Skip to main content

The Thermal Conductivity of Ash Deposits

Particulate and Slag Structures

  • Chapter
Impact of Mineral Impurities in Solid Fuel Combustion

Conclusions

The thermal conductivity of granular or slag type deposits can be determined by correlations using two phase medium equations. At room temperature, the effective thermal conductivity appears to be independent of pore size or particle size. The influence of particle size or pore size is significant at higher temperatures when radiative transfer becomes important. Most of the equations for determining the radiative contribution indicate this transfer to be directly proportional to particle size and to the cube of the temperature of the deposit.

The estimates of the thermal conductivity for a partially sintered deposit require the knowledge of extra structural information describing pore size distribution and the connectedness of the particles. This information can be reduced to structural parameters, such as proportions of purely particulate and slag phases and their respective porosity. These parameters can then be used in the hybrid models described for complex structures.

The structural parameters, would also help in providing the anisotropic nature of thermal conductivity of deposits (Ramer, 1996). There is little information available in literature on structural parameters of coal ash deposits and particularly on anisotropic nature of ash deposits. Hence it is proposed to develop the physical structural parameters as function of chemical character of ash and sintering history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson, D. W. et al., J. of Engg. for Gas Turbines, 109, 215, (1987).

    Article  Google Scholar 

  • Bauer, R., Int. J. Heat Mass Transfer, 17, p4181, (1993).

    Article  MATH  Google Scholar 

  • Boow, J. and Goard, P. D., J. Inst. of Fuel, 42, pp412, (1969).

    Google Scholar 

  • Botterill, J. S. M. et al.., Int. J. Heat Mass Transfer, 32, pp585, (1989).

    Article  Google Scholar 

  • Brailsford, A. D. and Major, K. G., Brit. J. Appl. Phys., 15, 313, (1964).

    Article  ADS  Google Scholar 

  • Diessler, R. G. and Boegli, J. S., Trans. ASME, 1417, (1958).

    Google Scholar 

  • Flynn, D. R., J. of Research of NBS, 67C(2), pp129–137 (1963).

    Google Scholar 

  • Godbee, H. W. and Ziegler, W. T., J. Appl. Phys., 37, pp40, (1966).

    Article  ADS  Google Scholar 

  • Gupta, R. P., et al., The Heat Transfer Properties of Ash Deposits in PF Fired Furnaces, Project Report, Inst. of Coal Res., Uni. Of Newcastle, (1997).

    Google Scholar 

  • Hadley, G. R., Int. J. Heat Mass Transfer, 29, pp909–920, (1986).

    Article  Google Scholar 

  • Kingery, W. D., Introduction to Ceramics (1968).

    Google Scholar 

  • Krupiczka, R., Int. Chem. Engg., 7, 122, (1967).

    Google Scholar 

  • Kunii, D. and Smith, I. M., AICH.E.J., 6, pp71, (1960).

    Article  Google Scholar 

  • Larkin, B. K. and Churchill, S. W., AICH.E.J., 5, pp467, (1959).

    Article  Google Scholar 

  • Laubitz, M. J., Cah. J. Phys., 37, pp798–808, (1959).

    ADS  Google Scholar 

  • Leach, A. G., J. Phys. D: Appl. Phys., 26, 733, (1993).

    Article  ADS  Google Scholar 

  • McAdams, W. H., Heat Transmission, 3rd Ed. McGraw Hill, New York, (1954).

    Google Scholar 

  • Mulcahy, M. F. R., J. Inst. Fuel, 39, pp385,394, (1966).

    Google Scholar 

  • Nasr, K., Viskanta, F. and Ramdhyani, S., J Heat Transfer. 116, pp829 (1994).

    Article  Google Scholar 

  • Nowok, J. W. and Steadman, E. N., Proceedings Of the 12th Annual Gasification And Gas Stream Cleanup Systems Contractors Reveiw Meeting, R. A. Johnson and S. G. Jain Ed, Morgantown, West Virginia, pp154–164, Sept (1992).

    Google Scholar 

  • Nozad, I., et al., Chem. Engg. Sci., 40(5), pp843–855, (1985).

    Article  Google Scholar 

  • Ramer, F. R. and Martello, D. V., Applications of Advanced Technology to Ash Related Problems in Boilers, Ed. L. Baxter and R. DeSollar, Plenum Press, (1996).

    Google Scholar 

  • Ratcliffe, E.H., Glass Tech., 4, 116, (1963).

    Google Scholar 

  • Rezaei, H. R., et al., Proceedings of EF Conf., Impact of Mineral Impurities in Solid Fuel Combustion, Kona, (1997).

    Google Scholar 

  • Russell, J. Am. Ceramic Soc., 18(1), (1935).

    Google Scholar 

  • Schotte, W., AICH.EJ., 6, pp63, (1958).

    Article  Google Scholar 

  • Tye, R. P., Thermal Conductivity, Vol 1, Academic Press (1959).

    Google Scholar 

  • Viskanta, R., J. Heat Transfer, pp143–150, (1965).

    Google Scholar 

  • Wain, S. E. el al., Inorganic Transformations and Ash Deposition During Combustion, Ed. S. A. Benson, ASME, (1992).

    Google Scholar 

  • Wall, T. F., Mai-Viet T., Becker H. B. and Gupta R. P., Fireside deposits and their effect on heat transfer in p. f. boilers: The emmisivity and thermal conductivity of deposits and their components., Proceedings Pulverised Coal firing—The Effects Of Mineral Matter, University Of Newcastle, L8.1–L8.16, August (1979)

    Google Scholar 

  • Wall T. F., Bhattacharya S. P., Zhang D. K., Gupta R. P. and He X., The properties and thermal effects of ash deposits in coal-fired furnaces., Prog. Energy Combust. Sci., Vol. 19, pp487–504, (1993).

    Article  Google Scholar 

  • Woodside, W., Can. J. Phys., 36, pp815, (1958)

    ADS  Google Scholar 

  • Yagi, S. and Kunii, D., AICH.EJ., 3, pp377, (1957).

    Google Scholar 

  • Zehner, P. and Schunder, E. U., Chemie. Ingr. Tech., 42, pp933, (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gupta, R.P., Wall, T.F., Baxter, L. (2002). The Thermal Conductivity of Ash Deposits. In: Gupta, R.P., Wall, T.F., Baxter, L. (eds) Impact of Mineral Impurities in Solid Fuel Combustion. Springer, Boston, MA. https://doi.org/10.1007/0-306-46920-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46920-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46126-2

  • Online ISBN: 978-0-306-46920-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics