Skip to main content

Origin of Elements in the Solar System

  • Chapter
Origin of Elements in the Solar System

Abstract

The solar system is chemically and isotopically heterogeneous. The earth contains only 0.0003% of the mass of the solar system, but the abundance pattern of non-radiogenic isotopes for each terrestrial element has been defined as “normal”.

The outer planets consist mostly of light elements like H, He and C. The inner planets are rich in heavy elements like Fe and S. Isotopic irregularities are closely linked with these chemical differences in planets, as well as in the primary minerals of chondritic meteorites.

Chondrites are heterogeneous, agglomerate rocks from the asteroid belt that separates the two types of planets. They contain troilite (FeS) inclusions with isotopically “normal” Xe, like that found in the inner planets. Chondrites also contain diamond inclusions (C) with abundant He and “strange” Xe enriched in isotopes from the r- and p-processes. The Galileo probe found similar r-products in the Xe isotopes of Jupiter, a planet rich in He and C. The sun is a mixture of the chemically and isotopically distinct components found in its planetary system. Inter-linked chemical and isotopic irregularities, short-lived radioactivities and other Post-1957 observations are used here to evaluate the two most conflicting opinions on the origin of elements in the solar system.

The first of these is that the elements in the solar system originated via remote element synthesis (RES). The RES model is the modern version of the classic nebular model postulated by Kant and Laplace over 200 years ago for the origin of the solar system. It is a natural extension of the cosmological view of element synthesis. According to the nebular RES view, products of nuclear reactions collected from multiple stellar sources over vast regions of space and produced a well-mixed protosolar nebula having approximately the elemental composition of the sun’s photosphere and isotopic ratios of carbonaceous chondritic meteorites. The sun formed as a fully convective, homogeneous protostar. Elements in the planetary system were subsequently redistributed to produce the solar system’s current chemical gradients. This nebular RES model was modified in the late 1970s and early 1980s to try to explain the occurrence of isotopic anomalies and decay products of short-lived nuclides by the addition of very small amounts of exotic nucleogenetic material, which either had been injected from nearby stars or survived as interstellar grains that became embedded in meteorites.

An alternative explanation is that the elements in our solar system were produced by local element synthesis (LES). The LES model is the latest version of the classic catastrophic model postulated by Buffon over 250 years ago. This asserts that the entire solar system formed directly from poorly-mixed debris of a spinning star, concentric with the present sun, which exploded axially as a supernova (SN). The sun formed on the SN core and the chemical gradients in the planetary system were inherited from the parent SN. The outer planets formed mostly from the light elements in the outer SN layers. Iron meteorites and the cores of the terrestrial planets formed in a central, iron-rich region of the SN debris. These planet cores were subsequently overlaid as lighter material from other SN layers fell toward the condensing sun. Diffusion enriched lighter nuclei at the evolved suns’ surface making it appear to be composed of light elements such as H and He. Lyttleton, Hoyle, and Brown earlier suggested other versions of LES to explain the distribution of angular momentum in the solar system.

Reynolds’ mass spectrometer began generating empirical challenges to the nebular RES model soon after publication of the classical papers by Burbidge et al. (19S7) and Cameron (1957). Data from space probes and ion-probe mass spectrometers have made the RES model even less attractive. The catastrophic LES model now explains the maximum number of phenomena (chemical and isotopic irregularities, decay products of shortlived radioactivities, and observations on planets, the sun and other stars) with the minimum number of postulates, although this implies that elemental abundances for the sun are similar to those of the inner planets and that nuclear evolution is much more advanced for elements in the sun’s interior than for elements in the solar photosphere or in the Jovian planets. The most abundant elements for the bulk sun are the same ones concluded 80+ years ago from early analyses of meteorites (Harkins, 1917). They are: Fe, Ni, O, Si, S, Mg, and Ca. Others have reached somewhat similar conclusions about the sun from efforts to find a unique solution to the solar structure equations (Rouse, 1975), to explain the low flux of solar neutrinos (Hoyle, 1975), and to explain isotopic anomalies in meteorites (Lavrukhina, 1980; Lavrukhina and Kuznetsova, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 163.49
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 163.49
Price includes VAT (Netherlands)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexander, E.C., Jr. and Manuel, O.K.: 1967, “Isotopic anomalies of krypton and xenon in Canyon Diablo graphite”, Earth Planet Sci. Lett. 2, 220–224.

    CAS  Google Scholar 

  • Allègre, C.J., Staudacher, T., Sarda, P. and Kurz, M.: 1983, “Constraints on evolution of Earth’s mantle from rare gas systematics”. Nature 303, 762–766.

    Google Scholar 

  • Amari, S., Hoppe, P., Zinner, E. and Lewis, R.S.: 1992, Interstellar SiC with unusual isotopic compositions: Grains from a supernova?”, Ap. J. 394, L43–L46.

    CAS  Google Scholar 

  • Amari, S., Hoppe, P., Zinner, E. and Lewis, R.S,: 1995, “Trace-element concentrations in single circumstellar silicon carbide grains from the Murchison meteorite”, Meteoritics 30, 679–693.

    CAS  Google Scholar 

  • Anders, E.: 1964, “Origin, age, and composition of meteorites”, Space Science Reviews 3, 583–714.

    CAS  Google Scholar 

  • Anders, E.: 1988, “Solar-system abundances of the elements”, in Origin andDistribution of the Elements, ed., Mathews, G.J., World Scientific, Singapore, pp. 349–353.

    Google Scholar 

  • Anders, E. and Ebihara, M.: 1982, “Solar-system abundances of the elements”, Geochim. Cosmochim. Acta 46, 2363–2380.

    CAS  Google Scholar 

  • Anders, E. and Grevesse, N.: 1989, “Abundances of the elements: Meteoritic and solar”, Geochim. Cosmochim. Acta 53, 197–214.

    CAS  Google Scholar 

  • Anders, E. and Zinner, E.: 1993, “Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite”, Meteoritics 28, 490–514.

    CAS  Google Scholar 

  • Antia, H.M. and Chitre, S.M.: 1998, “Determination of temperature and chemical composition profiles in the solar interior from seismic models”, Astron. Astrophys. 339, 239–251.

    CAS  Google Scholar 

  • Arnett, D.: 1996, Supernova and Nucleosynthesis: An Investigation of the History of Matter from the Big Bang to the Present, Princeton University Press, Princeton, N.J., 598 pp.

    Google Scholar 

  • Bahcall, J.N. and Davis, R.: 1976, “Solar neutrinos: A scientific puzzle”, Science 191, 264–267.

    CAS  Google Scholar 

  • Bahcall, J.N., Pinsonneault, M.H., and Wasserburg, G.J.: 1995, “Solar models with helium and heavy-element diffusion”, Rev. Mod. Phys. 67, 781–808.

    CAS  Google Scholar 

  • Bahcall, J.N., Pinsonneault, M.H., Basu, S. and Christensen-Dalsgaard: 1997, “Are standard solar models reliable?”, Phys. Rev. Lett. 78, 171–174.

    CAS  Google Scholar 

  • Balachandran, S.C. and Bell, R.A.: 1998, “Shallow mixing in the solar photosphere inferred from revised beryllium abundances”, Nature 392, 791–793.

    CAS  Google Scholar 

  • Ballad, R.V., Oliver, L.L., Downing, R.G. and Manuel, O.K.: 1979, “Isotopes of tellurium, xenon, and krypton in Allende meteorite retain record of nucleosynthesis”, Nature 277, 615–620.

    CAS  Google Scholar 

  • Barnes, C.A., Clayton, D.D. and Schremm, D.N, eds.: 1982, Essays in Nuclear Astrophysics, Cambridge University Press, Cambridge, UK, 466 pp.

    Google Scholar 

  • Basu, S.: 1997, “Seismology of the base of the solar convection zone”, Mont. Not. R. Astron. Soc. 288, 572–584.

    Google Scholar 

  • Becker, V., Bennett, J.H. and Manuel, O.K.: 1968, “Iodine and uranium in ultrabasic rocks and carbonatites”, Earth Planet Sci. Lett. 4, 357–362.

    CAS  Google Scholar 

  • Begemann, F.: 1980, “Isotopic anomalies in meteorites”, Rep. Prog. Phys. 43, 1309–1356.

    Google Scholar 

  • Begemann, F.: 1993, “Isotopic abundance anomalies and the early solar system” in Origin and Evolution of the Elements, ed., Prantos, N., Vangioni-Flam, E. and Cassé, M., Cambridge University Press, Cambridge, UK, pp. 518–527.

    Google Scholar 

  • Bennett, G.A. and Manuel, O.K.: 1970, “Xenon in natural gases”, Geochim. Cosmochim. Acta 34, 593–610.

    CAS  Google Scholar 

  • Bernatowicz, T.J. and Walker, R.: 1997, “Ancient stardust in the laboratory”, Physics Today 50, 26–32.

    CAS  Google Scholar 

  • Bernatowicz, T.J. and Zinner, E.: 1997, AIP Conference Proceeding 402: Astrophysical Implications of the Laboratory Study of Presolar Materials, American Institute of Physics, Woodbury, N.Y., 750 pp.

    Google Scholar 

  • Bethe, H.: 1939, “Energy production in stars”, Phys. Rev. 55, 103.

    CAS  Google Scholar 

  • Black, D.C.: 1972, “On the origins of trapped helium, neon and argon isotopic variations in meteorites-II. Carbonaceous meteorites”, Geochim. Cosmochim. Acta 36, 377–394.

    CAS  Google Scholar 

  • Bondi, H. and Gold, T.: 1948, “The steady-state theory of the expanding universe”, Monthly Notices Roy. Astron. Soc. 108, 252–270.

    Google Scholar 

  • Boulos, M.S. and Manuel, O.K.: 1971, “The xenon record of extinct radioactivities in the earth”, Science 174, 1334–1336.

    CAS  Google Scholar 

  • Broad, W.J.: 1978, “Statue on the mall to hail Einstein’s 100th”, Science 202, 951.

    CAS  Google Scholar 

  • Brown, H.: 1949, “A table of relative abundances of nuclear species”, Rev. Mod. Phys. 21, 625–634.

    CAS  Google Scholar 

  • Brown, W.K.: 1970, “A model for formation of solar systems from massive supernova fragments”, Los Alamos Scientific Laboratory report LA 4343, 28 pp.

    Google Scholar 

  • Brown, W.K.: 1971, “A solar system formation model based on supernovae shell fragmentation”, Icarus 15, 120–134.

    Google Scholar 

  • Brown, W.K.: 1987a, “High explosive simulations of supernovae and the supernovae shell fragmentation model of solar system formation”, Los Alamos National Laboratory report LA-11005, 10 pp.

    Google Scholar 

  • Brown, W.K.: 1987b, “Possible mass distributions in the nebulae of other solar systems”, Earth, Moon and Planets 37, 225–239.

    Google Scholar 

  • Brown, W.K.: 1987c, “High explosive simulation of supernovae”, Pub. Astro. Soc. Pacific 99, 858–861.

    CAS  Google Scholar 

  • Brown, W.K.: 1991, “The supernovae as a genesis site of solar systems”, Speculat. Sci. Tech. 15, 149–160.

    Google Scholar 

  • Brown, W.K. and Gritzo, L.A.: 1986, “The supernovae fragmentation model of solar system formation”, Astrophys. Space Sci. 123, 161–181.

    CAS  Google Scholar 

  • Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F.: 1957, “Synthesis of the elements in stars”, Rev. Mod. Phys. 29, 547–650.

    Google Scholar 

  • Cameron, A.G.W.: 1957, “Nuclear reactions in stars and nucleogenesis”, Publ. Astron. Soc. Pac. 69, 201–222. See also “Stellar evolution, nuclear astrophysics and nucleosynthesis”, Chalk River Report CRL-41, Atomic Energy of Canada, Ltd.

    CAS  Google Scholar 

  • Cameron, A.G.W.: 1968, “A new table of abundances of the elements in the solar system”, in Origin and Distribution of the Elements, ed., Ahrens, L.H., Pergamon Press, pp. 125–143.

    Google Scholar 

  • Cameron, A.G.W.: 1973, “Abundances of the elements in the solar system”, Space Sci. Rev. 15, 121–146.

    CAS  Google Scholar 

  • Cameron, A.G.W.: 1982, “Elemental and nuclidic abundances in the solar system”, in Essays in Nuclear Astrophysics, eds., Barnes, C.A., Clayton, D.D. and Schramm, D.N., Cambridge University Press, Cambridge, UK, pp. 23–43.

    Google Scholar 

  • Cameron, A.G.W.: 1984, “Star formation and extinct radioactivities”, Icarus 60, 416–427.

    CAS  Google Scholar 

  • Cameron, A.G.W.: 1995, “The first ten million years in the solar nebula”, Meteoritics 30, 133–161.

    CAS  Google Scholar 

  • Cameron, A.G.W. and Truran, J.W.: 1977, “The supernova trigger for formation of the solar system”, Icarus 30, 447–461.

    CAS  Google Scholar 

  • Canalas, R.A., Alexander, E.C., Jr. and Manuel, O.K.: 1968, “Terrestrial abundance of noble gases”, J. Geophys. Res. 73, 3331–3334.

    CAS  Google Scholar 

  • Chapman, C.R.: 1998, “Solar-system-2 shades beyond Neptune”, Nature 392, 16–17.

    CAS  Google Scholar 

  • Chaussidon, M. and Robert, F.: 1999, “Lithium nucleosynthesis in the sun inferred from the solar-wind 7Li/6Li ratio”, Nature 402, 270–273.

    CAS  Google Scholar 

  • Chapman, S. and Cowling, T.G.: 1952, “An a account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases”, in The Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge, UK, p. 255.

    Google Scholar 

  • Chevalier, R.A.: 1992, “Supernova 1987A at five years of age”, Nature 355, 691–696.

    Google Scholar 

  • Chevalier, R.A.: 1996, “Shocking supernova tales”, Bull. Am. Astron. Soc. 28, 1273.

    Google Scholar 

  • Chevalier, R.A. and Kirshner, R.P.: 1979, “Abundance inhomogeneities in the Cassiopeia A supernova remnant”, Ap. J. 233, 154–162.

    CAS  Google Scholar 

  • Clayton, D.D.: 1968, Principles of Stellar Evolution and Nucleosynthesis, University of Chicago Press, Chicago, IL., 612 pp.

    Google Scholar 

  • Clayton, D.D.: 1975a, “Extinct radioactivities: Trapped residuals of presolar grains”, Ap. J. 199, 765–769.

    CAS  Google Scholar 

  • Clayton, D.D.: 1975b, “22Na, Ne-E, extinct radioactive anomalies and unsupported 40Ar”, Nature 257, 36–37.

    CAS  Google Scholar 

  • Clayton, D.D.:1982, “Cosmic chemical memory: a new astronomy”, Q. Jl R. Astr. Soc. 23, 174–212.

    Google Scholar 

  • Clayton, D.D.: 1989, “Origin of heavy xenon in meteoritic diamonds”, Ap. J. 340, 613–619.

    CAS  Google Scholar 

  • Clayton, D.D. and Hoyle, F.: 1976, “Grains of anomalous isotopic composition from novae”, Ap. J. 203, 490–496.

    CAS  Google Scholar 

  • Clayton, D.D., Newman, M.J. and Talbot, R.J., Jr.: 1975, “Solar models of low neutrino-counting rate: The central black hole”, Ap. J. 201, 489–493.

    CAS  Google Scholar 

  • Clayton, R.N., Grossman, L. and Mayeda, T.K.: 1973, “A component of primitive nuclear composition in carbonaceous meteorites”, Science 182, 485–488.

    CAS  Google Scholar 

  • Clayton, R.N., Onuma, N. and Mayeda, T.K.: 1976, “A classification of meteorites based on oxygen isotopes”, Earth Planet Sci. Lett. 30, 10–18.

    CAS  Google Scholar 

  • Dar, A. and Shaviv, G.: 1996, “Standard solar neutrinos”, Ap. J. 468, 933–946.

    CAS  Google Scholar 

  • Dodd, R.T.: 1981, Meteorites: A petrologic-chemical synthesis, Cambridge University Press, Cambridge, UK, 368 pp.

    Google Scholar 

  • Downing, R.G. and Manuel, O.K.: 1982, “Composition of the noble gases in Canyon Diablo”, Geochem. J. 16, 157–178.

    CAS  Google Scholar 

  • Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Mendia, M.D., Mörgeli, M., Schwaller, H., Stettler, A., Krähenbühl, U. and von Guten, H.R.: 1972, “Trapped solar wind noble gases in Apollo 12 lunar fines 12001 and Apollo 11 breccia 10046”, Proc. 3rd Lunar Sci. Conf. 2, 1821–1856.

    CAS  Google Scholar 

  • Eucken, A.: 1944, „Physikalisch-chemische betrachtungen über die früheste Entwicklungs-geschichte der Erde“, Nachr. d. Akad. d. Wiss. in Göttingen, Math-Phys. 1, 1–25.

    Google Scholar 

  • Eugster, O., Eberhardt, P. and Geiss, J.: 1967, “Krypton and xenon isotopic composition in three carbonaceous chondrites”, Earth Planet. Sci. Lett. 3, 249–257.

    CAS  Google Scholar 

  • Fowler, W.A.: 1984, “The quest for the originof the elements”, Science 226, 922–935.

    CAS  Google Scholar 

  • Frank, A.: 1997, “Blowing cosmic bubbles”, Astronomy 25, 36–43.

    Google Scholar 

  • Goldschmidt, V.M.: 1938, Geochemische Verteilungsgestze der Elemente. IX. Die Mengenverhältnisse der Elemente und der Atom-Arten, Skrifter Norske Videnskaps-Akad., Oslo I Math.-Naturv. Klasse. no. 4, 148 pp.

    Google Scholar 

  • Goldschmidt, V.M.: 1958, Geochemistry, ed., Muir, A., Oxford University Press, London, UK, 730 pp.

    Google Scholar 

  • Goswami, J.N., Sahijpal, S. and Chakrabarty, P., eds.: 1997, International Conference on Isotopes in the Solar System, Abstracts, Physical Research Laboratory, Ahmedabad 380009, India., 218 pp.

    Google Scholar 

  • Gradie, J. and Tedesco, E.: 1982, “Compositional structure of the asteroid belt”, Science 216, 1405–1407.

    CAS  Google Scholar 

  • Grossman, L.: 1972, “Condensation in the primitive solar nebula”, Geochim. Cosmochim. Acta 36, 597–619.

    CAS  Google Scholar 

  • Grossman, L. and Larimer, J.W.: 1974, “Early chemical history of the solar system”, Rev. Geophys. Space Phys. 12, 71–101.

    CAS  Google Scholar 

  • Halliday, A., Rehkämper, M., Lee, D.-C. and Yi, W.: 1996, “Early evolution of the Earth and Moon: new constraints from Hf-W isotope geochemistry”, Earth Planet Sci. Lett. 142, 75–89.

    CAS  Google Scholar 

  • Harkins, W.D.: 1917, “The evolution of the elements and the stability of complex atoms”, J. Am. Chem. Soc. 39, 856–879.

    CAS  Google Scholar 

  • Heidenreich, J.E. III and Thiemens, M.H.: 1985, “The non-mass-dependent oxygen isotope effect in electro-dissociation of carbon dioxide: A step toward understanding NoMaD chemistry”, Geochim. Cosmochim. Acta 49, 1303–1306.

    CAS  Google Scholar 

  • Hennecke, E.W. and Manuel, O.K.: 1975, “Noble gases in an Hawaiian xenolith”, Nature 257, 778–779.

    CAS  Google Scholar 

  • Heymann, D. and Dziczkaniec, M.: 1979, “Isotopic compositions of xenon from explosive carbon burning: A global look”, Proc. Lunar and Planet. Sci. Conf. X, 549–551.

    Google Scholar 

  • Hou, W., Ouyang, Z.-Y., Xie, H.-S., Zhang, Y.-M., Xu, H.-G. and Zhou, Y.-L.: 1993, “The melting-differentiation of chondrite and the initial evolution of the earth”, Sci. China B36, 121–128.

    Google Scholar 

  • Howard, W.M., Meyer, B.S. and Clayton, D.D.: 1992, “Heavy-element abundances from a neutron burst that produces Xe-H”, Meteoritics 27, 404–412.

    CAS  Google Scholar 

  • Hoyle, F.: 1944, “On the origin of the solar system”, Proc. Camb. Phil. Soc. 40, 256–258.

    Google Scholar 

  • Hoyle, F.: 1945, “Note on the origin of the solar system”, Monthly Notices Roy. Astron. Soc. 105, 175–178.

    Google Scholar 

  • Hoyle, F.: 1946a, “On the condensation of the planets”, Monthly Notices Roy. Astron. Soc. 106, 406–422.

    Google Scholar 

  • Hoyle, F. 1946b, “The synthesis of the elements from hydrogen”, Monthly Notices Roy. Astron. Soc. 106, 343–383.

    CAS  Google Scholar 

  • Hoyle, F.: 1948, “A new model for the expanding universe”, Monthly Notices Roy. Astron. Soc. 108, 372–382.

    Google Scholar 

  • Hoyle, F.: 1975, “A solar model with low neutrino emission”, Ap. J. 197, L127–L131.

    CAS  Google Scholar 

  • Hoyle, F.: 1982, “Two decates of collaboration with Willy Fowler” in Essays in Nuclear Astrophysics, eds., Barnes, C.A., Clayton, D.D. and Schramm, D.N., Cambridge University Press, Cambridge, UK, pp. 1–9.

    Google Scholar 

  • Huang, S.-S.: 1957, “A nuclear-accretion theory of star formation”, Astron. Soc. Pacific 69, 427–430.

    Google Scholar 

  • Humes, E.: 1999, Mean Justice, Simon and Schuster, Inc., New York, N.Y., 672 pp.

    Google Scholar 

  • Huss, G.R. and Lewis, R.S.: 1995, “Presolar diamond, SiC and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type”, Geochim. Cosmochim. Acta 59, 115–160.

    CAS  Google Scholar 

  • Hwaung, G and Manuel, O.K.: 1982, “Terrestrial-type xenon in meteoritic troilite”, Nature 299, 807–810.

    CAS  Google Scholar 

  • Kaiser, W.A.: 1972, “Rare gas studies in Luna 16-G-7 fines by stepwise heating technique”, Earth Planet Sci. Lett. 13, 387–399.

    CAS  Google Scholar 

  • Kerridge, J.F.: 1975, “Solar nitrogen: Evidence for a secular increase in the ratio of nitrogen-15 to nitrogen-14”, Science 188, 162–164.

    CAS  Google Scholar 

  • Kerridge, J.F.: 1993, “Long term compositional variation in solar corpuscular radiation: Evidence from nitrogen isotopes in lunar regolith”, Rev. Geophys. 31, 423–437.

    Google Scholar 

  • Kim, J.S., Kim, Y., Marti, K. and Kerridge, J.F.: 1995, “Nitrogen isotope abundances in the recent solar wind”, Nature 375, 383–385.

    CAS  Google Scholar 

  • Krat, V.A.: 1952, Problems in Cosmology, vol. 1, Academy of Science, Moscow, USSR, p. 34.

    Google Scholar 

  • Kuroda, P.K.: 1960, “Nuclear fission in the early history of the Earth”, Nature 187, 36–38.

    CAS  Google Scholar 

  • Kuroda, P.K.: 1982, The Origin of the Chemical Elements and the Oklo Phenomenon, Springer-Verlag, New York, N.Y., 165 pp.

    Google Scholar 

  • Kuroda, P.K. and Myers, W.A.: 1996, “Iodine-129 and plutonium-244 in the early solar system”, Radiochim. Acta 77, 15–20.

    Google Scholar 

  • Kuroda, P.K. and Myers, W.A.: 1997, “Aluminum-26 in the early solar system”, J. Radioanal. Nucl. Chem. 211, 539–555.

    Google Scholar 

  • Lavrukhina, A.K.: 1980, “On the nature of isotopic anomalies in meteorites”, Nukleonika 25, 1495–1515.

    CAS  Google Scholar 

  • Lavrukhina, A.K. and Kuznetsova, R.I.: 1982, “Irradiation effects at the supernova stage in isotopic anomalies”, Lunar Planet. Sci. XIII, 425–426.

    Google Scholar 

  • LeBlanc, J.M. and Wilson, J.R.: 1970, “A numerical example of the collapse of a rotating magnetized star”, Ap. J. 161, 541–551.

    Google Scholar 

  • Lee, D.-C. and Halliday, A.N.: 1995, “Hafnium-tungsten chronometry and the timing of terrestrial core formation”, Nature 378, 771–774.

    CAS  Google Scholar 

  • Lee, D.-C. and Halliday, A.N.: 1996, “Hf-W Isotopic evidence for rapid accretion and differentiation in the early Solar System”, Science 274, 1876–1879.

    CAS  Google Scholar 

  • Lee, D.-C. and Halliday, A.N.: 1997, “Core formation on Mars and differentiated asteroids”, Nature 388, 854–857.

    CAS  Google Scholar 

  • Lee, J.T., Li, B. and Manuel, O.K.: 1996a, “Terrestrial-type xenon in sulfides of the Allende meteorite”, Geochem. J. 30, 17–30.

    CAS  Google Scholar 

  • Lee, J.T., Li, B. and Manuel, O.K.: 1996b, “Xenon isotope record of nucleosynthesis and the early solar system”, Chinese Sci. Bull. 41, 1778–1782.

    Google Scholar 

  • Lee, J.T., Li, B. and Manuel, O.K.: 1997, “On the signature of local element synthesis”, Comments Astrophys. 18, 335–345.

    Google Scholar 

  • Lee, J.T. and Manuel, O.K.: 1996, “On the isotopic composition of primordial xenon in meteoritic troilite and the origin of the chemical elements”, Proc. Lunar Planet. Sci. Conf. XXVII, 738a–738b.

    Google Scholar 

  • Lewis, J.S.: 1974, “The chemistry of the solar system”, Scientific American 230, 50–65.

    Google Scholar 

  • Lewis, R.S. and Anders, E.: 1988, “Xenon-HL in diamonds from the Allende meteorite-composite nature”, Proc. Lunar Planet. Sci. Conf. 19, 679–680.

    Google Scholar 

  • Lewis, R.S., Srinivasan, B. and Anders, E.: 1975, “Host phase of a strange xenon component in Allende”, Science 190, 1251–1262.

    CAS  Google Scholar 

  • Lin, D.N.C., Woosley, S.E., Bodenheimer, P.H.: 1991, “Formation of a planet orbiting pulsar 1829-10 from the debris of a supernova explosion”, Nature 353, 827–831.

    Google Scholar 

  • Lodders, K. and Fegley, B., Jr.: 1995, “The origin of circumstellar silicone carbide grains found in meteorites”, Meteoritics and Planet. Sci. 30, 661–678.

    CAS  Google Scholar 

  • Lyttleton, R.A.: 1941, “On the origin of the solar system”, Mont. Not. Roy. Astron. Soc. 101, 216–226.

    Google Scholar 

  • MacElroy, J.M.D. and Manuel, O.K.: 1986, “Can intrasolar diffusion contribute isotope to anomalies in the solar wind?” J. Geophys, Res. 91, D473–D482.

    CAS  Google Scholar 

  • Manuel, O.: 1998, “Isotopic ratios in Jupiter confirm intrasolar diffusion”, Meteoritics and Planet. Sci. 33, A97.

    Google Scholar 

  • Manuel, O.: 1999, Abstract 60, “Proton capture on 14N generates excess 15N in the solar wind”, Annual Meeting of the Missouri Academy of Sciences, Cape Girardeau, MO, Missouri Acad. Sci. Bull. 27, no. 4, p. 14.

    Google Scholar 

  • Manuel, O.K., Hennecke, E.W. and Sabu, D.D.: 1972, “Xenon in carbonaceous chondrites”, Nature 240, 99–101.

    CAS  Google Scholar 

  • Manuel, O.K. and Hwaung, G.: 1983, “Solar abundances of the elements”, Meteoritics 18, 209–222.

    CAS  Google Scholar 

  • Manuel, O.K., Lee, J.T., Ragland, D.E., MacElroy, J.M. D., Li, Bin and Brown, W.K.: 1998a, “Origin of the solar system and its elements”, J. Radio Anal. Nucl. Chem. 238, 213–225.

    CAS  Google Scholar 

  • Manuel, O, Ragland, D., Windler, K., Zirbel, J., Johannes, L. and Nolte, A.: 1998b, “Strange isotope ratios in Jupiter”, Bull. Am. Astron. Soc. 30, 852–853.

    Google Scholar 

  • Manuel, O., Windler, K., Nolte, A., Johannes, L., Zirbel, J. and Ragland, D.: 1998c, “Strange xenon in Jupiter”, J. Radioanal. Nucl. Chem. 238, nos. 119–121.

    Google Scholar 

  • Manuel O.K. and Ragland D.E.: 1997, Abstract 281, “Diffusive mass fractionation effects across the isolopes of noble gases and magnesium in the solar wind and in solar flares”, 1997 Midwest Regional Meeting of the American Chemical Society, Osage Beach, MO, USA.

    Google Scholar 

  • Manuel, O.K. and Sabu, D.D.: 1975, “Elemental and isolopic inhomogeneities in noble gases: The case for local synthesis of the chemical elements”, Trans. Missouri Acad. Sci. 9, 104–122.

    CAS  Google Scholar 

  • Manuel, O.K. and Sabu, D.D.: 1977, “Strange xenon, extinct superheavy elements and the solar neutrino puzzle”, Science 195, 208–209.

    CAS  Google Scholar 

  • Manuel, O.K. and Sabu, D.D.: 1981, “The noble gas record of the terrestrial planets”, Geochem. J. 15, 245–267.

    CAS  Google Scholar 

  • Marti, K.: 1969, “Solar type xenon: A new isotopic composition of xenon in the Pesyanoe meteorite”, Science 166, 1263–1265.

    CAS  Google Scholar 

  • Mason, B.: 1962, Meteorites, John Wiley & Sons, New York, NY, 274 pp.

    Google Scholar 

  • Masuda, A. and Qi-Lu: 1998, “Isotopic composition of molybdenum in iron meteorites viewed from nucleosynthesis”, Meteoritics Planet. Sci. 33, A99.

    Google Scholar 

  • Mathews, G.J.: 1988, Origin and Distribution of the Elements, Proceedings of a 1987 ACS symposium, World Scientific, Singapore, 767 pp.

    Google Scholar 

  • Mayer, M.G.: 1948, “On closed shells in nuclei”, Phys. Rev. 74, 235–239.

    Google Scholar 

  • Menninger, Karl A.: 1968, The Crime of Punishment, Viking Press, New York, NY, 305 pp.

    Google Scholar 

  • Milligan, W.O., ed.: 1978, Proceedings of the Robert A Welch Foundation Conferences on Chemical Research, XXI. Cosmochemistry, The Robert A. Welch Foundation, Houston, TX, 397 pp.

    Google Scholar 

  • Miyake, Y.: 1965, Elements of Geochemistry, Maruzen Co., Tokyo, Japan, 475 pp.

    Google Scholar 

  • Nazarov, M.A., Hoppe, P., Brandstaetter, F. and Kurat, G.: 1998, “Presolar trace element signature in P-rich sulfide from a CM chondrite clast in the Erevan howardite”, Lunar Planet. Sci. Conf. XXIX, 1596–1597.

    Google Scholar 

  • Nazarov, M.A.: 1994, “P-rich sulfide, barringerite, and other phases in carbonaceous clasts of the Erevan howardite”, Lunar Planet. Sci. Conf. XXV, 979–980.

    Google Scholar 

  • Nicolussi, G.K., Pellin, M.J., Lewis, R.S., Davis, A.M., Amari, S. and Clayton, R.N.: 1998, “Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite”, Geochim. Cosmochim. Acta 62, 1093–1104.

    CAS  Google Scholar 

  • Niemeyer, S.: 1979, “I-Xe dating of silicate and troilite from IAB iron meteorites”, Geochim. Cosmochim. Acta 43, 843–860.

    CAS  Google Scholar 

  • Noddack, I. and Noddack, W.: 1930, „Die Häufigkeit der chemischen Elemente“, Naturwissenschaften 18, 757–764.

    CAS  Google Scholar 

  • Noddack, I. and Noddack, W.: 1934, „Die geochemischen Verteilungkoeffizienten der Elemente“, Svensk Kemisk Tidskrift XLVI, 173–201.

    Google Scholar 

  • Olbers, W.: 1803, „Uber die vom himmel gefellenen steine“, Ann. Phys. 14, 38–45.

    Google Scholar 

  • Oliver, L.L., Ballad, R.V., Richardson, J.F. and Manuel, O.K.: 1981, “Isotopically anomalous tellurium in Allende: Another relic of local element synthesis”, J. Inorg. Nucl. Chem. 43, 2207–2216.

    CAS  Google Scholar 

  • Ott, U.: 1996, “Interstellar diamond xenon and timescales of supernova ejecta”, Ap. J. 463, 344–348.

    CAS  Google Scholar 

  • Pagel, B.E.J.: 1988, “The origin and distribution of the elements”, in Origin and Distribution of the Elements, ed., Mathews, G.J., World Scientific, Singapore, pp. 253–271.

    Google Scholar 

  • Palme, H. and O’Neill, H.St.C: 1996, “Formation of the earth’s core”, Geochim. Cosmochim. Acta 60, 1105–1108.

    Google Scholar 

  • Palme, H., Suess, H.E. and Zeh, H.D.: 1981, “Abundances of the elements in the solar system”, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology 2, 257–272.

    Google Scholar 

  • Pepin, R.O., Becker, R.H., and Rider, P.E.: 1995, “Xenon and krypton isotopes in extraterrestrial regolith soils and in the solar wind”, Geochim. Cosmochim. Acta 59, 4997–5022.

    CAS  Google Scholar 

  • Podosek, F.A. and Swindle, T.D.: 1988, “Extinct radionuclides”, in Meteorites and the Early Solar System, eds., Kerridge, J.F. And Matthews, M.S., University of Arizona Press, Tuscon,AZ, pp. 1093–1146.

    Google Scholar 

  • Prantos, N., Vangioni-Flam, E. and Cassé, M., eds.: 1993, Origin and Evolution of the Elements, Cambridge University Press, Cambridge, UK, 545 pp.

    Google Scholar 

  • Rao, M.N., Garrison D.H., Bogard D.D., Badhwar G. and Murali A.V.: 1991, “Composition of solar flare noble gases preserved in meteorite parent body regolith” J. Geophys. Res. 96, 19.321–19.330.

    Google Scholar 

  • Reeves, H., ed.: 1972, Symposium on the Origin of the Solar System, Centre National de la Recherche Scientifique, Paris, France, 379 pp.

    Google Scholar 

  • Reynolds, J.H.: 1956, “High sensitivity mass spectrometer for noble gas analysis”, Rev. Sci. Instruments 27, 928–934.

    CAS  Google Scholar 

  • Reynolds, J.H.: 1960a, “Determination of the age of the elements”, Phys. Rev. Lett. 4, 8–10.

    CAS  Google Scholar 

  • Reynolds, J.H.: 1960b, “Isotopic composition of primordial xenon”, Phys. Rev. Lett. 4, 351–354.

    CAS  Google Scholar 

  • Richards, T.W.: 1919, “Atomic Weights” Nobel lecture, December 6, 1919, Nobel Lectures in Chemistry, pp. 280–292.

    Google Scholar 

  • Ross, J.E. and Aller, L.H.: 1976, “The chemical composition of the Sun”, Science 191, 1223–1229.

    CAS  Google Scholar 

  • Rouse, C.A.: 1964, “Calculation of stellar structure using an ionization equilibrium equation of state”, University of California, UCRL Report 7820-T.

    Google Scholar 

  • Rouse, C.A.: 1969, “Calculation of stellar structure”, in Progress in High Temperature Physics and Chemistry, vol. 2, ed. Rouse, C.A., Pergamon Press, Oxford, UK, pp. 97–126.

    Google Scholar 

  • Rouse, C.A.: 1975, “A solar neutrino loophole: Standard solar models”, Astron. Astrophys. 44, 237–240.

    CAS  Google Scholar 

  • Rouse, C.A.: 1983, “Calculation of stellar structure. III. Solar models that satisfy the necessary conditions for a unique solution to the stellar structure equations”, Astron. Astrophys. 126, 102–110.

    CAS  Google Scholar 

  • Rouse, C.A.: 1985, “Evidence for a small, high-Z, iron-like solar core”, Astron. Astrophys. 149, 65–72.

    CAS  Google Scholar 

  • Rouse, C.A.: 1995, “Calculation of solar structure IV. Results using a detailed energy generation subroutine”, Astron. Astrophys. 304, 431–439.

    CAS  Google Scholar 

  • Rouse, C.A.: 1998, personal communication.

    Google Scholar 

  • Rowe, M.W. and Kuroda, P.K.: 1965, “Fissiogenic xenon from the Pasamonte meteorite”, J. Geophys. Res. 70, 709–714.

    CAS  Google Scholar 

  • Sabu, D.D. and Manuel, O.K.: 1976a, “Xenon record of the early solar system”, Nature 262, 28–32.

    CAS  Google Scholar 

  • Sabu, D.D. and Manuel, O.K.: 1976b, “The xenon record of element synthesis”, Eos 57, 278.

    Google Scholar 

  • Sabu, D.D. and Manuel, O.K.: 1980, “Noble gas anomalies and synthesis of the chemical elements”, Meteoritics 15, 117–138.

    CAS  Google Scholar 

  • Sahijpal, S., Goswami, J.N., Davis, A.M., Grossman, L. and Lewis, R.S.: 1998, “A stellar origin for the short-lived nuclides in the early Solar System”, Nature 391, 559–561.

    CAS  Google Scholar 

  • Saxena, S, K. and Eriksson, G.: 1983, “High temperature phase equilibria in a solar-composition gas”, Geochim. Cosmochim Acta 47, 1865–1874

    CAS  Google Scholar 

  • Shindo, H., Miyamoto, M, Matsuda, J. and Ito, K.: 1985, “Vapor deposition of diamond from methane-hydrogen mixture and its bearing on the origin of diamond in ureilite: A preliminary report”, Meteoritics 20, 754.

    Google Scholar 

  • Srinivasan, B., Alexander, B.C., Jr., Manuel, O.K. and Troutner, D.E.: 1969, “Xenon and krypton from the spontaneous fission of californium 252”, Phys. Rev. 179, 1166–1169.

    CAS  Google Scholar 

  • Srinivasan, B. and Anders, E.: 1978, “Noble gases in the Murchison meteorite: Possible relics of s-process nucleosynthesis” Science 201, 51–56.

    CAS  Google Scholar 

  • Swindle, T.D., Grier, J.A. and Burkland, M.K..: 1995, “Noble gases in ortho pyroxenite A1H84001: A different kind of martian meteorite with an atmospheric signature”, Geochim. Cosmochim. Acta 59, 793–801.

    CAS  Google Scholar 

  • Suess, H.E. and Urey, H.C.: 1956, “Abundances of the elements”, Rev. Mod. Phys. 28, 53–74.

    CAS  Google Scholar 

  • Tayler, R.J.: 1972, The Origin of the Chemical Elements, Wykeham Pub. Ltd., London, 169 pp.

    Google Scholar 

  • Tayler, R.J.: 1988, “Nucleosynthesis and the origin of the elements”, Philos. Trans. R. Soc. London, A 325, 391–403.

    Google Scholar 

  • Thiemens, M.H. and Heidenreich J. E. III: 1983, “The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications”, Science 219, 1073–1075.

    CAS  Google Scholar 

  • Timmes, F.X., Woosley, S.E., and Weaver, T.A.: 1995, “Galactic chemical evolution: Hydrogen through zinc”, Astrophys. J. Suppl. 98, 617–658.

    CAS  Google Scholar 

  • Trimble, V.: 1975, “The origin and abundances of the chemical elements”, Rev. Mod. Phys. 47, 877–976.

    CAS  Google Scholar 

  • Trimble, V.: 1982, “Supernovae. Part I: the events” Rev. Mod. Phys. 54, 1183–1224.

    CAS  Google Scholar 

  • Trimble, V.: 1983, “Supernovae. Part II: the aftermath” Rev. Mod. Phys. 55, 511–563.

    CAS  Google Scholar 

  • Trimble, V.: 1988, “Galactic chemical evolution: Perspectives and prospects”, in Origin and Distribution of the Elements, Proceedings of a 1987 ACS symposium, ed., Mathews, G.J., World Scientific, Singapore, pp. 163–175.

    Google Scholar 

  • Trimble, V.: 1991, “The origin and abundances of the chemical elements revisited”, Astron. Astrophys. Rev. 3, 1–46.

    Google Scholar 

  • Trimble, V.: 1996, “Cosmic abundances: Past, present and future”, ASP Conf. Series 99, eds., Holt, S.S. and Sonneborn, G., pp. 3–35.

    Google Scholar 

  • Turekian, K.K. and Clarke, S.P.: 1969, “Inhomogeneous accumulation of the earth from the primitive solar nebula”, Earth Planet Sci. Lett. 6, 346–348.

    CAS  Google Scholar 

  • Urey, H.C.: 1952, “The Planets, Their Origin and Development, Yale University Press, New Haven, Connecticut, 245 pp.

    Google Scholar 

  • Urey, H.C.: 1954, “On the dissociation of gas and volatilized elements from proto-planets”, Ap. J. Suppl. 1, 147–174.

    CAS  Google Scholar 

  • Urey, H.C.: 1956, “Diamonds, meteorites, and the origin of the solar system”, Ap. J. 124, 623–637.

    Google Scholar 

  • Vinogradov, A.P.: 1975, “Formation of the metal cores of the planets”, Geokhimiya 10, 1427–1431.

    Google Scholar 

  • Wallerstein, G., Iben, I., Parker, P., Boesgaard, A.M., Hale, G.M., Champagne, A.E., Barnes, C.A., Käppler, F., Smith, V.V., Hoffman, R.D., Timmes, F.X., Sneden, C., Boyd, R.N., Meyer, B.S. and Lambert, D.L.:1997, “Synthesis of elements in stars: forty years of progress”, Rev. Mod. Phys. 69, 995–1084.

    Google Scholar 

  • Wasserburg, G.J.: 1987, “Isotopic abundances: inferences on solar system and planetary evolution”, Earth Planet. Sci. Lett. 86, 129–173.

    CAS  Google Scholar 

  • Wheeler, J.C. and Cameron, A.G.W.: 1975, “The effect of primordial hydrogen/helium fractionation on the solar neutrino flux”, Ap. J. 196, 601–605.

    CAS  Google Scholar 

  • Wheeler, J.C., Sneden, C. and Truran, J.W.: 1989, “Abundance ratios as a function of metallicity”, Annu. Rev. Astro. Astrophys. 27, 279–349.

    CAS  Google Scholar 

  • Wolszczan, A.: 1994, “Confirmation of earth-mass planets orbiting the millisecond pulsar PSR B 1257+12”, Science 264, 538–542.

    CAS  Google Scholar 

  • Wolszczan, A. and Frail, D.A.: 1992, “A planetary system around the millisecond pulsar PSR1257+12 Nature 355, 145–147.

    Google Scholar 

  • Wood, J.: 1978, “Ancient chemistry and the formation of the planets”, in Proceedings of the Robert A Welch Foundation Conferences on Chemical Research, XXI. Cosmochemistry, ed., Milligan, W.O., The Robert A. Welch Foundation, Houston, TX, pp. 323–362.

    Google Scholar 

  • Wood, John A.: 1999, “Forging the planets”, Sky & Telescope 97, 36–48.

    Google Scholar 

  • Yoneda, S. and Grossman, L.: 1995, “Condensation of CaO-MgO-Al2O3-SiO2 liquid from cosmic gases Geochim. Cosmochim. Acta 59, 3413–3444.

    CAS  Google Scholar 

  • Zeilik, M.: 1982, Astronomy: The Evolving Universe, Harper & Row, New York, NY, 623 pp.

    Google Scholar 

  • Zinner, E., Amari, S., Anders, E. and Lewis, R.S.: 1991, “Large amounts of extinct 26Al in interstellar grains from the Murchison carbonaceous chondrite”, Nature 349, 51–54.

    CAS  Google Scholar 

  • Zinner, E.: 1997, “Presolar material in meteorites: an overview”, AIP Conference Proceeding 402: Astrophysical Implications of the Laboratory Study of Presolar Materials, eds., Bernatowicz, T.J. and Zinner, E., American Institute of Physics, Woodbury, NY, pp. 3–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Manuel, O. (2002). Origin of Elements in the Solar System. In: Manuel, O. (eds) Origin of Elements in the Solar System. Springer, Boston, MA. https://doi.org/10.1007/0-306-46927-8_44

Download citation

  • DOI: https://doi.org/10.1007/0-306-46927-8_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46562-8

  • Online ISBN: 978-0-306-46927-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics