

  59. Mortlock, R.F., Bell, A.T., Chakraborty, A.K., and Radke, C.J. (1991) Effect of Silicate Ratio on the Distribution of Silicate and Aluminosilicate Anions in TPA Aluminosilicate Solutions, J. Phys. Chem., 95,4501–4506.

    CAS  Google Scholar 

  60. Hehre, W.J., Radom, L., Schleyer, P., and Pople, J.A. (1986) Ab Initio Molecular Orbital Theory, Wiley-Interscience, New-York, pp. 336–341 (1986).

    Google Scholar 

  61. Oberhammer, H., and Boggs, J.E. (1980) Importance of (p-d)π Bonding in the Siloxane Bond, J. Am. Chem. Soc., 102,7241–7244.

    Article  Google Scholar 

  62. Ernst, C.A., Allred, A.L., Ratner, M.A., Newton, M.D., Gibbs, G.V., Moskowitz, J.W., and Topiol, S. (1981) Bond Angles in Disiloxane: A Pseudo-Potential Electronic Structure Study, Chem. Phys. Letts., 81,424–429.

    CAS  Google Scholar 

  63. Janes, N., and Oldfield, E. (1986) Oxygen-17 NMR study of Bonding in Silicates: The d-Orbital Controversy, J. Am. Chem. Soc., 108,5743–5753.

    Article  CAS  Google Scholar 

  64. Pritchard, H.O., and Skinner, H.A. (1955) The Concept of Electronegativity, Chem. Revs., 55,745–786.

    Article  CAS  Google Scholar 

  65. Batsanov, S.S. (1968) The Concept of Electronegativity: Conclusions and Prospects, Russ. Chem. Revs, 37,332–351.

    Google Scholar 

  66. Parr, R.G., Donnelly, R.A., Levy, M., and Palke, W.E. (1978) Electronegativity: The density functional viewpoint, J. Chem. Phys. 68,3801–3807.

    Article  CAS  Google Scholar 

  67. Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc., 105,7512–7516.

    Article  CAS  Google Scholar 

  68. Sen, K.D., and Jorgensen, C.K. (1987) Electronegativity, Structure and Bonding, 66, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  69. Pearson, R.G. (1993) Chemical Hardness, Structure and Bonding, 80, Springer-Verlag, Berlin, Heidelberg (1993).

    Google Scholar 

  70. Pearson, R.G. (1991) Density Functional Theory: Electronegativity and Hardness, Chemtracts Inorg. Chem., 3,317–333.

    CAS  Google Scholar 

  71. Davis, D.W., Shirley, D.A., and Thomas, T.D. (1972) X-Ray Photoelectron spectroscopy of Fluorinated Benzenes, J. Am. Chem. Soc., 94,6565–6575.

    CAS  Google Scholar 

  72. Pearson, R.G. (1985) Absolute Electronegativity and Absolute Hardness of Lewis Acids and Bases, J. Am. Chem. Soc., 107,6801–6806.

    CAS  Google Scholar 

  73. Mortier, W.J., Ghosh, S.K., and Shankar, S. (1986) Electronegativity Equalization Method for the Calculation of Atomic Charges in Molecules, J. Am. Chem. Soc., 108,4315–4320.

    Article  CAS  Google Scholar 

  74. Parry, D.E. (1974) Determination of Atomic Partial Charges using X-ray Photoelectron Spectroscopy: Application to Crystalline Solids, J. Chem. Soc. Faraday Trans. 2, 70,337–345.

    Google Scholar 

  75. van Genechten, K.A.,, Mortier, W.J. and Geerlings, P. (1987) Framework Electronegativity: a Novel Concept in Solid-state Chemistry, J. Chem. Phys., 86,5063–5071.

    Google Scholar 

  76. van Genechten, K.A., and Mortier, W.J. (1988) Influence of the Structure Type on the Intrinsic Framework Electronegativity and the Charge Distribution in Zeolites with SiO2 Composition, Zeolites, 8,273–283.

    Google Scholar 

  77. Henry, M., Jolivet, J.P., and Livage, J. (1992) Aqueous Chemistry of Metal Cations: Hydrolysis. Condensation and Complexation, in Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, Structure and Bonding, 77,153–207.

    CAS  Google Scholar 

  78. Henry, M., and Merceron, T. (1994) An Independent Method for Data Selection of Long-Life Radionuclides (Actinides and Fission Products) in the Geosphere, Radiochimica Acta., M25,1–5 (1994).

    Google Scholar 

  79. Henry, M., and Taulelle, F. (1994) The use of the Partial Charge Model and Multinuclear NMR Techniques in Aqueous Chemistry, in P. Colombet and A.R. Grimmer (eds.), in Applications of NMR Spectroscopy to Cement Science, Gordon and Breach Science Pub., Switzerland, Chap. V, pp. 361–402.

    Google Scholar 

  80. Henry, M. (1994) Partial Charge Distributions in Crystalline Materials through Electronegativity Equalization, in J. Rouxel, M. Tournoux and R. Brec (eds.), in Soft Chemistry Routes to New Materials-Chimie Douce, Mater. Sci. Forum, pp. 152–153, 355–358.

    Google Scholar 

  81. Gérardin, C., Henry, M., and Taulelle, F. (1993) Evaluation of Chemical Shifts in Solid-state NMR by Electronegativity Equalization Principle, in J.A. Tossell (ed.), in Nuclear Magnetic Shieldings and Molecular Structure, NATO-AS1 Series C, 386, 566, Kluwer, Dordrecht.

    Google Scholar 

  82. Bertaut, F. (1952) The Electrostatic Energy of Ionic Networks, J. Phys. Rad., 13,499–505.

    CAS  Google Scholar 

  83. Jones, R.E., and Templeton, D.H. (1956) Optimum Atomic Shape for Bertaut Series, J. Chem. Pkys., 34,1062–1063.

    Google Scholar 

  84. Fischer, R., and Ludwiczek, H. (1975) Computer Programs for the Calculation of Madelung Constants and their Recalculation for Spinel Type, Monatsh. Chem., 106,223–228.

    Article  CAS  Google Scholar 

  85. Press, W.H., Tenkolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992) Numerical Recipes in C, the Art of Scientific Computing, second edition, Cambridge University Press, Cambridge, pp.32–105

    Google Scholar 

  86. Bratsch, S.G. (1988) Revised Mulliken Electronegativities, J. Chem. Educ., 65,34–41.

    CAS  Google Scholar 

  87. Basch, H., Viste, A., and Gray, H.B. (1965) Valence Orbital Ionization Potentials from Atomic Spectral Data, Theoret. Chim. Acta (Berl.), 3,458–464.

    Article  CAS  Google Scholar 

  88. Gasquez, J.L., and Ortiz, E. (1984) Electronegativities and hardnesses of open shell atoms, J. Chem. Phya., 81,2741–2748.

    Google Scholar 

  89. Komorowski, L. (1987) Empirical Evaluation of Chemical Hardness, Chem. Phys. Letts., 134,536–540.

    CAS  Google Scholar 

  90. Quane, D. (1970) Crystal Lattice Energy and the Madelung Constant,, J. Chem. Educ., 47,396–398

    Article  CAS  Google Scholar 

  91. Wells, A.F. (1984) Structural Inorganic Chemistry 5 th edition. Clarendon Press, Oxford, pp.1004–1009.

    Google Scholar 

  92. Le Page, Y., and Donnay, G. (1971) Refinement of the crystal structure of lowquartz, Acta Cryst., B32,2456–2459.

    Google Scholar 

  93. Stewart,, R.F., Whitehead, M.A., and Donnay, G. (1980) The Ionicity of the Si-O bond in low-quartz, American Mineralogist, 65,324–326.

    CAS  ISI  Google Scholar 

  94. Sutton, L. (1958, 1965) Tables of Interatomic Distances and Configurations in Molecules and Ions, Spec. Publ. No 11 and 18. The Chemical Society, London.

    Google Scholar 

  95. Radelia, R., and Engelhardt, G. (1985) Correlation of Si-O-T (T = Si or Al) Angles and 29Si Chemical Shifts in Silicates and Aluminosilicates. Interpretation by Semi-Empirical Quantum-Chemical Considerations, Chem. Phys. Letters, 114,28–30.

    Google Scholar 

  96. Magnusson, E. (1984) sp Hybridization Reconsidered: The Composition of Orbitals in Main-Group Hydrides, J. Am. Chem. Soc., 106,1177–1191 (1984).

    CAS  Google Scholar 

  97. Levien, L., Prewitt, C.T., and Weidner, D.J. (1980) Structure and Elastic properties of quartz at pressure, American Mineralogist, 65,920–930.

    CAS  ISI  Google Scholar 

  98. Ogata, K., Takeuchi, Y., and Kudoh, Y. (1987) Structure of alpha-quartz as a Function of Temperature and Pressure, Z. Krist., 179, 403–413, (1987)

    Article  CAS  Google Scholar 

  99. Lager, G.A., Jorgensen, J.D., and Rotella, F.J. (1982) Crystal structure and thermal expansion of alpha-quartz SiO2 at low temperature, J. Appl. Phys., 53,6751–6756.

    Article  CAS  Google Scholar 

  100. Will, G., Bellotto, M., Parrish, W., and Hart, M. (1988) Crystal structure of quartz and magnesium germanate by profile analysis of synchrotron-radiation highresolution powder data, J. Appl. Cryst., 21,182–191.

    Article  CAS  Google Scholar 

  101. Pauling, L. (1967) The Chemical Bond, Cornel1 University Press, London, pp. 69–73.

    Google Scholar 

  102. Geisinger, K.L., Spackman, M.A. and Gibbs, G.V. (1987) Exploration of structure, electron density distribution, and bonding in coesite with Fourier and pseudoatom refinement methods using single-crystal X-ray diffraction data, J. Phys. Chem., 91,3237–3244 (1987).

    Article  CAS  Google Scholar 

  103. Gibbs, G.V., and Hill, R.J. (1978) Net charge distributions and radial dependence of the valence electrons on the Si and atoms in coesite, GAC/MAC Abstracts with Programs, 10, 407 (1978).

    Google Scholar 

  104. Levien, L., and Prewitt, C.T. (1981) High-pressure crystal structure and compressibility of coesite, Amer. Min., 66, 324–333 (1981).

    CAS  Google Scholar 

  105. Smyth, J.R., Smith, J.V., Artioli, G., and Kvick, Å (1987) Crystal structure of coesite, a high-pressure form of SiO2, at 15 and 298K fromsingle-crystalneutron and X-ray diffraction data: test of bonding models, J. Phys. Ckem., 91, 988–992 (1987).

    CAS  Google Scholar 

  106. Gibbs, G.V., Prewitt, C.T., and Baldwin, K.J. (1977) A study of the crystal chemistry of coesite, Z. Krist., 145, 108–123 (1977).

    Article  CAS  Google Scholar 

  107. Hill, R.J., Newton, M.D., and Gibbs, G.V. (1983) A crystal chemical study of stishovite, J. Solid State Chem., 47, 185–200 (1983).

    Article  CAS  Google Scholar 

  108. Spackman, M.A., Hill, R.J. and Gibbs, G.V. (1987) Exploration of structure and bonding in stishovite with Fourier and pseudoatom refinement methods using singlecrystal and powder X-ray diffraction data, Phys. Chem. Miner., 14,139–150 (1987).

    CAS  Google Scholar 

  109. Sugiyama, M., Endo, S., and Koto, K. (1987) The crystal structure of stishovite under pressure up to 6 GPa, Mineralogical Journal, 13,455–466 (1987).

    CAS  Google Scholar 

  110. Sinclair, W., and Ringwood, A.E. (1978) Single crystal analysis of the structure of stishovite, Nature, 272,714–715 (1978).

    Article  CAS  ISI  Google Scholar 

  111. Janz, G.J. and Tomkins, R.P.T.. (1972) Non-aqueous electrolytes handbook, Academic Press, New-York, pp. 215.

    Google Scholar 

  112. Ricci, J.E. (1948) The aqueous ionization constants of inorganic oxygen acids, J. Am. Chem. soc., 70,109–113 (1948).

    Article  CAS  Google Scholar 

  113. Yoon, R.H., Salman, T., and Donnay, G. (1979) Predicting points of zero charge of oxides and hydroxides, J. Colloid Interface Sci., 70,483–493 (1979).

    Article  CAS  Google Scholar 

  114. Jorgensen, C.K. (1963) Inorganic Complexes, Academic Press, London, p.25.

    Google Scholar 

  115. Nordlander, J.E., Bond IV, A.F., and Bader, M. (1985) ATCOOR: A program for calculation and utilization of molecular atomic coordinates from bond parameters, Computers and Chemistry, 9,209–235 (1985).

    Article  CAS  Google Scholar 

  116. S. Sjöberg, Ohman, L.O., and Ingri, N. (1985) Equilibrium and Structural Studies of Silicon(IV) and Aluminium(III) in Aqueous Solutions. 11. Polysilicate Formation in Alkaline Aqueous Solutions. A Combined Potentiometric and 29Si NMR Study, Acta Chem. Scand., A39,93–107.

    Google Scholar 

  117. Bernet, K., and Hoppe, R. (1990) Crystal Structure of K4SiO4, Z. Anorg. Allg. Chem., 589,129–138.

    Article  CAS  Google Scholar 

  118. Baur, W.H., Halwax, E., and Voellenke, H. (1986) Comparison of the crystal structures of sodium orthosilicate Na4SiO4and sodium orthogermanate Na4GeO4, Monatsh. Chem., 117,793–797 (1986).

    Article  CAS  Google Scholar 

  119. Tranqui, D. Shannon, R.D., Chen, H.Y., Iijima, S., and Baur, W.H. (1979) Crystal structure of ordered Li4SiO4, Acta Cryst., B35,2479–2487.

    Google Scholar 

  120. Fujino, K., Sasaki, S., Takéuchi, Y., and Sadanaga, R. (1981) X-ray determination of electron distributions in forsterite, fayalite and tephroite, Acta Cryst., B37,513–518 (1981).

    CAS  Google Scholar 

  121. Van der Wal, R.J., Vos, A., and Kirfel, A. (1987) Conflicting results for the deformation of Forsterite, Acta Cryst., B43,132–143 (1987).

    Google Scholar 

  122. Czaya, R. (1971) Refinement of the structure of gamma-Ca2SiO4, Acta Cryst., B27,848–849 (1971).

    Google Scholar 

  123. Catti, M., Gazzoni, G., and Ivaldi, G. (1983) Structures of twinned β-Sr2SiO4 and of Sr19 Ba0.1 SiO4, Acta Cryst, C39,29–34 (1983).

    CAS  Google Scholar 

  124. Grosse, H.P., and Tillmanns, E. (1974) Barium orthosilicate Ba2SiO4, Cryst. Struct. Comm., 3,599–601 (1974).

    CAS  Google Scholar 

  125. Jost, K.H., Ziemer, B., and Seydel, R. (1977) Redetermination of the structure of β-dicalcium silicate, Acta Cryst., B33,1696–1700 (1977).

    CAS  Google Scholar 

  126. Downs, J.W., and Gibbs, G.V. (1987) An exploratory examination of the electron density and electrostatic potential of phenakite, American Mineralogist, 72,769–777.

    CAS  ISI  Google Scholar 

  127. Zachariasen, W.H. (1971) Refined crystal structure of Phenacite Ba2SiO4, Kristallografiya, 16,1161–1166.

    CAS  Google Scholar 

  128. Onken, H. (1965) Refinement of the crystal structure of monticellite, Tscher. Mineral. Petrog. Mitt., 10,34–44 (1965).

    CAS  Google Scholar 

  129. Merinov, B.V., Maksimov, B.A., Ilyukhin, V.V., and Belov, N.V. (1979) The refinement of the crystal structure of Na,Y-orthosilicate NaYSiO4, Dokl. Acad. Nauk. SSSR, 248,1108–1111.

    CAS  Google Scholar 

  130. Nikolsky, Y.V. (1976) The crystal structure of LiYSiO4, Dokl. Acad. Nauk. SSSR, 230,331–333.

    Google Scholar 

  131. Sawada, H. (1993) The crystal structure of garnets(I): the residual electron density in pyrope, Z. Krist., 203,41–48.

    Article  CAS  Google Scholar 

  132. Hazen, R.M., and Finger, L.W. (1978) Crystal structures and compressibilities of pyrope and grossular up to 60 kbar, American Mineralogist, 63,297–303 (1978).

    CAS  ISI  Google Scholar 

  133. Finger, L.W. (1974) Refinement of the crystal structure of zircon, Carnegie Inst. Washington Yearbook, 73,544–547.

    Google Scholar 

  134. Fuhrmann, J., and Pickardt, J. (1986) On the formation of HfSiO4 single crystals by chemical transport reactions, Z. Anorg. Allg. Chem., 532,171–174.

    Article  CAS  Google Scholar 

  135. Taylor, M., and Ewing, R.C. (1978) The crystal structure of the ThSiO4 polymorphs: huttonite and thorite, Acta Cryst., B34,1074–1079.

    CAS  Google Scholar 

  136. Schmid, R.L., Felsche, J., and McIntyre, G.J. (1984) Location and anisotropic refinement of deuterium atoms in deuterium sodium silicate-deuterium oxide (1/8) Na2D2SiO4.8D2O by neutron diffraction; hydrogen bonding at 173K, Acta Cryst., C40,733–736.

    CAS  Google Scholar 

  137. Smolin, Yu. I., Shepelev, Yu. F., and Butikova, I.K. (1973) Crystal structure determination of a sodium silicate hydrate Na3HSiO4.5 H2O, Kristallografiya,18,281–386.

    CAS  ISI  Google Scholar 

  138. Schmid, R.L., Szolnai, L., Felshe, J., and Huttner, G. (1981) The structure of trisodium hydrogensilicate dihydrate: high-temperature form, Acta Cryst., B37,789–792.

    CAS  Google Scholar 

  139. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., A32,751–767.

    CAS  Google Scholar 

  140. Glasser, L.S.D., and Jamieson, P.B. (1976) Sodium silicate hydrates. V. The crystal structure of Na2O.SiO2,(H2O), Acta Cryst., B32,705–710.

    Google Scholar 

  141. Williams, P.P., and Glasser, L.S.D. (1971) Sodium silicate hydrates. IV. Location of hydrogen atoms in (Na2O)(SiO2)(H2O)6 by neutron diffraction, Acta Cryst., B27,2269–2275.

    Google Scholar 

  142. Bianchi, R., Pilati, T., Diella, V., Gamaccioli, C.M., and Mannucci, G. (1988) A re-examination of thor tveitite, American Mineralogist, 73,601–607.

    CAS  ISI  Google Scholar 

  143. Smolin, Yu.I., and Shepelev, Yu. F. (1968) Structure determination of erbium pyrosilicate, Izvs. Akad. Nauk SSSR, Neorg. Mater., 4,1133–1136.

    CAS  Google Scholar 

  144. Smolin, Yu.I., Shepelev, Yu.F., and Butikova, I.K. (1971) Crystal structure of ytterbium Pyrosilicate, Zhur. Struk. Khim., 12,272–276.

    CAS  Google Scholar 

  145. Smolin, Yu.I., and Shepelev, Yu. F. (1967) The determination of the structure of gadolinium pyrosilicate, Izvs. Akad. Nauk SSSR, Neorg. Mater., 3,1034–1038.

    CAS  Google Scholar 

  146. Dias, H.W., Glasser, F.P., Gurwardane, R.P., and Howie, R.A. (1990) The crystal structure of 6-yttrium pyrosilicate, Z. Krist., 191,117–123.

    Article  CAS  Google Scholar 

  147. Kitama, M., and Li, N. (1981) The crystal structure of synthetic akermanite, Ca2MgSi2O7, Neues Jb. Miner.,1–10 (1981).

    Google Scholar 

  148. Smolin, Yu.I., Shepelev, Yu.F., and Butikova, I.K. (1970) The crystal structure of the low-temperature form of samarium pyrosilicate, Kristallografiya,15,256–261.

    CAS  Google Scholar 

  149. Voellenkle, H., Wittmann, A., and Nowotny, H. (1969) The crystal structure of the compound Li6Si2O7, Monatsh. Chem., 100,295–303.

    CAS  Google Scholar 

  150. Saburi, S., Kusachi, I., Henmi, C., Kawahara, A., and Kawada, I. (1976) Refinement of the structure of rankinite, Mineralogical Journal, 8, 240–246.

    CAS  Google Scholar 

  151. Janczak, J., Kubiak, K., and Glowiak, T. (1990) Structure of barium copper pyrosilicate at 300K, Acta Cryst., C46,1383–1385.

    CAS  Google Scholar 

  152. Robinson, P.D., and Fang, J.H. (1977) Barylite, BaBe2Si2O7: its space group and crystal structure, American Mineralogist, 62,167–169.

    CAS  ISI  Google Scholar 

  153. Kouznetsova, T.P., Nevskii, N.N., Ilioukhine, V.V., and Belov, N.V. (1980) Crystal structure determination of a Na,Ca-triorthosilicate Na2Ca3[Si3O10], Kristallografiya, 25,855–857.

    Google Scholar 

  154. Taylor, H.F.W. (1971) The crystal structure of Kilchoanite, Ca6(SiO4)(Si3O10), with some comments on related phases, Mineralogical Magazine, 38,26–31.

    CAS  ISI  Google Scholar 

  155. Heidebrecht, K., and Jansen, M. (1991) Ag18(SiO4)2(Si4O13), the first silver silicate with mixed anions, Z. Anorg. Allg. Chem., 597,79–86, (1991);606,242.

    Article  CAS  Google Scholar 

  156. Fisher, K. (1969) Crystal structure determination of benitoite BaTi(Si3O9), Z. Krist., 129,232–243.

    Google Scholar 

  157. Wyckoff, R.W.G. (1968) Crystal Structures,, Second edition, Vol. 4, Interscience Publishers, New-York, pp. 265–266

    Google Scholar 

  158. Blinov, V.A., Shumyatskaya, N.G., Voronkov, A.A., Ilyukhin, V.V., and Belov, N.V. (1977) Refinement of the crystal structure of wadeite K2Zr(Si3O9) and its relation to kindred structural types, Kristallografiya,22,59–65.

    CAS  ISI  Google Scholar 

  159. Hassan, I., and Grundy,, H.D. (1991) The crystal structure and thermal expansion of tugtupite Na8(Al2Be2Si8 O24)Cl2, Canadian Minerologist, 29,385–390.

    CAS  Google Scholar 

  160. Rumanova, I.M., Volodina, G.F., and Belov, N.V. (1966) Crystal structure of the rare-earth ring silicate kainosite, Kristallografiya, 11,549.

    CAS  Google Scholar 

  161. Janczak, J., and Kubiak, R. (1992) Structure of cyclic barium copper silicate Ba2Cu2[Si4O12] at 300 K, Acta Cryst., C48,8–10.

    CAS  Google Scholar 

  162. Groat, L.A., and Hawthorne, F.C. (1987) Refinement of the Structure of Papagoite, CaCuAlSi2 O6(OH)3, Mineral. Petrol., 37,89–96.

    Article  CAS  Google Scholar 

  163. Hilmer, W. (1965) The crystal structure of potassium acid metasilicate K4 (HSiO3)4, Acta Cryst., 17,1063–1066, (1964);18,574.

    Article  CAS  Google Scholar 

  164. Takeuchi, Y., Ozawa, T., Ito, T., Araki, T., Zoltai, T., and Finney, J.J. (1974, 1975) The B2Si8O30 groups of tetrahedra in axinite and comments on the deformation of Si tetrahedra in silicates, Z. Krist., 140, 289–312, (1974),141,471–472.

    CAS  Google Scholar 

  165. Mazzi, F., and Rossi, G. (1980) The crystal structure of taramellite, American Mineralogist, 65,123–128 (1980).

    CAS  ISI  Google Scholar 

  166. Morosin, B. (1972) Structure and thermal expansion of Beryl, Acta Cryst., B28,1899–1903.

    Google Scholar 

  167. Peyronel, G. (1956) The crystal structure of Baveno Bazzite, Acta Cryst., 9,181–186.

    Article  CAS  Google Scholar 

  168. Buerger, M.J., Burnham, C.W., and Peacor, D.R. (1962) Assessment of the several structures proposed for tourmaline, Acta Cryst., 15,583–590.

    Article  CAS  Google Scholar 

  169. Barton Jr., R. (1969) Refinement of the crystal structure of Buergerite and the absolute orientation of tourmalines, Acta Cryst., B25,1524–1533.

    Google Scholar 

  170. Belov, N.V., Maksimov, B.A., Nozik, Y.Z., and Muradyan, L.A. (1978) The refinement of the crystal structure of dioptase Cu6(Si6O18)(H2O)6 by the X-ray and neutron diffraction methods, Doklady Akademii Nauk SSSR, 239,842–845.

    CAS  ISI  Google Scholar 

  171. Breuer, K.-H., Eysel. W., and Muller, R. (1989) Structural and chemical varieties of dioptase Cu6[Si6O18].6H2O. II Structural properties, Z. Krist.,187,15–23.

    Article  CAS  Google Scholar 

  172. Ilyukhin, V.V., and Belov, N.V. (1960) The crystal structure of Lovozerite, Doklady Akademii Nauk SSSR, 131,176–179.

    CAS  Google Scholar 

  173. Chernitsova, N.M., Pudovkina Z.V., Voronkov, A.A., Ilyukhin, V.V., and Pyatenko, Y.A. (1980) Imandrite Na12Ca3Fe2(Si6O18)2-a representative of a new branch in the lovozerite structural family, Doklady Akademii Nauk SSSR, 252,618–621.

    CAS  ISI  Google Scholar 

  174. Khan, A.A., and Baur, W.H. (1971) Eight-Membered Cyclosilicate Rings in Muirite, Science, 173,916–918.

    CAS  ISI  Google Scholar 

  175. Golyshev, V.M., Simonov, V.I., and Belov, N.V. (1971) Crystal Structure of Eudialite, Kristallografiya, 16,93–98.

    CAS  Google Scholar 

  176. Gatehouse, B.M., Guddat, L.W., and Roth, R.S. (1987) J. Solid State Chem., 71,390–395.

    CAS  Google Scholar 

  177. Richard, P., and Perrault, G. (1972) Structure cristalline de I’ekanite de St-Hilaire, Acta Cryst., 28,1994–1999.

    CAS  Google Scholar 

  178. Hawthorne, F.C., Kimata, M., Cerny, P., Ball, N., Rossman, G.R., and Grice, J.D. (1991) The crystal chemistry of the milarite-group minerals, American Mineralogist, 76,1836–1856.

    CAS  ISI  Google Scholar 

  179. Engelhardt, G., and Michel, D. (1987) High-Resolution Solid-state NMRof Silicates and Zeolites, John Wiley and Sons, New-York,pp.122–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henry, M. (1997). Application of the Partial Charge Model to the Aqueous Chemistry of Silica and Silicates. In: Silvi, B., D’Arco, P. (eds) Modelling of Minerals and Silicated Materials. Topics in Molecular Organization and Engineering, vol 15. Springer, Dordrecht. https://doi.org/10.1007/0-306-46933-2_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46933-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4333-2

  • Online ISBN: 978-0-306-46933-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics