Skip to main content

Coupled Transport of Heat and Mass. Theory and Applications

  • Chapter
Entropy and Entropy Generation

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 18))

  • 510 Accesses

Abstract

One natural and two technical processes with coupled transport of heat and mass are reviewed. The processes are frost heave, freeze concentration of juice, and salt transport in carbon cathode bottoms in the aluminium electrolysis cell. Recent non-equilibrium molecular dynamics simulation results have been used to establish molecular mechanisms of coupled heat and mass transport in liquids. Linear flux-force relationships have been found for extremely large temperature gradients. Use of linear irreversible thermodynamics is therefore Justified for all three practical cases considered here. Two criteria for local equilibrium are reviewed. In particular, local equilibrium was obtained in a liquid or dense gas with a temperature gradient if \( l|\vec \nabla T| \leqslant \delta {\rm T} < 0.05{\rm T}\), where l is the dimension of the local control volume, \( \vec \nabla T\) is the temperature gradient, and δT is the temperature fluctuation in the control volume. This criterion is fulfilled for the subcooled solution in the process of freeze concentration. The energy transported by water moving from a subsurface water table to an ice lens in clay capillaries during frost heave is mainly the enthalpy of freezing of water, lending support to the description of frost heave as a transport process. Similarly, the separation of salts in the cathode bottom of the aluminium electrolysis cell and the formation of salt lenses (bottom heave) can be understood as a way the system reacts to a temperature gradient in order to transport energy (heat) as effectively as possible. Computer simulations have confirmed the validity of the Onsager reciprocal relations (ORR) in liquids. The application of the ORR for average phenomenological coefficients across interfaces in the systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Førland, K.S., Førland, T. and Ratkje, S.K. (1994) Irreversible Thermodynamics. Theory and Applications, 2. repr. Wiley, Chichester.

    Google Scholar 

  2. Ratkje, S.K. and Flesland, O. (1995) J. Food Engng. 25, 553–567.

    Article  Google Scholar 

  3. Nygård, I. and Ratkje, S.K. (1994) Light Metals, Proceed. TMS Ann. Meeting, San Fransico, p.457–461.

    Google Scholar 

  4. Bomhorst, W.J. and Hatsopolulos, G.N. (1967) J. Applied Mechanics 840–-

    Google Scholar 

  5. Kincaid, J.M., Li, X., and Hafskjold, B. (1992) Fluid Phase Equil. 76, 113–121

    Article  Google Scholar 

  6. Hafskjold, B., Ikeshoji, T., and Ratkje, S.K. (1993) Molec. Phys. 80,1389–1412.

    Article  ADS  Google Scholar 

  7. Ikeshoji, T. and Hafskjold, B. (1994) Molec. Phys. 81,251–261.

    Article  ADS  Google Scholar 

  8. Kincaid, J.M. and Hafskjold, B. (1994) Molec. Phys. 82,1099–1114.

    Article  ADS  Google Scholar 

  9. Hafskjold, B. and Ratkje, S.K. (1995) J. Stat. Phys. 78,463–494.

    Article  MATH  ADS  Google Scholar 

  10. Takashi, T., Ohrai, T., Yamamoto, H., and Okamoto, J. (1980) The 2nd. Int. Symp. on Ground Freezing, Trondheim, p. 713–725.

    Google Scholar 

  11. Tsuneto, T. (1994) J. Phys. Soc. Japan 63,2231–2234.

    Article  ADS  Google Scholar 

  12. Huige, N.J.J. (1972) Nucleation and growth of ice crystals from water and sugar solutions in continuous stirred tank crystallizers, Ph.D. thesis, Eindhoven University of Technology, Netherlands.

    Google Scholar 

  13. Heldman, D.R. (1992) Food Freezing, in Handbook of Food Engineering, ed. by D.R. Heldman and D.B. Lund, Marcel Dekker, New York.

    Google Scholar 

  14. Sørlie, M. and Øye, H.A. (1989) Cathodes in Aluminium Electrolysis, Aluminium Verlag,GmbH, Düsseldorf.

    Google Scholar 

  15. Richter, J. and Prüser, U. (1977) Ber. Bunsenges. Phys. Chem. 81,508–514.

    Google Scholar 

  16. Lundén, A. and Olsson, J.E. (1968) Z. Naturforsch. 23a,2045–2052.

    Google Scholar 

  17. Grimstvedt, A., Ratkje, S.K. and Førland, T. (1994) J. Electrochem. Soc. 141 (1994), 1236–1241.

    Article  Google Scholar 

  18. Siljan, O.J. (1990) Sodium aluminium fluoride attack on alumino-silicate refractories, dr.ing. thesis, Institute of Inorganic Chemistry, The Norwegian Institute of Technology, University of Trondheim, Norway.

    Google Scholar 

  19. Evans, D.J. and Morriss, G.P. (1990) Statistical mechanics of nonequilibrium liquids. Academic Press, London.

    MATH  Google Scholar 

  20. Cummings, P.P and Evans, D.J. (1992) Ind. Eng. Chem. 31,1237–1252.

    Article  Google Scholar 

  21. MacGowan, D. and Evans, D.J. (1986) Phys. Rev. A 34,2133–2142. See also Evans, D.J. and MacGowan, D. (1987) Phys. Rev. A 36,948-950.

    Article  ADS  Google Scholar 

  22. Gillan, M.J. (1987) J. Phys. C: Solid State Phys. 20,521–538.

    Article  ADS  Google Scholar 

  23. Paolini, G.V. and Ciccotti, G. (1987) Phys. Rev. A 35,5156–5166.

    Article  ADS  Google Scholar 

  24. Vogelsang, R., Hoheisel, C., Paolini, G.V., and Ciccotti, G. (1987) Phys. Rev. A 36, 3964–3974.

    Article  ADS  Google Scholar 

  25. Holian, B.L. and Evans, D.J. (1983) J. Chem. Phys. 78,5147–5150.

    Article  ADS  Google Scholar 

  26. Ashurst, W.T. and Hoover, W.G. (1975) Phys. Rev. A 11,658–678.

    Article  ADS  Google Scholar 

  27. Kreuzer, H.J. (1981) Nonequilibrium Thermodynamics and its Statistical Foundations., Clarendon, Oxford

    Google Scholar 

  28. Tenenbaum, A., Ciccotti, G., and Gallico, R. (1982) Phys. Rev. A 25,2778–2787.

    Article  ADS  Google Scholar 

  29. Haile, J.M. (1992) Molecular dynamics simulations. Elementory methods, John Wiley & Sons, New York.

    Google Scholar 

  30. Goodisman, J. (1987) Electrochemistry: Theoretical Foundations, Wiley-Interscience, New York

    Google Scholar 

  31. Legros, J.C., Goemare, P., and Platten, J.K. (1985) Phys. Rev. A 32,1903–1905.

    Article  ADS  Google Scholar 

  32. Kincaid, J.M., Cohen, E.G.D., and Lopez de Haro. M. (1987) J. Chem. Phys. 86,963–974.

    Article  ADS  Google Scholar 

  33. Bresme, F., Hafskjold, B., and Wold, I. (1996) J. Phys. Chem. (in press)

    Google Scholar 

  34. Tondeur, D. and Kvaalen, E. (1987) Ind. Eng. Chem. Res. 26,56–65.

    Article  Google Scholar 

  35. Ratkje, S.K., Sauar, E., Hansen, E.M., Lien, K.M., and Hafskjold, B. (1995) Ind. Eng. Chem. Res. 34,3001–3007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ratkje, S.K., Hafskjold, B. (1996). Coupled Transport of Heat and Mass. Theory and Applications. In: Shiner, J.S. (eds) Entropy and Entropy Generation. Understanding Chemical Reactivity, vol 18. Springer, Dordrecht. https://doi.org/10.1007/0-306-46932-4_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-46932-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4128-4

  • Online ISBN: 978-0-306-46932-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics