Skip to main content

The Role of Calcium Phosphino-Polycarboxylate Complexation In Inhibiting BaSO4 Precipitation From Brine

  • Chapter
Advances in Crystal Growth Inhibition Technologies

Abstract

The kinetics of BaSO4 nucleation and its inhibition with phosphino-polycarboxylic acid (PPCA) has been studied. The induction period of BaSO4 nucleation under a wide range of ionic strength and temperature has been measured through a turbidity method. The presence of Ca2+ does not show a significant effect on the induction period of BaSO4 nucleation. The presence of PPCA increases the induction period of BaSO4 nucleation while the extent of the prolongation depends on the solution pH and Ca2+ concentration. Only the dissociated fraction and the metal complexed fraction of PPCA are effective to inhibit BaSO4 nucleation while the protonated fraction has no significant effect at any conditions. In a low supersaturated solution, the calcium complexed fraction of PPCA is more effective than the dissociated fraction. While in a highly supersaturated solution, the calcium complexed fraction of PPCA. is similarly effective as the dissociated fraction. Temperature has no significant effect on the efficiency of the calcium complexed fraction of PPCA and has only slight effect on that of the dissociated fraction of PPCA. The overall efficiency of PPCA to inhibit BaSO4 nucleation is proportional to the total concentration of Ca2+. Ca2+ enhances the overall efficiency of PPCA through decreasing the fraction of protonated PPCA and forming Ca-PPCA complexes. Ca2+ might play the role of a bridge connecting the crystal sites with exposed SO42− and PPCA functional groups so that the adsorption of PPCA on the active sites of BaSO4 crystal surfaces is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Wojciechowski, and W. Kibalczyc, Light scattering study of KH2PO4 and BaSO4 nucleation process, Journal of Crystal Growth, 76:379(1986).

    Article  CAS  Google Scholar 

  2. E. N. Rizkalla, Kinetics of the crystallization of barium sulphate, J. Chem. Soc., Faraday Trans. 1(79):1857(1983).

    Google Scholar 

  3. K. Taguchi, J. Garside, and N. S. Tavare, Nucleation and growth kinetics of barium sulphate in batch precipitation, Journal of Crystal Growth, 163:318(1996).

    Article  CAS  Google Scholar 

  4. P. Hartman, and C. S. Strom, Structural morphology of crystals with the barite (BaSO4) structure: a revision and extension, Journal of crystal Growth, 97:502(1989).

    Article  CAS  Google Scholar 

  5. N.L. Allan, A. L. Rohl, D.H. Gay, C.R. Catlow, R. J. Davey, and W.C. Mackrodt, Calculated bulk and surface properties of sulfates, Faraday Discuss. 95:273(1993).

    Article  CAS  Google Scholar 

  6. S. T. Liu, and G. H. Nancollas, Scanning electron microscopic and kinetic studies of the crystallization and dissolution of barium sulfate crystals, Journal of Crystal Growth, 33:11(1976).

    Article  CAS  Google Scholar 

  7. M. L. J. Leeuwen, O.S. L. Bruinsma, and G. M. Rosmalen, Three-zone approach for precipitation of barium sulfate. Journal of Crystal Growth, 166: 1004(1996).

    Google Scholar 

  8. S. He, J. E. Oddo, and M. B. Tomson, The nucleation kinetics of barium sulfate in NaCl solutions up to 6m and 90 °C, Journal of Colloid and Interface Science, 174:319 (dy1995).

    Google Scholar 

  9. L. Fernandez-Diaz, A. Putnis, and T. J. Cumberbatch, Barite nucleation kinetics and the effect of additives, Eur. J. Mineral., 2:495(1990).

    CAS  Google Scholar 

  10. W. J. Benton, I. R. Collins, I. M. Grimsey, G. M. Parkinson, and S. A. Rodger, Nucleation, growth and inhibition of barium sulfate-controlled modification with organic and inorganic additives. Faraday Discuss. 95:281(1993).

    Article  CAS  Google Scholar 

  11. S. N. Black, L. A. Bromley, D. Cottier, R. J. Davey, B. Dobbs, and J. E. Rout, Interactions at the organic/inorganic interface: binding motifs for phosphonates at the surface of barite crystals. J. Chem. Soc. Faraday Trans. 87(20):3409(1991).

    Article  CAS  Google Scholar 

  12. R. J. Davey, S. N. Black, L. A. Bromley, D. Cottier, B. Dobbs, and J. E. Rout, Molecular design based on recognition at inorganic surfaces. Nature, 353(10):549(1991).

    CAS  Google Scholar 

  13. A. L. Rohl, D. H. Gay, R. J. Davey, and C. R. Catlow, Interactons at the organic/inorganic interface: molecular modeling of the interaction between diphosphonates and the surfaces of barite crystals. J. Am. Chem. Soc. 118:642(1996).

    Article  CAS  Google Scholar 

  14. L. S. Boak, G. M. Graham, and K. S. Sorbie, The influence of divalent cations on the performance of BaSO4 scaleinhibitor. SPE 50771, 1999.

    Google Scholar 

  15. Breen et al, Metal Ion Complexes for Use as Scale Inhibitors. US Patent 5,207,919.

    Google Scholar 

  16. W. H. Leung, and G. H. Nancollas, Nitrilotri(methylenephosphonic acid) adsorption on barium sulfate crystals and its influence on crystal growth, Journal of Crystal Growth, 44: 163(1978).

    Article  CAS  Google Scholar 

  17. B. R. Heywood, and S. Mann, Organic template-directed inorganic crystallization: oriented nucleation of BaSO4 under compressed Langmuir monolayers. J. Am. Chem. Soc., 114:4681(1992).

    Article  CAS  Google Scholar 

  18. S. He, J. E. Oddo, and M. B. Tomson, The inhibition of gypsum and barite nucleation in NaCl brines at temperatures from 25 to 90°C. Applied Geochemistry, 9:561 (1994).

    Article  CAS  Google Scholar 

  19. S. L. He, A. T. Kan, and M. B. Tomson, Mathematical inhibitor model for barium sulfate scale control. Langmuir, 12:1901(1996).

    CAS  Google Scholar 

  20. M. C. van der Leeden, and G. M. van Rosmalen, Inhibition of barium sulfate deposition by polycarboxylates of various molecular structures. SPE Production Engineering 5(1):70, 17914 (Feb 1990).

    Google Scholar 

  21. J. Xiao, MS thesis, Rice University, 1997.

    Google Scholar 

  22. Standard Methods for the Examination of Water and Wastewater, 18th ed.; Greenberg, A. E.; Clesceri, L. S.; Eaton, A. D.; Ed.; American Public Health Association: Washington, D. C., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Xiao, J.J., Kan, A.T., Tomson, M.B. (2002). The Role of Calcium Phosphino-Polycarboxylate Complexation In Inhibiting BaSO4 Precipitation From Brine. In: Amjad, Z. (eds) Advances in Crystal Growth Inhibition Technologies. Springer, Boston, MA. https://doi.org/10.1007/0-306-46924-3_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-46924-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46499-7

  • Online ISBN: 978-0-306-46924-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics