Skip to main content

Discovering the Brain Substrates of Eyeblink Classical Conditioning

  • Chapter
Eyeblink Classical Conditioning: Volume 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba, A., Kano, M., Chen, C., Stanton, M.E., Gox, G.D., Herrup, K., Zwingman, T.A., & Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluRl mutant mice. Cell, 79, 377–388.

    Article  PubMed  Google Scholar 

  • Albus, J.S. 1971). A theory of cerebellar function. Mathematical Bioscience, 10, 25–61.

    Google Scholar 

  • Bao, S., Chen, L., & Thompson, R.F. (1998a). Classical eyeblink conditioning in two strains of mice: Conditioned responses, sensitization and spontaneous eyeblinks, Behavioral Neuroscience, 112, 714–718.

    Article  PubMed  Google Scholar 

  • Bao, S., Chen, L., Qiao, X., Knusel, B., & Thompson, R.F. (1998). Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency. Learning & Memory, 5, 355–364.

    Google Scholar 

  • Bao, S., Chen, L., Qiao, X., & Thompson, R.F. (1999). Transgenic brain-derived neurotrophic factor modulates a developing cerebellar inhibitory synapse. Learning & Memory, 6, 276–283.

    Google Scholar 

  • Berger, T.W., Alger, B., & Thompson, R.F. (1976). Neuronal substrate of classical conditioning in the hippocampus. Science, 192, 483–485.

    PubMed  Google Scholar 

  • Berger, T.W., Berry, S.D., & Thompson, R.F. (1986a). Role of the hippocampus in classical conditioning of aversive and appetitive behaviors. In R. L. Isaacson & K. H. Pribram (Eds.). The Hippocampus. Volumes III and IV, (pp. 203–239). New York: Plenum Press.

    Google Scholar 

  • Berger, T.W., Rinaldi, P.C., Weisz, D.J., & Thompson, R.F. (1983). Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50, 1197–1219.

    PubMed  Google Scholar 

  • Berger, T.W., & Thompson, R.F. (1978). Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning. Proceedings of the National Academy of Sciences, (USA), 75, 1572–1576.

    Google Scholar 

  • Berger, T.W., Weikart, C.L., Bassett, J.L., & Orr, W.B. (1986b). Lesions of the retrosplenial cortex produce deficits in reversal learning of the rabbit nictitating membrane response: Implications for potential interactions between hippocampal and cerebellar brain systems. Behavioral Neuroscience, 100, 796–803.

    Article  Google Scholar 

  • Berry, S.D., Rinaldi, P.C., Thompson, R.F., & Verzeano, M. (1978). Analysis of temporal relations among units and slow waves in rabbit hippocampus. Brain Research Bulletin, 3, 509–518.

    Article  PubMed  Google Scholar 

  • Berry, S.D., & Thompson, R.F. (1979). Medial septal lesions retard classical conditioning of the nictitating membrane response in rabbits. Science, 205, 209–211.

    PubMed  Google Scholar 

  • Berthier, N.E., & Moore, J.W. (1986). Cerebellar Purkinje cell activity related to the classical conditioned nictitating membrane response. Experimental Brain Research, 63, 341–350.

    Article  Google Scholar 

  • Berthier, N.E., & Moore, J.W. (1990). Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Experimental Brain Research, 83,44–54.

    Article  Google Scholar 

  • Brogden, W.J. & Gantt, W.H. (1942). Interneural conditioning: Cerebellar conditioned reflexes. Archives of Neurology and Psychiatry, 48, 437–455.

    Google Scholar 

  • Buonomano, D.V., & Mauk, M.D. (1994). Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Computation, 6, 38–55.

    Google Scholar 

  • Cegavske, C.F., Patterson, M.M., & Thompson, R.F. (1979). Neuronal unit activity in the abducens nucleus during classical conditioning of the nictitating membrane response in the rabbit, Oryctolagus cuniculus. Journal of Comparative and Physiological Psychology, 93, 595–609.

    PubMed  Google Scholar 

  • Cegavske, C.F., Thompson, R.F., Patterson, M.M., & Gormezano, I. (1976). Mechanisms of efferent neuronal control of the reflex nicitating membrane response in rabbit. Journal of Comparative & Physiological Psychology, 90, 411–423

    Google Scholar 

  • Chapman, P.F., Steinmetz, J.E., & Thompson, R.F. (1988). Classical conditioning does not occur when direct stimulation of the red nucleus or cerebellar nuclei is the unconditioned stimulus. Brain Research, 442, 97–104.

    Article  PubMed  Google Scholar 

  • Chen, C., Kano, M., Abeliovich, A., Chen, L., Bao, S., Kim, J.J., Hashimoto, K., Thompson, R.F., & Tonegawa, S. (1995). Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC gamma mutant mice. Cell, 83, 1233–1242.

    Article  PubMed  Google Scholar 

  • Chen, G., & Steinmetz, J.E. (2000). Microinfusion of protein kinase inhibitor H7 in the cerebellum impairs the aclquisition but not retention of classical eyeblink conditioning in rabbits. Brain Research, 857, 88–104.

    Google Scholar 

  • Chen, L., Bao, S., Lockard, J.M., Kim, J.K., & Thompson, R.F. (1996). Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. Journal of Neuroscience, 16, 2829–2838.

    PubMed  Google Scholar 

  • Chen, L., Bao, S., Qiao, X., & Thompson, R.F. (1999b). Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel g subunit. Proceedings of the National Academy of Sciences, (USA), 96, 12132–12137.

    Google Scholar 

  • Chen, L., Bao, S., & Thompson, R.F. (1999a). Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell degeneration mutant mice. Behavioral Neuroscience, 113, 204–210.

    Article  PubMed  Google Scholar 

  • Cipriano, B.D., Krupa, D.J., Almanza, O.W., & Thompson, R.F. (1995). Inactivation of the interpositus nucleus prevents transfer of the rabbit’s classically conditioned eyeblink response from a light to a tone CS. Neuroscience Abstracts, 21, 1221.

    Google Scholar 

  • Clark, G.A., McCormick, D.A., Lavond, D.G., & Thompson, R.F. (1984). Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Research, 291, 125–136.

    Article  PubMed  Google Scholar 

  • Clark, R.E., & Lavond D.G. (1993). Revesible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbit. Behavioral Neuroscience, 107, 264–270.

    Article  PubMed  Google Scholar 

  • Clark, R.E., & Squire, L.R. (1998). Classical conditioning and brain systems: The role of awareness. Science, 280, 77–81.

    Article  PubMed  Google Scholar 

  • Clark, R.E., Zhang, A.A., & Lavond, D.G. (1992). Reversible lesions of the cerebellarinterpositus nucleus during acquisition and retention of a classically conditioned behavior. Behavioral Neuroscience, 106, 879–888.

    PubMed  Google Scholar 

  • Daum, I., Schugens, M.M., Ackermann, H., Lutzenberger, W., Dichgans, J., & Birbaumer, N. (1993). Classical conditioning after cerebellar lesions in human. Behavioral Neuroscience, 107, 748–756.

    PubMed  Google Scholar 

  • Deaux, E.B., & Gormezano, I. (1963). Eyeball retraction: Classical conditioning and extinction inthe albino rabbit. Science, 141, 630–631.

    PubMed  Google Scholar 

  • Desmond, JE., & Moore, J.W. (1988). Adaptive timing in neural networks: the conditioned response. Biological Cybernetics, 58, 405–415.

    Article  PubMed  Google Scholar 

  • Donegan, N.H., Foy, M.R. & Thompson, R.F. (1985). Neuronal responses of the rabbit cerebellar cortex during performance of the classically conditioned eyelid response. Neuroscience Abstracts, 11, 835.

    Google Scholar 

  • Donegan, N.H., Gluck, M.A., & Thompson, R.F. (1989). Integrating behavioral and biological models of classical conditioning. In R.D. Hawkins & G.H. Bower (Eds.). Psychology of Learning and Motivation, (pp. 109–156). New York: Academic Press.

    Google Scholar 

  • Donegan, N.H., Lowry, R.W. & Thompson, R.F. (1983). Effects of lesioning cerebellar nuclei on conditioned leg-flexion response. Neuroscience Abstracts, 9, 331.

    Google Scholar 

  • Doty, R.W., Rutledge, L.T., & Larson, R.M. (1956). Conditioned reflexes established to electrical stimulation of cat cerebral cortex. Journal of Neurophysiology, 19, 401–415.

    PubMed  Google Scholar 

  • Eccles, J.C. (1977). An instruction-selection theory of learning in the cerebellar cortex. Brain Research, 127, 327–352.

    PubMed  Google Scholar 

  • Evinger, C., & Manning, K.A. (1988). A model system for motor learning: Adaptive gain control of the blink reflex. Experimental Brain Research, 70, 527–538.

    Article  Google Scholar 

  • Fiola, J., Grossberg, S., & Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as a substrate for adaptive timing of the classically conditioned eye-blink response. Journal of Neuroscience, 16, 3760–3774.

    Google Scholar 

  • Foy, M.R., Steinmetz, J.E. & Thompson, R.F. (1984). Single unit analysis of cerebellum during classically conditioned eyelid response. Neuroscience Abstracts, 10, 122.

    Google Scholar 

  • Foy, M.R. & Thompson, R.F. (1986). Single unit analysis of Purkinje cell discharge in classically conditioned and untrained rabbits. Neuroscience Abstracts, 12, 518.

    Google Scholar 

  • Freeman, J.H., Jr., Barone, S., Jr., & Stanton, M.E. (1995). Disruption of cerebellar maturation by an antimitotic agent impairs the ontogeny of eyeblink conditioning in rats. Journal of Neuroscience, 15, 7301–7314.

    PubMed  Google Scholar 

  • Gabriel, M. (1993). Discriminative avoidance learning: A model system. In M. Gabriel and B. Vogt (Eds.). Neurobiology of Cingulate Cortex and Limbic Thalamus, (pp. 478–523). Toronto: Birkhauser Publishers Inc.

    Google Scholar 

  • Gabriel, M., Wheeler, W., & Thompson, R.F. (1973). Multiple-unit activity of the rabbit cerebral cortex in single-session avoidance conditioning. Physiological Psychology, I, 45–55.

    Google Scholar 

  • Gluck, M.A., Myers, C.E. & Thompson, R.F. (1994). A computational model of the cerebellum and motorreflex conditioning. In S.F. Zornetzer, J.L. Davis, C. Lau, and T. McKenna (Eds.). Introduction to Neural and Electronic Networks (Second Edition ed., pp. 91–98). Orlando, FL: Academic Press, Inc.

    Google Scholar 

  • Gluck, M.A., Reifsnider, J., & Thompson, R.F. (1990). Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In M.A. Gluck & D.E. Rumelhart (Eds.). Neuroscience and connectionist models, (pp. 131–185). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Gomi, H., Sun, W., Finch, C.E., Itohara, S., Yoshimi, K., & Thompson, R.F. (1999). Learning induces a CDC2-related protein kinase, KKIAMRE. The Journal of Neuroscience, 19, 9530–9537.

    PubMed  Google Scholar 

  • Gormezano, I., Kehoe, E.J., & Marshall-Goodell, B.S. (1983). Twenty years of classical conditioning research with the rabbit. In J.M. Sprague and A.N. Epstein (Eds.). Progress inPhysiological Psychology, (pp. 197–275). New York: New York Academic.

    Google Scholar 

  • Gormezano, I,, Schneiderman, N., Deaux, E.B., & Fuentes, I. (1962). Nictitating membrane: Classical conditioning and extinction in the albino rabbit. Science, 138, 33–34.

    PubMed  Google Scholar 

  • Gould, T.J., & Steinmetz, J.E. (1996). Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction and backward classical conditioning. Neurobiology of Learning and Memory, 65, 17–34.

    Article  PubMed  Google Scholar 

  • Grossberg, S., &, N.A. (1989). Neural dynamics ofadaptive timing and temporal discrimination during associative learning. Neural Networks, 2, 79–102.

    Google Scholar 

  • Groves, P.M., & Thompson, R.F. (1970). Habituation: A dual-process theory. Psychological Review, 77, 419–450.

    PubMed  Google Scholar 

  • Haley, D.A., Lavond, D.G., & Thompson, R.F. (1983). Effects of contralateral red nuclear lesions on retention of the classically conditioned nictitating membrane/eyelid response. Neuroscience Abstracts, 9, 643.

    Google Scholar 

  • Hardiman, M.J., Ramnani, N., & Yeo, C.H. (1996). Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Experimental Brain Research, 110, 235–247.

    Article  Google Scholar 

  • Hiraoka, M., & Shimamura, M. (1977). Neural mechanisms of the corneal blinking reflex in cats. Brain Research, 125, 265–275.

    Article  PubMed  Google Scholar 

  • Ito, M. (1984). The Cerebellum and Neural Control. New York: Appleton Century-Crofts.

    Google Scholar 

  • Ivkovich, D., Lockard, J.M., & Thompson, R.F. (1993). Interpositus lesion abolition of the eyeblink conditioned response is not due to effects on performance. Behavioral Neuroscience, 107, 530–532.

    Article  PubMed  Google Scholar 

  • Kaneko, T., & Thompson, R.F. (1997). Disruption of trace conditioning of the nictitating membrane response in rabbits by central cholinergic blockade. Psychopharmacology, 131, 161–166.

    Article  PubMed  Google Scholar 

  • Karamian, A.I., Fanardijian, V.V., & Kosareva, A.A. (1960). The functional and morphological evolution of the cerebellum and its role in behavior. In R. Llinas (Ed.). Neurobiology of Cerebellar Evolution and Development, First International Symposium. Chicago, IL: American Medical Association.

    Google Scholar 

  • Katz, D.B., & Steinrnetz, J.E. (1997). Single-unit evidence for eyeblink conditioning in cerebellar cortex is altered, but not eliminated, by interpositus nucleus lesions. Learning and Memory, 4(1), 88–104.

    PubMed  Google Scholar 

  • Kehoe, E.J., & Holt, P.E. (1984). Transfer across CS-US intervals and sensory modalities in classical conditioning of the rabbit. Animal Learning and Behaviora, 12, 122–128.

    Google Scholar 

  • Kettner, R.E., Shannon, R.V., Nguyen, T.M., & Thompson, R.F. (1980). Simultaneous behavioral and neural (Cochlear Nucleus) measurement during signal detection in the rabbit. Perception and Psychophysics, 28, 504–513.

    PubMed  Google Scholar 

  • Kettner, R E., & Thompson, R.F. (1982). Auditory signal detection and decision processes in the nervous system. Journal of Comparative & Physiological Psychology, 96, 328–331.

    Google Scholar 

  • Kettner, R.E., & Thompson, R.F. (1985). Cochlear nucleus, inferior colliculus, and medial geniculate responses during the behavioral detection of threshold-level auditory stimuli in the rabbit. Journal of the Acoustical Society of America, 77, 2111–2127.

    Article  PubMed  Google Scholar 

  • Kim, J.J., Chen, L., Bao, S., Sun., W., & Thompson, R.F. (1996). Genetic dissections of the cerebellar circuitry involved in classical eyeblink conditioning. In S. Nakanishi, A.J. Silva, and S. Aizawa, and M. Katsuki (Eds.). Gene Targeting and New Developments in Neurobiology, (pp. 3–15). Tokyo, Japan: Japan Scientific Societies Press.

    Google Scholar 

  • Kim, J.J., Clark, R.E., & Thompson, R.F. (1995). Hippocampectomy impairs the memory of recently, but not remotely, acquired traceeyeblink conditioned responses. Behavioral Neuroscience, 109, 195–203.

    Article  PubMed  Google Scholar 

  • Kim, J.J., Krupa, D.J. & Thompson, R.F. (1992). Intra-olivary infusions of picrotoxin prevent “blocking” of rabbit conditioned eyeblink response. Neuroscience Abstracts, 18, 1562.

    Google Scholar 

  • Kim, J.J., Krupa, D.J., & Thompson, R.F. (1998). Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science, 279, 570–573.

    PubMed  Google Scholar 

  • Kim, J.J., Shih, J.C., Chen, K., Chen, L., Bao, S., Shin, M. J., Maren, S.A., Anagnostaras, S.G., Fanselow, M.S., Maeyer, E.D.. Seif, I., & Thompson, R.F. (1997). Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient transgenic mice. Proceedings of the National Academy of Sciences (USA), 94, 5929–5933.

    Google Scholar 

  • Kim, J.J., & Thompson, R.F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in Neurosciences, 20, 177–181

    Article  PubMed  Google Scholar 

  • Knowlton, B.J., Thompson, J.K., & Thompson, R.F. (1993). Projections from the auditory cortex to the pontine nuclei in the rabbit. Behavioral Brain Research, 56, 23–30.

    Article  Google Scholar 

  • Knowlton, B.J., & Thompson, R.F. (1988). Microinjections of local anesthetic into the pontine nuclei reduce the amplitude of the classically conditioned eyelid response. Physiology & Behavior, 43, 855–857.

    Article  Google Scholar 

  • Knowlton, B.J., & Thompson, R.F. (1992). Conditioning using a cerebral cortical conditioned stimulus is dependent on the cerebellum and brain stem circuitry. Behavioral Neuroscience, 106, 509–517.

    Article  PubMed  Google Scholar 

  • Krupa, D.J. (1993). Localization of the essential memory trace for a classically conditioned behavior. Doctoral Dissertation, University of Southern California, Los Angeles.

    Google Scholar 

  • Krupa, D.J., Tracy, J., Weiss, C., & Thompson, R.F. (1990). Single unit responses from the cerebellar cortex of naive rabbits. Neuroscience Abstracts, 16, 762.

    Google Scholar 

  • Krupa, D.J., Thompson, J.K., & Thompson, R.F. (1993). Localization of a memory trace in the mammalian brain. Science, 260, 989–991.

    PubMed  Google Scholar 

  • Krupa, D.J., & Thompson, R.F. (1995). Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit’s classically conditioned eye-blink response. Proceedings of rhe National Academy of Sciences, (USA), 92, 5097–5101.

    Google Scholar 

  • Krupa, D.J., & Thompson, R.F. (1997). Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eyeblink response. Learning & Memory, 3, 545–556.

    Google Scholar 

  • Krupa, D.J., Weiss, C., & Thompson, R.F. (1991). Air puff evoked Purkinje cell complex spike activity is diminished during conditioned responses in eyeblink conditioned rabbits. Neuroscience Abstracts, 17, 322.

    Google Scholar 

  • Krupa, D.J., Weng, J., & Thompson, R.F. (1996). Inactivation of brainstem motor nuclei blocks expression but not acquisition of the rabbit’s classically conditioned eyeblink response. Behavioral Neuroscience, 110, 219–227.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., Hembree, T.L., & Thompson, R.F. (1985). Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Research, 326, 179–182.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., Knowlton, B.J., Steinmetz, J.E., & Thompson, R F. (1987a). Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS: II. Lateral reticular nucleus stimulation. Behavioral Neuroscience, 101, 676–682.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., Lincoln, J.S., McCormick, D.A., & Thompson, R.F. (1984a). Effect of bilateral lesions of the dentate and interpositus cerebellar nuclei on conditioning of heart-rate and nictitating membrane/eyelid responses in the rabbit. Brain Research, 305, 323–330.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., Logan, C.G., Sohn, J.H., Gamer, W.D.A., & Kanzawa, S.A. (1990). Lesions of the cerebellar interpositus nucleus abolish both nictitating membrane and eyelid EMG conditioned responses. Brain Research, 514, 238–248.

    Article  PubMed  Google Scholar 

  • Lavond, D.G., McCormick, D.A., Clark, G.A., Holmes, D.T., & Thompson, R.F. (1981). Effects of ipsilateral rostral pontine reticular lesions on retention of classically conditioned nictitating membrane and eyelid responses. Physiological Psychology, 9, 335–339.

    Google Scholar 

  • Lavond, D.G., McCormick, D.A., & Thompson, R.F. (1984b). A non-recoverable learning deficit. Physiological Psychology, 12, 103–110.

    Google Scholar 

  • Lavond, D.G., Steinmetz, J.E., Yokaitis, M.H., & Thompson, R.F. (1987b). Reacquisition of classical conditioning after removal of cerebellar cortex. Experimental Brain Research, 67, 569–593.

    Article  Google Scholar 

  • Lincoln, J.S., McCormick, D.A., & Thompson, R.F. (1982). Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Research, 242, 190–193.

    Article  PubMed  Google Scholar 

  • Llinas, R., Lang, E.J., & Welsh, J.P. (1997). The cerebellum, LTD and memory: Alternative views. Learning & Memory, 3, 445–455.

    Google Scholar 

  • Logan, C.G., & Grafton, S.T. (1995). Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolismand positron-emission tomography. Proceedings ofthe National Academy of Science, (USA), 92, 7500–7504.

    Google Scholar 

  • Logan, C.G., Lavond, D.G., Wong, J.T., & Thompson, R.F. (1994). Acquisition of classically conditioned eyeblink response following bilateral lesions of flocculus and paraflocculus. Behavioral & Neural Biology, 61, 102–106.

    Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437–470.

    PubMed  Google Scholar 

  • Mauk, M.D., Steinmetz, J.E., & Thompson, R.F. (1986). Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences, (USA), 83, 5349–5353.

    Google Scholar 

  • McCormick, D.A., Clark, G.A., Lavond, D.G., & Thompson, R.F. (1982a). Initial localization of the memory trace for a basic form of learning. Proceedings of the National Academy of Sciences, (USA), 79, 2731–2735.

    Google Scholar 

  • McCormick, D.A., Guyer, P.E., & Thompson, R.F. (1982b). Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit. Brain Research, 244, 347–350.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., Lavond, D.G., Clark, G.A., Kettner, RE., Rising, C.E., & Thompson, R.F. (1981). The engram found?: Role of the cerebellum in classical conditioning of nictitating and eyelid responses. Bulletin of the Psychonomic Society, 18, 103–105.

    Google Scholar 

  • McCormick, D.A., Lavond, D.G., & Thompson, R.F. (1982c). Concomitant classical conditioning of the rabbit nictitating membrane and eyelid responses: correlations and implications. Physiological Behavior, 28, 769–775.

    Google Scholar 

  • McCormick, D.A., Lavond, D.G., & Thompson, R.F. (1983). Neuronal responses of the rabbit brainstem during performance ofthe classically conditioned nictitating membrane (NM)/eyelid response. Brain Research, 271, 73–88.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., Steinmetz, J.E., & Thompson, R.F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research, 359, 120–130.

    Article  PubMed  Google Scholar 

  • McCormick, D.A., & Thompson, R.F. (1984a). Cerebellum: Essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.

    PubMed  Google Scholar 

  • McCormick, D.A., & Thompson, R.F. (1984b). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. Journal of Neuroscience, 4, 2811–2822.

    PubMed  Google Scholar 

  • McGlinchey-Berroth, R., Carrillo, M.C., Gabrieli, J.D., Brawn, C.M., & Disterhoft, J.F. (1997). Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behavioral Neuroscience, 111, 873–882.

    Article  PubMed  Google Scholar 

  • Mintz, M., Lavond, D.G., Zhang, A.A., Yun, Y., & Thompson, R.F. (1994). Unilateral inferior olive NMDA lesion leads to unilateral deficit in acquisition and retention of eyelid classical conditioning. Behavioral & Neural Biology, 61, 218–224.

    Google Scholar 

  • Moyer, J.R., Deyo, R.A., & Disterhoft, J.F. (1990). Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behavioral Neuroscience, 104, 243–252.

    Article  PubMed  Google Scholar 

  • Nordholm, A.F., Thompson, J.K., Dersarkissian, C., & Thompson, R.F. (1993). Lidocaine infusion in a critical region of cerebellum completely prevents learning of the conditioned eyeblink response. Behavioral Neuroscience, 107, 882–886.

    Article  PubMed  Google Scholar 

  • Offermanns, S., Hashimoto, K., Watanabe, M., Sun, W., Kurihara, H., Thompson, R.F., Inoue, Y., Kano, M., & Simon, M.I. (1997). Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Galphaq. Proceedings of the National Academy of Sciences, (USA), 94, 14089–14094.

    Article  Google Scholar 

  • Patterson, M.M., Cegavske, C.F., & Thompson, R.F. (1973). Effects of a classical conditioning paradigm on hind-limb flexor nerve response in immobilized spinal cats. Journal of Cormparative & Physiological Psychology, 84, 88–97.

    Google Scholar 

  • Perrett, S.P., & Mauk, M.D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.

    PubMed  Google Scholar 

  • Qiao, X., Chen, L., Gao, H., Bao, S., Hefti, F., Thompson, R.F., & Knusel, B.(1998). Cerebellar brain-derived neurotrophic factor-TrkB defect associated with impairment of eyeblink conditioning in Stargazer mutant mice. Journal of Neuroscience, 18, 6990–6999.

    PubMed  Google Scholar 

  • Roemer, R.A., Teyler, T.J., & Thompson, R.F. (1974). Conditioning of the pyramidal response in unanesthetized cat. Physiological Psychology, 2, 435–440.

    Google Scholar 

  • Rosenfield, M.D., Dovydaitis, A., & Moore, J.W. (1985). Brachium conjunctivum and rubrobulbar tract: Brainstem projections of red nucleus essential for the conditioned nictitating membrane response. Physiology & Behavior, 34, 751–759.

    Article  Google Scholar 

  • Rosenfield, M.E., & Moore, J.W. (1983). Red nucleus lesions disrupt the classically conditioned nictitating membrane response in rabbits. Behavioral Brain Research, 10, 393–398.

    Article  Google Scholar 

  • Schmajuk, N.A., Lamoureux, J.A., & Holland, P.C.(1998). Occasion setting: a neural network approach. Psychological Review, 105, 3–32.

    Article  PubMed  Google Scholar 

  • Schmaltz, L.W., & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). Journal of Compararive and Physiological Psychology, 29, 328–333.

    Google Scholar 

  • Schneiderman, N., Fuentes, I., & Gormezano, I. (1962). Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science, 136, 650–652.

    PubMed  Google Scholar 

  • Schreurs, B.G., & Kehoe, E.J. (1987). Cross-modal transfer as a function of initial training level in classical conditioning with the rabbit. Animal Learning and Behavior, 15, 47–54.

    Google Scholar 

  • Sears, L.L., & Steinmetz, J.E. (1991). Dorsal accessory inferior oliveactivity diminishes duringacquisition of the rabbit classically conditioned eyelid response. Brain Research, 545, 114–122.

    Article  PubMed  Google Scholar 

  • Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J.J., Wakatsuki, H., Fujisaki, T., Fujimoto, K., Katoh, A., Lkeda, T., Chen, C., Thompson, R.F., & Itohara, S. (1996). Deficient cerebellarlong-tern depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron, 16, 587–599.

    Article  PubMed  Google Scholar 

  • Shih, J.C., & Thompson, R.F. (1999). Monomine oxidase in neuropsychiatry and behavior. American Journal of Human Genetics, 65, 593–598.

    PubMed  Google Scholar 

  • Shinkman, P.G., Swain, R.A., & Thompson, R.F. (1996). Classical conditioning with electrical stimulation of cerebellum as both conditioned and unconditioned stimulus. Behavioral Neuroscience, 110, 914–921.

    Article  PubMed  Google Scholar 

  • Skelton, R.W. (1988). Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats. Behavioral Neuroscience, 102, 586–590.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Lewis, J.L., LoTurco, J., Steinmetz, J.E., & Thompson, R.F. (1986b). The role of the middle cerebellar peduncle in acquisition and retention of the rabbit’s classically conditioned nictitating membrane response. Bulletin of the Psychonomic Society, 241, 75–78.

    Google Scholar 

  • Solomon, P.R., Groccia-Ellison, M.E., Flynn, D., Mirak, J., Edwards, K.R., Dunehew, A., & Stanton, M. E. (1993). Disruption of human eyeblink conditioning after central cholinergic blockade with scopolamine. Behavioral Neuroscience, 107, 271–279.

    Article  PubMed  Google Scholar 

  • Solomon, P.R., Levine, E., Bein, T., & Pendlebury, W.W. (1991). Disruption of classical conditioning in patients with Alzheimer’s disease. Neurobiology ofAging, 12, 283–287.

    Google Scholar 

  • Solomon, P.R., Pomerleau, D., Bennett, L., James, J., & Morse, D.L. (1989). Acquisition of the classically conditioned eyeblink response in humans over the life span. Psychology of Aging, 4, 34–41.

    Google Scholar 

  • Solomon, P.R., Solomon, S.D., Schaaf, E.V., & Perry, H.E. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science, 220, 329–331.

    PubMed  Google Scholar 

  • Solomon, P.R., Vander Schaaf, E.R., Thompson, R.F., & Weisz, D.J. (1986a). Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behavioral Neuroscience, 100, 729–744.

    Article  PubMed  Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., Ivkovich, D., Logan, C.G., & Thompson, R.F. (1992). Disruption of classical eyelid conditioning after cerebellar lesions: damage to a memory trace system or a simple performance deficit? Journal of Neuroscience, 12, 4403–4426.

    PubMed  Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., & Thompson, R.F. (1985). Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus. Bulletin of the Psychonomic Society, 23, 245–248.

    Google Scholar 

  • Steinmetz, J.E., Lavond, D.G., & Thompson, R.F. (1989). Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse, 3, 225–233.

    Article  PubMed  Google Scholar 

  • Steinmetz, J.E., Logan, C.G., Rosen, D.J., Thompson, J.K., Lavond, D.G., & Thompson, R.F. (1987). Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid Conditioning. Proceedings of the National Academy of Sciences, (USA), 84, 3531–3535.

    Google Scholar 

  • Steinmetz, J.E., McCormick, D.A., Baier, C.A., & Thompson, R.F. (1984). Involvement of the inferior olive in classical conditioning of the rabbit eyelid. Neuroscience Abstracts, 10, 122.

    Google Scholar 

  • Steinmetz, J.E., Rosen, D.J., Chapman, P.F., Lavond, D.G., & Thompson, R.F. (1986). Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS: I. Pontine nuclei and middle cerebellar peduncle stimulation. Behavioral Neuroscience, 100, 878–887.

    Article  PubMed  Google Scholar 

  • Swain, R.A., Shinkman, P.G. Thompson, J.K., Grethe, J.S. & Thompson, R.F. (1999). Essential neuronal pathways for reflex and conditioned response initiation in an intracerebellar stimulation paradigm. Neurobiology of Learning & Memory, 71, 167–193.

    Google Scholar 

  • Swain, R.A., Shinkman, P.G., Nordholm, A.F., & Thompson, R.F. (1992). Cerebellar stimulation as an unconditioned stimulus in classical Conditioning. Behavioral Neuroscience, 106, 739–750.

    Article  PubMed  Google Scholar 

  • Thompson, R.F. (1989). Role of inferior olive in classical conditioning. In P. Strata (Ed.). The Olivocerebellar System in Motor Control, (pp. 347–362). New York: Springer-Verlag.

    Google Scholar 

  • Thompson, R.F. (1990). Neural mechanisms of classical conditioning in mammals. Philosophical Transactions of the Royal Society of London, B, 329, 161–170.

    Google Scholar 

  • Thompson, R.F., Berger, T.W., Cegavske, C.F., Patterson, M.M., Roemer, R.A., Teyler, T.J., & Young, R.A. (1976). The search for the engram. American Psychologist, 31, 209–227

    Article  PubMed  Google Scholar 

  • Thompson, R.F., & Kim, J.J. (1996). Memory systems in the brain and localization of a memory. Proceedings of the National Academy of Sciences, (USA), 93, 13438–13444.

    Article  Google Scholar 

  • Thompson, R.F., & Krupa, D.J. (1994). Organization of memory traces in the mammalian brain. Annual Review of Neuroscience, 17, 519–549.

    Article  PubMed  Google Scholar 

  • Thompson, R.F., Thompson, J.K., Kim, J.J., Krupa, D.J., & Shinkman, P.G. (1998). The nature of reinforcement in cerebellar learning. Neurobiology of Learning & Memory, 70, 150–176.

    Article  Google Scholar 

  • Thompson, R.F. & Spencer, W.A. (1966). Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 16–43.

    PubMed  Google Scholar 

  • Thompson, R.F. Swain, R., Clark, R., & Shinkman, P.S. (In press). Intracerebellar conditioning — Brogden and Gantt revisited. Behavioral Brain Research.

    Google Scholar 

  • Wagner, A.R. (1981). SOP: A model of automatic memory processing in animal behavior. In N. E. Spear & R. R. Miller (Eds.). Information Processing in Animals: Memory Mechanisms, (pp. 5–47). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R. (1999). Award for distinguished scientific contributions. American Psychologist, 54, 887–890.

    Google Scholar 

  • Wagner, A.R., & Brandon, S.E. (1989). Evolution of a structured connectionist model of Pavlovian conditioning (ÆSOP). In S.B. Klein & R.R. Mowrer (Eds.). Contemporary Learning Theories: Pavlovian Conditioning and the Status of Traditional Learning Theories, (pp. 149–189). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R., & Donegan, N. (1989). Some relationships between a computational model (SOP) and an essential neural circuit for Pavlovian (rabbit eyeblink) conditioning. In R.D. Hawkins & G.H. Bower (Eds.). Computational Models of Learning in Simple Neural Systems: The Psychology of Learning and Motivation, (Vol. 23, pp. 157–203). New York: Academic Press.

    Google Scholar 

  • Weiskrantz, L., & Warrington, E.K. (1979). Conditioning in amnesic patients. Neuropsychologia, 17, 187–194.

    Article  PubMed  Google Scholar 

  • Weisz, D.J. & LoTurco, J.J. (1988). Reflex facilitation of the nictitating membrane response remains after cerebellar lesions. Behavioral Neuroscience, 102, 203–209.

    Article  PubMed  Google Scholar 

  • Welsh, J.P. (1987). The effect of nucleus interpositus lesions on retention of the rabbit’s classically conditioned nictitating membrane response. MA Thesis, University of Iowa, Iowa City.

    Google Scholar 

  • Welsh, J.P., & Harvey, J.A. (1989). Cerebellar lesions and the nictitating membrane reflex: Performance deficits of the conditioned and unconditioned response. Journal of Neuroscience, 9, 299–311.

    PubMed  Google Scholar 

  • Welsh, J.P., & Harvey, J.A. (1991). Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. Journal Physiology, (London), 444, 459–80.

    Google Scholar 

  • Woodruff-Pak, D.S., Finkbiner, R.G., & Sasse, D.K. (1990). Eyeblink conditioning discriminates Alzheimer’s patients from non-demented aged. Neuroreport, 1, 45–48.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., Logan, C.G., & Thompson, R.F. (1987). Classical conditioningin 3-, 30-, and 45-month-old rabbits: behavioral learning and hippocampal unit activity. Neurobiology of Aging, 8, 101–108.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Lavond, D.G., & Thompson, R.F. (1985). Trace conditioning: Abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Research, 348, 249–260.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D.S., Steinmetz, J.E., & Thompson, R.F. (1988). Classical conditioning of rabbits 2-1/2 to 4 years old using mossy fiber stimulation as a CS. Neurobiology of Aging, 9, 187–193.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., & Thompson, R.F. (1985). Classical conditioning of the eyelid response in rabbits as a model system for the study of brain mechanisms of learning and memory in aging. Experimental Aging Research, 11, 109–122.

    PubMed  Google Scholar 

  • Woodruff-Pak, D.S., & Thompson, R.F. (1988). Classical conditioning of the eyeblink response in the delay paradigm in adults aged 18–83 years. Psychology of Aging, 3, 219–229.

    Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1985a). Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Experimental Brain Research, 60, 87–98.

    Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1985b). Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Experimental Brain Research, 60, 99–113.

    Google Scholar 

  • Yeo, C.H., Hardiman, M.J., & Glickstein, M. (1986). Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Experimental Brain Research, 63, 81–92.

    Article  Google Scholar 

  • Young, R.A., Cegavske, C.F., & Thompson, R.F. (1976). Tone-induced changes in excitability of abducens motoneurons and of the reflex path of nictitating membrane response in rabbit (Oryctolagus cuniculus). Journal of Comparative & Physiological Psychology, 90, 424–434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Thompson, R.F. (2002). Discovering the Brain Substrates of Eyeblink Classical Conditioning. In: Woodruff-Pak, D.S., Steinmetz, J.E. (eds) Eyeblink Classical Conditioning: Volume 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-46897-2_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46897-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7863-1

  • Online ISBN: 978-0-306-46897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics