Skip to main content

Theoretical Basis for the Treatment of Solvent Effects in the Context of Density Functional Theory

  • Chapter
Book cover Solvent Effects and Chemical Reactivity

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 17))

  • 408 Accesses

Abstract

Theoretical considerations leading to a density functional theory (DFT) formulation of the reaction field (RF) approach to solvent effects are discussed. The first model is based upon isolelectronic processes that take place at the nucleus of the host system. The energy variations are derived from the nuclear transition state (ZTS) model. The solvation energy is expressed in terms of the electrostatic potential at the nucleus of a pseudo atom having a fractional nuclear charge. This procedure avoids the introduction of arbitrary ionic radii in the calculation of insertion energy, since all integrations involved are performed over [0, ∞]. The quality of the approximations made are discussed within the frame of the Kohn-Sham formulation of density functional theory.

Introduction of the static density response function for a system with a constant number of electrons yields the RF - DFT model. This second approach is expected to be more useful in the analysis of chemical reactivity in condensed phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottcher, C.J.F. (1973) Theory of Electric Polarization, Elsevier Publishing Company, Amsterdam, London, New York, p. 129.

    Google Scholar 

  2. Constanciel, R. and Tapia, O. (1978) Theoret. Chim. Acta 48, 75.

    Article  CAS  Google Scholar 

  3. Constanciel, R. and Contreras, R. (1984) Theoret. Chim. Acta 65 1.

    CAS  Google Scholar 

  4. Contreras, R. and Aizman, A. (1985) Int. J. Quantum Chem. 27, 293.

    Article  CAS  Google Scholar 

  5. Contreras, R. and Aizman, A. (1989) Bol. Soc. Chil. Quim. 34, 93.

    CAS  Google Scholar 

  6. Duran, E. (1964) Electrostatique, Masson et Cie (Eds.), Paris.

    Google Scholar 

  7. Constanciel, R. (1986) Theoret. Chim. Acta 69, 505.

    Article  CAS  Google Scholar 

  8. Born, M. (1920) Physik. Z. 1, 45.

    CAS  Google Scholar 

  9. Jano, O. (1965) C.R. Acad. Sc. (Paris) 261, 103.

    CAS  Google Scholar 

  10. Germer Jr., H.A. (1974) Theoret. Chim. Acta 35, 27.

    Article  Google Scholar 

  11. Miertus, S. and Kyesel, O. (1977) Chem. Phys. 21, 27.

    CAS  Google Scholar 

  12. Miertus, S., Scrocco, E. and Tomasi, J. (1981) Chem. Phys. 55, 117.

    Article  CAS  Google Scholar 

  13. Cramer, C.J. and Truhlar, D. (1992) Science 256, 213.

    CAS  Google Scholar 

  14. Tapia, O. and Goscinsky, O. (1975) Mol. Phys. 29, 1653.

    CAS  Google Scholar 

  15. Stokes, R.H. (1964) J. Am. Chem. Soc. 86, 979.

    CAS  Google Scholar 

  16. Noyes, R. (1964) J. Am. Chem. Soc. 86, 971.

    CAS  Google Scholar 

  17. Contreras, R. and Aizman, A. (1991) Int. J. Quantum Chem. S25, 281.

    Google Scholar 

  18. Contreras, R. and Aizman, A. (1993) J. Mol. Struct. (Theochem) 282, 143.

    Article  Google Scholar 

  19. Sen, K.D. and Politzer, P. (1979) J. Chem. Phys. 71, 4218.

    Google Scholar 

  20. Politzer, P., Parr, R.G. and Murphy, D.R. (1983) J. Chem. Phys. 79, 3859.

    Article  CAS  Google Scholar 

  21. Clementi, E. and Roetti, C. (1974) At. Data Nucl. Data Tables 14, 1.

    Google Scholar 

  22. Morris, D.F.C. (1968) Structure and Bonding 4, 1.

    Google Scholar 

  23. Davis, D. W. (1982) Chem. Phys. Lett. 91, 459.

    Article  CAS  Google Scholar 

  24. Levy, M. (1978) J. Chem. Phys. 68, 5298.

    CAS  Google Scholar 

  25. Levy, M. (1979) J. Chem. Phys. 70, 1573.

    Article  CAS  Google Scholar 

  26. Hohenberg, P. and Kohn, W. (1964) Phys. Rev. 136, B864.

    Article  Google Scholar 

  27. Contreras, R., Mendizabal, F. and Aizman, A. (1994) Phys. Rev. A 49, 3439.

    Article  CAS  Google Scholar 

  28. Norskov, J. K. and Lang, N. D. (1980) Phys. Rev. B21, 2131.

    Google Scholar 

  29. Sen, K. D. (1979) J. Chem. Phys. 70, 5334.

    CAS  Google Scholar 

  30. Sen, K. D., Seminario, J. and Politzer, P. (1989) J. Chem. Phys. 90, 4374.

    Google Scholar 

  31. Kohn, W. and Sham, L. J. (1965) Phys. Rev. 140, A1133.

    Article  Google Scholar 

  32. Puska, M. J. and Nieminen, R. M. (1984) Phys. Rev. B29, 5382.

    Google Scholar 

  33. Slater, J. C. (1974) The Self Consistent Field For Molecules and Solids 4, McGraw-Hill.

    Google Scholar 

  34. Parr, R. G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules, Oxford Press, New York, Oxford.

    Google Scholar 

  35. Pearson, R. G. (1986) J. Am. Chem. Soc. 108, 6109.

    CAS  Google Scholar 

  36. Vela, A. and Gasquez, J. L. (1990) J. Am. Chem. Soc. 112, 1490.

    Article  CAS  Google Scholar 

  37. Claverie, P., Daudey, J. P., Langlet, B., Pullman, B., Piazzola, D. and Huron, M. J. (1978) J. Phys. Chem. 82, 405.

    Article  CAS  Google Scholar 

  38. Stott, M. and Zaremba, E. (1980) Phys. Rev. A21, 12.

    Google Scholar 

  39. Berkowitz, M. and Parr, R. G. (1988) J. Chem. Phys. 88, 2254.

    Google Scholar 

  40. Contreras, R., Perez, P. and Aizman, A. (1995) Int. J. Quantum Chem., in press.

    Google Scholar 

  41. Berkowitz, M., Ghosh, S. K. and Parr, R. G. (1985) J. Am. Chem. Soc. 107, 6811.

    Article  CAS  Google Scholar 

  42. Perez, P. and Contreras, R., to be submitted.

    Google Scholar 

  43. Baeten, A., De Proft, F., Langenaeker, W. and Geerlings, P. (1994) J. Mol. Struct. (Theochem) 306, 203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Contreras, R., Pérez, P., Aizman, A. (2002). Theoretical Basis for the Treatment of Solvent Effects in the Context of Density Functional Theory. In: Tapia, O., Bertrán, J. (eds) Solvent Effects and Chemical Reactivity. Understanding Chemical Reactivity, vol 17. Springer, Dordrecht. https://doi.org/10.1007/0-306-46931-6_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46931-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3995-3

  • Online ISBN: 978-0-306-46931-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics