Skip to main content

Conclusions

In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, A. (1983) Life in cold water: the physiological ecology of polar marine ectotherms, Oceanogr. Mar. Biol. Ann. Rev. 21, 341–453.

    Google Scholar 

  2. Morita, R. Y. (1975) Psychrophilic bacteria, Bacteriol. Rev. 39, 144–167.

    Google Scholar 

  3. Mohr, P. W. and Krawiec, S. (1980) Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles, J. Gen. Microbiol. 121, 31 1–317.

    Google Scholar 

  4. Feller, G., Narinx, E., Arpigny, J.-L., Zekhnini, Z., Swings, J. and Gerday, C. (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria, Appl. Microbiol. Biotechnol. 41,477–479.

    Google Scholar 

  5. Yancey, P. H. and Somero, G. N. (1978) Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparent Km values of vertebrate lactate dehydrogenases, J. Comp. Physiol. B. 125, 129–134.

    Google Scholar 

  6. Somero, G. N. (1981) pH-temperature interactions on proteins: principles of optimal pH and buffer system design, Mar. Biol. Lett. 2, 163–178.

    Google Scholar 

  7. Privalov, P. L. (1990) Cold denaturation of proteins, Crit. Rev. Biochem. Mol. Biol. 25,281–305.

    Google Scholar 

  8. Creighton, T. E. (1991) Stability offolded conformations, Curr Opin. Struct. Biol. 1, 5–16.

    Google Scholar 

  9. Makhatadze, G. 1. and Privalov, P. L. (1995) Energetics of protein structure, Adv. Protein. Chem. 47, 307–425

    Google Scholar 

  10. Adams, M. W. (1993) Enzymes and proteins from organisms that grow near and above 100 degrees C, Annu. Rev. Microbiol. 47, 627–658.

    Google Scholar 

  11. Pennisi, E. (1997) In industry, extremophiles begin to make their mark, Science. 276, 705–706.

    Google Scholar 

  12. Stetter, K. O., Fiala, G., Huber, G., Huber, R. and Segerer, G. (1990) Hyperthermophilic microorganisms, FEMS Microbiol. Rev. 75, 117–124.

    Google Scholar 

  13. Stetter, K. 0. (1999) Extremophiles and their adaptation to hot environments, FEBS Lett. 452,22–25.

    Article  Google Scholar 

  14. Gerday, C., Aittaleb, M., Bentahier, M., Chessa, J. P., Claverie, P., Collins, T., D’Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M.-A. and Feller, G. (2000) Cold-adapted enzymes: from fundamentals to biotechnology, Trends Biotechnol. 18, 103–107.

    Article  Google Scholar 

  15. Margesin, R. and Schinner, F. (1999) Biotechnological applications of cold-adapted organisms, Springer-Verlag, Heidelberg.

    Google Scholar 

  16. Gilichinsky, D. and Wagener, S. (1995) Microbial life in permafrost. A historical review, Permafrost Periglacial Pro. 6,243–250.

    Google Scholar 

  17. Bowman, J. P., McCammon, S. A,, Brown, M. V., Nichols, D. S. and McMeekin, T. A. (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice, Appl. Environ. Microbiol. 63, 3068–3078.

    Google Scholar 

  18. Margesin, R. and Schinner, F. (1997) Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils, Appl. Environ. Microbiol. 63, 2660–2664.

    Google Scholar 

  19. Morita, Y., Nakamura, T., Hasan, Q., Murakami, Y., Yokoyama, K. and Tamiya, E. (1997) Cold-active enzymes from cold-adapted bacteria, J. Am. Oil. Chem. Soc. 74,441–444.

    Google Scholar 

  20. Hochachka, P. W. and Somero, G. N. (1984) Temperature adaptation. In: Biochemical adaptations (Hochacka, P. W. and Somero, G. N., eds) pp. 355–449, Princeton University Press, Princeton.

    Google Scholar 

  21. Storey, K. B. and Storey, J. M. (1988) Freeze tolerance in animals, Physiol. Rev. 68,2744.

    Google Scholar 

  22. Jaenicke, R. (1990) Proteins at low temperature, Phil. Trans. R. Soc. Lond 5. 326, 535–553.

    Google Scholar 

  23. Franks, F. (1985) Biophysics and biochemistry at low temperatures, Cambridge University Press, Cambridge.

    Google Scholar 

  24. Mayr, B., Kaplan, T., Lechner, S. and Scherer, S. (1996) Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201, J. Bacteriol. 178,2916–2925.

    Google Scholar 

  25. Berger, F., Morellet, N., Menu, F. and Potier, P. (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globijormis S155, J. Bacteriol. 178,2999–3007.

    Google Scholar 

  26. Phadtare, S., Aha, J. and Inouye, M. (1999) Cold-shock response and cold-shock proteins, Curr. Opin. Microbiol. 2, 175–180.

    Article  Google Scholar 

  27. Ewart, K. V., Lin, Q. and Hew, C. L. (1999) Structure, function and evolution of antifreeze proteins, Cell Mol. Life Sci. 55, 271–283.

    Google Scholar 

  28. Crawford, D. L. and Powers, D. A. (1989) Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus, Proc. Natl. Acad. Sci. U. S. A. 86, 9365–9369.

    ADS  Google Scholar 

  29. Crawford, D. L. and Powers, D. A. (1992) Evolutionary adaptation to different thermal environments via transcriptional regulation, Mol. Biol. Evol. 9, 806–813.

    Google Scholar 

  30. Somero, G. N. (1995) Proteins and temperature, Annu. Rev. Physiol. 57, 43–68.

    Article  Google Scholar 

  31. Baldwin, J. and Hochachka, P. W. (1970) Functional significance of isoenzymes in thermal acclimatisation. Acetylcholinesterase from trout brain, Biochem. J. 116, 883–887.

    Google Scholar 

  32. Jagdale, G. B. and Gordon, R. (1997) Effect of temperature on the activities of glucose-6-phosphate dehydrogenase and hexokinase in entomopathogenic nematodes (Nematoda steinernemutidue), Comp Biochem. Physiol. A Physiol. 118, 1151–1156.

    Google Scholar 

  33. Feller, G., Arpigny, J. L., Narinx, E. and Gerday, C. (1997) Molecular adaptations of enzymes from psychrophilic organisms, Comp. Biochem. Physiol. 118, 495–499.

    Google Scholar 

  34. Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., Garsoux, G., Petrescu, I. and Feller, G. (1997) Psychrophilic enzymes: a thermodynamic challenge, Biochim. Biophys. Acta. 1342, 119–13].

    Google Scholar 

  35. Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., François, J. M., Petrescu, I. and Feller, G. (1999) Cold enzymes: a hot topic. In: Cold adapted organisms: Ecology, Physiology, Enzymology and Molecular Biology (Margessi, R. and Schinner, F., eds) pp. 257–275, Springer-Verlag, Heidelberg.

    Google Scholar 

  36. Russell, N. J. (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles, Extremophiles. 4, 83–90.

    Article  Google Scholar 

  37. Feller, G., Payan, F., Theys, F., Qian, M., Haser, R. and Gerday, C. (1994) Stability and structural analysis of a-amylase from the antarctic psychrophile Alteromonas haloplanctis A23, Eur. J. Biochem. 222,441–444.

    Article  Google Scholar 

  38. Feller, G., Zekhnini, Z., Lamotte-Brasseur, J. and Gerday, C. (1997) Enzymes from cold-adapted microorganisms. The class C b-lactamase from the antarctic psychrophile Psychrobacter immobilis A5, Eur. J. Biochem. 244, 186–191.

    Article  Google Scholar 

  39. Asgeirsson, B. and Bjarnason, J. B. (1991) Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin, Comp. Biochem. Physiol. B. 99, 327–335.

    Google Scholar 

  40. Asgeirsson, B. and Bjarnason, J. B. (1993) Properties of elastase from Atlantic cod, a cold-adapted proteinase, Biochim. Biophys. Acta. 1164, 91–100.

    Google Scholar 

  41. Arpigny, J. L., Lamotte, J. and Gerday, C. (1997) Molecular adaptation to cold of an Antarctic bacterial lipase, J. Mol. Catal. B. 3,29–35.

    Google Scholar 

  42. Choo, D. W., Kurihara, T., Suzuki, T., Soda, K. and Esaki, N. (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B1 1-1: gene cloning and enzyme purification and characterisation, Appl. Environ. Microbiol. 64, 486–491.

    Google Scholar 

  43. Chessa, J.-P., Petrescu, I., Bentahir, M., Van Beeumen, J. and Gerday, C. (2000) Purification, physico-chemical characterisation and sequence of a heat-labile alkaline metaloprotease isolated from a psychrophilic Pseudomonas species, Biochim. Biophys. Acta. In press.

    Google Scholar 

  44. Davail, S., Feller, G., Narinx, E. and Gerday, C. (1994) Cold adaptation of proteins. Purification, characterisation, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41, J. Biol. Chem. 269, 17448–17453.

    Google Scholar 

  45. Narinx, E., Baise, E. and Gerday, C. (1997) Subtilisin from psychrophilic antarctic bacteria: characterisation and site-directed mutagenesis of residues possibly involved in the adaptation to cold, Protein Eng. 10, 1271–1279.

    Google Scholar 

  46. Kristjansson, M. M., Magnusson, 0. T., Gudmundsson, H. M., Alfredsson, G. A. and Matsuzawa, H. (1999) Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species. Comparison with proteinase K and aqualysin I, Eur. J. Biochem. 260,752–760.

    Article  Google Scholar 

  47. Simpson, B. K. and Haard, N. F. (1984) Purification and characterisation of trypsin from the Greenland cod (Gadus ogac). 1. Kinetic and thermodynamic characteristics, Can. J. Biochem. Cell. Biol. 62, 894–900.

    Google Scholar 

  48. Petrescu, I., Lamotte-Brasseur, J., Chessa, J.-P., Ntarima, P., Claeyssens, M., Devreese, M., Marino, G. and Gerday, C. (2000) The xylanase from the psychrophilic yeast Cryptococcus adeliae, Extremophiles In press.

    Google Scholar 

  49. Fersht, A. (1985) Enzyme structure and mechanism, W. H. Freeman and Company, New York.

    Google Scholar 

  50. Fisher, J., Belasco, J. G., Khosla, S. and Knowles, J. R. (1980) b-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin, Biochemistry. 19,2895–2901.

    Article  Google Scholar 

  51. Feller, G., Narinx, E., Arpigny, J.-L., Aittaleb, M., Baise, E., Genicot, S. and Gerday, C. (1996) Enzymes from psychrophilic organisms, FEMS Microbiol. Rev. 18, 189–202.

    Google Scholar 

  52. Tsigos, I., Velonia, K., Smonou, I. and Bouriotis, V. (1998) Purification and characterisation of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123, Eur. J. Biochem. 254, 356–362.

    Article  Google Scholar 

  53. Vckovski, V., Schlatter, D. and Zuber, H. (1990) Structure and function of L-lactate dehydrogenases from thermophilic, mesophilic and psychrophilic bacteria, IX. Identification, isolation and nucleotide sequence of two L-lactate dehydrogenase genes of the psychrophilic bacterium Bacillus psychrosaccharolyticus, Biol. Chem. Hoppe Seyler. 371, 103–110.

    Google Scholar 

  54. Rentier-Delrue, F., Mande, S. C., Moyens, S., Terpstra, P., Mainfroid, V., Goraj, K., Lion, M., Hol, W. 5. and Martial, J. A. (1993) Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences, J. Mol. Biol. 229, 85–93.

    Article  Google Scholar 

  55. Alvarez, M., Zeelen, J. P., Mainfroid, V., Rentier-Delrue, F., Martial, J. A,, Wyns, L., Wierenga, R. K. and Maes, D. (1998) Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties, J. Biol. Chem. 273, 2199–2206.

    Article  Google Scholar 

  56. Ciardiello, M. A,, Camardella, L. and di Prisco, G. (1995) Glucose-6-phosphate dehydrogenase from the blood cells of two antarctic teleosts: correlation with cold adaptation, Biochim. Biophys. Acta. 1250, 76–82.

    Google Scholar 

  57. Gerike, U., Danson, M. J., Russell, N. J. and Hough, D. W. (1997) Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium, strain DS2-3R, Eur. J. Biochem. 248,49–57.

    Article  Google Scholar 

  58. Rina, M., Caufrier, F., Markaki, M., Mavromatis, K., Kokkinidis, M. and Bouriotis, V. (1997) Cloning and characterisation of the gene encoding PspPl methyltransferase from the Antarctic psychrotroph Psychrobacter sp. strain TAI 37. Predicted interactions with DNA and organisation of the variable region, Gene. 197, 353–360.

    Article  Google Scholar 

  59. Schleper, C., Swanson, R. V., Mathur, E. J. and DeLong, E. F. (1997) Characterisation of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum, J. Bacteriol. 179, 7803–7811.

    Google Scholar 

  60. Bentahir, M., Feller, G., Aittaleb, M., Lamotte-Brasseur, J., Himri, T., Chessa, J. P. and Gerday, C. (2000) Structural, kinetic, and calorimetric characterisation of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18, J. Biol. Chem. 275, 11147–11153.

    Article  Google Scholar 

  61. Georlette, D., Jbnsson, Z. O., Van Petegem, F., Chessa, J.-P., Van Beeumen, J., Hubscher, U. and Gerday, C. (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures, Eur. J. Biochem., In press.

    Google Scholar 

  62. Jaenicke, R. (1991) Protein stability and molecular adaptation to extreme conditions, Eur. J Biochem. 202, 715–728.

    Article  Google Scholar 

  63. Jaenicke, R. (1996) Protein folding and association: in vitro studies for self-organisation and targeting in the cell, Curr. Top. Cell. Regul. 34,209–314.

    Google Scholar 

  64. Vieille, C., Burdette, D. S. and Zeikus, J. G. (1996) Thermozymes, Biotechnol. Annu. Rev. 2, 1–83.

    Google Scholar 

  65. Scandurra, R., Consalvi, V., Chiaraluce, R., Politi, L. and Engel, P. C. (1998) Protein thermostability in extremophiles, Biochimie. 80, 933–941

    Article  Google Scholar 

  66. Dill, K. A. (1990) Dominant forces in protein folding, Biochemistry. 29, 7133–7155.

    Article  Google Scholar 

  67. Doig, A. J. and Williams, D. H. (1991) Is the hydrophobic effect stabilising or destabilising in proteins? The contribution of disulphide bonds to protein stability, J. Mol. Biol. 217, 389–398.

    Article  Google Scholar 

  68. Ragone, R. and Colonna, G. (1995) Do globular proteins require some structural peculiarity to best function at high temperatures? J. Am. Chem. Soc. 117, 16–20.

    Article  Google Scholar 

  69. Makhatadze, G. I. and Privalov, P. L. (1994) Hydration effects in protein unfolding, Biophys. Chem. 51, 291–309.

    Article  Google Scholar 

  70. Pace, C. N., Shirley, B. A,, McNutt, M. and Gajiwala, K. (1996) Forces contributing to the conformational stability of proteins, Faseb J. IO, 75–83.

    Google Scholar 

  71. Zavodszky, P., Kardos, J., Svingor and Petsko, G. A. (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins, Proc. Natl. Acad. Sei. U. S. A. 95, 7406–7411.

    ADS  Google Scholar 

  72. Wrba, A,, Schweiger, A,, Schultes, V., Jaenicke, R. and Zavodsky, P. (1990) Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotogu maritima, Biochemistry. 29, 7584–7592.

    Article  Google Scholar 

  73. Jaenicke, R. and Zavodszky, P. (1990) Proteins under extreme physical conditions, FEBS Lett. 268, 344–349.

    Article  Google Scholar 

  74. Vihinen, M. (1987) Relationship of protein flexibility to thermostability, Protein Eng. 1,477–480.

    Google Scholar 

  75. Shoichet, B. K., Baase, W. A,, Kuroki, R. and Matthews, B. W. (1995) A relationship between protein stability and protein function, Proc. Natl. Acad. Sei. U. S. A. 92,452–456.

    ADS  Google Scholar 

  76. Van den Burg, B., Vriend, G., Veltman, O. R., Venema, G. and Eijsink, V. G. (1998) Engineering an enzyme to resist boiling, Proc. Natl. Acad. Sei. U. S. A. 95,2056–2060.

    ADS  Google Scholar 

  77. Giver, L., Gershenson, A., Freskgard, P.O. and Arnold, F.H. (1998) Directed evolution of a thermostable esterase, Proc. Natl. Acad. Sei. U. S. A. 95, 12809–12813.

    ADS  Google Scholar 

  78. Smalas, A. O., Heimstad, E. S., Hordvik, A,, Willassen, N. P. and Male, R. (1994) Cold adaptation of enzymes: structural comparison between salmon and bovine trypsin, Proteins. 20, 149–166.

    Google Scholar 

  79. Russell, R. J., Gerike, U., Danson, M. J., Hough, D. W. and Taylor, G. L. (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium, Structure. 6, 351–361.

    Article  Google Scholar 

  80. Fields, P. A. and Somero, G. N. (1998) Hot spots in cold adaptation: localised increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes, Proc. Natl. Acad. Sei. U. S. A. 95, 11476–11481.

    ADS  Google Scholar 

  81. Kim, S. Y., Hwang, K. Y., Kim, S. H., Sung, H. C., Han, Y. S. and Cho, Y. J. (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum, J Biol. Chem. 274, 11761–11767.

    Google Scholar 

  82. Fontes, C. M., Hazlewood, G. P., Morag, E., Hall, J., Hirst, B. H. and Gilbert, H. J. (1995) Evidence for a general role for non-catalytic thermostabilising domains in xylanases from thermophilic bacteria, Biochem. J. 307, 151–158.

    Google Scholar 

  83. Feller, G., ďAmico, D. and Gerday, C. (1999) Thermodynamic stability of a cold-active a-amylase from the Antarctic bacterium Alteromonas haloplanctis, Biochemistry 38, 4613–4619.

    Article  Google Scholar 

  84. Goldman, A. (1995) How to make my blood boil, Structure. 3, 1277–1279.

    Article  Google Scholar 

  85. Feller, G., Lonhienne, T., Deroanne, C., Libioulle, C., Van Beeumen, J. and Gerday, C. (1992) Purification, characterisation, and nucleotide sequence of the thermolabile a-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23, J. Biol. Chem. 267, 5217–5221

    Google Scholar 

  86. Genicot, S., Rentier-Delrue, F., Edwards, D., Van Beeumen, J. and Gerday, C. (1996) Trypsin and trypsinogen from an Antarctic fish: molecular basis of cold adaptation, Biochim. Biophys. Acta. 1298, 45–57.

    Google Scholar 

  87. Aittaleb, M., Hubner, R., Lamotte-Brasseur, J. and Gerday, C. (1997) Cold adaptation parameters derived from cDNA sequencing and molecular modelling of elastase from Antarctic fish Notothenia neglecta, Protein Eng. 10,475–477.

    Google Scholar 

  88. Wallon, G., Lovett, S. T., Magyar, C., Svingor, A., Szilagyi, A., Zavodszky, P., Ringe, D. and Petsko, G. A. (1997) Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability, Protein Eng. 10, 665–672.

    Google Scholar 

  89. Thomas, T. and Cavicchioli, R. (1998) Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens, FEBS Lett. 439,281–286.

    Article  Google Scholar 

  90. Berchet, V., Thomas, T., Cavicchioli, R., Russell, N. J. and Gounot, A. M. (2000) Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globijormis SI55, Extrernophiles. 4, 123–130.

    Google Scholar 

  91. Feller, G. and Gerday, C. (1997) Psychrophilic enzymes: molecular basis of cold adaptation, Cell. Mol Life Sci. 53, 830–841.

    Google Scholar 

  92. Matthews, B. W. (1993) Structural and genetic analysis of protein stability, Annu. Rev. Biochem. 62, 139–160.

    Google Scholar 

  93. Arpigny, J. L., Feller, G., Davail, S., Génicot, S., Narinx, E., Zekhnini, Z. and Gerday, C. (1994) Molecular adaptations of enzymes from thermophilic and psychrophilic organisms. In: Adv. Compa. Env. Physi. (Gilles, R., ed.) pp. 269–295, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  94. Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W. and Rees, D. C. (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase, Science, 267, 1463–1469.

    ADS  Google Scholar 

  95. Korndorfer, I., Steipe, B., Huber, R., Tomschy, A. and Jaenicke, R. (1995) The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 Å resolution, J. Mol. Biol. 246, 511–521.

    Google Scholar 

  96. Jaenicke, R., Schurig, H., Beaucamp, N. and Ostendorp, R. (1996) Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotogu maritima, Adv. Protein Chem. 48, 181–269.

    Google Scholar 

  97. Aghajari, N., Feller, G., Gerday, C. and Haser, R. (1996) Crystallisation and preliminary X-ray diffraction studies of a-amylase from the antarctic psychrophile Alteromonas haloplanctis A23, Protein Sci. 5,2128–2129.

    Google Scholar 

  98. Aghajari, N., Feller, G., Gerday, C. and Haser, R. (1998) Structures of the psychrophilic Alteromonas haloplanctis a-amylase give insights into cold adaptation at a molecular level, Structure. 6, 1503–1516.

    Article  Google Scholar 

  99. Aghajari, N., Feller, G., Gerday, C. and Haser, R. (1998) Crystal structures of the psychrophilic a-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor, Protein Sci. 7, 564–572.

    Google Scholar 

  100. Villeret, V., Chessa, J. P., Gerday, C. and Van Beeumen, J. (1997) Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa, Protein Sci. 6,2462–2464.

    Google Scholar 

  101. Yip, K. S., Stillman, T. J., Britton, K. L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A,, Chiaraluce, R. and Consalvi, V. (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures, Structure. 3, 1147–1158.

    Article  Google Scholar 

  102. Lim, J. H., Yu, Y. G., Han, Y. S., Cho, S., Ahn, B. Y., Kim, S. H. and Cho, Y. (1997) The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 Å resolution: structural basis for thermostability, J. Mol. Biol. 270, 259–274.

    Article  Google Scholar 

  103. D’Amico, S., Gerday, C. and Feller, G. (2000) Structural similarities and evolutionary relationships in chloride-dependent a-amylases, Gene, In press.

    Google Scholar 

  104. Marshall, C. J. (1997) Cold-adapted enzymes, Trends Biotechnol. 15, 359–364.

    Article  Google Scholar 

  105. Russell, N. J. (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications, Adv. Biochem. Eng. Biotechnol. 61, 1–21

    Google Scholar 

  106. Cummings, S. P. and Black, G. W. (1999) Polymer hydrolysis in a cold climate, Extremophiles. 3,81–87.

    Article  Google Scholar 

  107. Kobori, H., Sullivan, C. W. and Shizuya, H. (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5’ end labelling of nucleic acids, Proc. Natl. Acad. Sci. U. S. A. 81, 6691–6695.

    ADS  Google Scholar 

  108. Sobek, H., Schmidt, M., Frey, B. and Kaluza, K. (1996) Heat-labile uracil-DNA glycosylase: purification and characterisation, FEBS Lett. 388, 1–4.

    Article  Google Scholar 

  109. Savva, R., McAuley-Hecht, K., Brown, T. and Pearl, L. (1995) The structural basis of specific baseexcision repair by uracil-DNA glycosylase, Nature. 373, 487–493.

    Article  ADS  Google Scholar 

  110. Tutino, L. M., Fontanella, B., Moretti, M. A., Duilio, A,, Sannia, G. and Marino, G. (1999) Plasmids from antarctic bacteria. In: Cold adapted organisms: Ecology, Physiology, Enzymology and Molecular Biology (Margessi, R. and Schinner, F., eds) pp. 335347, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  111. Ohgiya, S., Hoshino, T., Okuyama, H., Tanaka, S. and Ishizaki, K. (1999) Biotechnology of enzymes from cold-adapted organisms. In: Biotechnological applications of cold adapted organisms (Margessi, R. and Schinner, F., eds) pp. 17–34, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  112. Remaut, E., Bliki, C., Iturriza-Gomara, M. and Keymeulen, K. (1999) Development of regulatable expression systems for cloned genes in cold-adapted bacteria. In: Biotechnological applications of cold adapted organisms (Margessi, R. and Schinner, F., eds) pp. 1–16, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  113. Vasina, J. A. and Baneyx, F. (1996) Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA, Appl. Environ. Microbiol. 62, 1444–1447.

    Google Scholar 

  114. Qoronfleh, M. W., Debouck, C. and Keller, J. (1992) Identification and characterisation of novel low-temperature-inducible promoters of Escherichia coli, J. Bacteriol. 174, 7902–7909.

    Google Scholar 

  115. Nichols, D.; Bowman, J., Sanderson, K., Nichols, C. M.: Lewis, T., McMeekin, T. and Nichols, P. D. (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes, Curr. Opin. Biotech. 10,240–246.

    Google Scholar 

  116. Okuyama, H., Morita, N. and Yumoto, 1. (1999) Cold-adapted microorganisms for use in food biotechnology. In: Biotechnological applications of cold adapted organisms (Margessi, R. and Schinner, F., eds) pp. 101–115, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  117. Brown, M. R., Barrett, S. M., Volkman, J. K., Nearhos, S. P., Nell, J. A. and Allan, G. L. (1996) Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture, Aquaculture. 143, 341–360.

    Article  Google Scholar 

  118. Bowman, J. P., McCammon, S. A,, Nichols, D. S., Skerratt, J. H., Rea, S. M., Nichols, P. D. and McMeekin, T. A. (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction, Int. J. Syst. Bacteriol. 47, 1040–1047.

    Google Scholar 

  119. Bowman, J. P., Gosink, J. J., McCammon, S. A,, Lewis, T. E., Nichols, D. S., Nichols, P. D., Skerratt, J. H., Staley, J. T. and McMeekin, T. A. (1998) Cohwellia demingiae sp. nov., Colwellia hornerae sp. nov.,Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesise docosahexaenoic acid (22:6 omega 3), Int. J. Syst. Bacteriol. 48, 1171–1180.

    Google Scholar 

  120. Karl, D. M. (1992) The grounding of Bahia Paraiso: microbiology of the 1989 Antarctic oil spill,. Microbial. Ecol. 24, 170–189.

    Article  Google Scholar 

  121. Delille, D., Basséres, A. and Dessommes, A. (1997) Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil, Microb. Ecol. 33,97–105.

    Article  Google Scholar 

  122. Cavanagh, J. E., Nichols, P. D., Franzmann, P. D. and McMeekin, T. A. (1998) Hydrocarbon degradation by Antarctic coastal bacteria, Antarct. Sci. 10, 386–397.

    Google Scholar 

  123. Margesin, R. and Schinner, F. (1997) Laboratory bioremediation experiments with soil from a dieseloil contaminated site. Significant role of cold-adapted microorganisms and fertilisers, J. Chem. Technol. Biotechnol. 70, 92–98.

    Article  Google Scholar 

  124. Margesin, R. and Schinner, F. (1998) Oil biodegradation potential in alpine habitats, Arctic Alpine Res. 30,262–265.

    Google Scholar 

  125. Master, E. R. and Mohn, W. W. (1998) Psychrotolerant bacteria isolated from arctic soil that degrade polychlorinated biphenyls at low temperatures, Appl. Environ. Microbiol. 64, 4823–4829.

    Google Scholar 

  126. Timmis, K. N. and Pieper, D. H. (1999) Bacteria designed for bioremediation, Trends Biotechnol. 17, 200–204.

    Article  Google Scholar 

  127. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling, Electrophoresis. 18, 2714–2723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Georlette, D. et al. (2001). Cold-Adapted Enzymes. In: De Cuyper, M., Bulte, J.W.M. (eds) Physics and Chemistry Basis of Biotechnology. Focus on Biotechnology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46891-3_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46891-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7091-8

  • Online ISBN: 978-0-306-46891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics