Skip to main content

Rational Design of P450 Enzymes for Biotechnology

  • Chapter
Physics and Chemistry Basis of Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 7))

Abstract

Nanobiotechnology is a novel field where bio-molecules are assembled on devices for exploitation in bio-analytical applications. The increased understanding of the structure-function relationship of redox proteins and enzymes combined with the progress made in protein engineering, molecular spectroscopy and structural biology allows today the possibility of creating genetically engineered proteins/enzymes to be used in arrays for high-through-put screening.

This paper reports on the use of small and well characterised electron transfer proteins/enzymes, suchasflavodoxin, cytochrome c 553 and cytochrome P450 as modules to design and construct covalently linked, artificial electron transfer chains. Functional characterisation of these molecular wires will increase our understanding on the structure-function relationships in electron transfer systems. This approach has been named “molecular lego”, and its application to cytochromes P450, an important class of enzymes responsible for the metabolism of a large number of drugs and xenobiotics, is particularly relevant to biotechnology.An efficient,artificialelectron transfer chain was obtained by fusing the flavodoxin from D. vulgaris and the soluble haem domain of cytochrome P450 from B. megaterium. Moving to a higher level of complexity, the scaffold of this soluble enzyme was also used to insert the key structural and functional elements of the human cytochrome P450 2E1. The chimeric protein containing the fused bacterial and human domains was successfully engineered. Finally, a method designed to identify active P450 mutants to be used for the assembly of arrays with different activity/specificity is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature, 402, 47–51.

    ADS  Google Scholar 

  2. .Beratan, D. N., and Onuchic, J. N. (1996) The protein bridge between redox centres in Protein electron transfer (Bendall, D. S., ed), pp. 23–42, BIOS scientific publishers Ltd., Oxford.

    Google Scholar 

  3. Canters, G. W., and Van de Kamp, M. (1992) Protein-mediated electron transfer. Curr. Opin. Struc. Bioi., 2, 859–869.

    Google Scholar 

  4. Hill, H. A. 0. (1996) The development of bioelectrochemistry. Coord. Chem. Rev., 151, 115–123.

    Google Scholar 

  5. Willner, I., Katz, E., and Willner, B. (1997) Electrical contact ofredox enzyme layers associated with electrodes: routes to amperometric biosensors. Electroanalysis, 9(13), 965–977.

    Article  Google Scholar 

  6. Anne. A,, Blanc, B., Moiroux, J., and Saveant, J. M. (1998) Facile derivatisation of glassy carbon surfaces by N-hydroxysuccinimide esters in view of attaching biomolecules. Langmuir, 14(9), 2368–2371.

    Article  Google Scholar 

  7. Heering, H. A,, Hirst, J., and Armstrong, F. A. (1998) Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J. Phys. Gem. B, 102(35), 6889–6902.

    Google Scholar 

  8. Poulos, T. L. (1995) Cytochrome P450. Curr. Upin. Struct. Bioi., 5,767–774.

    Google Scholar 

  9. Kellner, D. G., Maves, S. A,, and Sligar, S. G. (1997) Engineering cytochrome P450s for bioremediation. Curr. Upin. Biotech., 8(3), 274–278.

    Google Scholar 

  10. DiGleria, K., Nickerson, D. P., Hill, H. A. O., Woiig, L. L., and Fulop, V. (1998) Covalent attachment of an electroactive sulfhydryl reagent in the active site of cytochrome P450(cam) as revealed by the crystal structure of the modified protein. J. Am. Chem Soc., 120(1), 46–52.

    Article  Google Scholar 

  11. Kurz, A,, Halliwell, C. M., Davis, J. J., Hill, H. A. O., and Canters, G. W. (1998) A fulleréne-modified protein. J. Chem. Soc., Chem. Commun., 1,433–434.

    Google Scholar 

  12. Willner, I., Heleng-Shabtai, V., Katz, E., Rau, H. K., and Haehnel, W. (1999) Integration of a reconstituted de Novo synthesised haemoprotein and native metalloproteins with electrode supports for bioelectronic and bioelectrocatalytic applications. J. Am. Chem Soc., 121, 6455–6468.

    Article  Google Scholar 

  13. Arnold, F. H., Volkov, A.A. (1999) Directed evolution of biocatalysts. Curr. Opin. Chem. Biol, 3, 54–59.

    Article  Google Scholar 

  14. Minshull, J., Stemmer, W.P.C. (1999) Protein evolution by molecular breeding. Curr. Upin. Chem. Biol., 3,284–290.

    Google Scholar 

  15. Bendall, D. S. (1996) Protein Electron Transfer (Bendall, D. S., Ed.), BIOS Scientific Publishers Ltd., Oxford, England.

    Google Scholar 

  16. Davidson, V. L. (1996) Unravelling the kinetic complexity of inter-protein electron transfer reactions. Biochemistry, 35(45), 14035–14039.

    Article  Google Scholar 

  17. Koppenol, W. H., and Margoliash, E. (1982) The asymmetric distribution of charges on the surface of horse cytochrome c. J. Bioi. Chem., 257,4426–4437.

    Google Scholar 

  18. Margoliash, E., and Bossard, H. R. (1983) Guided by electrostatics, a textbook protein comes of age. Trends Biochem. Sci., 8,316–320.

    Article  Google Scholar 

  19. Roberts, V. A,, Freeman, H. C., Olson, A. J., Tainer, J. A,, and Getzoff, E. D. (1991) Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c. J. Bioi. Chem., 266, 13431–13441.

    Google Scholar 

  20. Marcus, R. A,, and Sutin, N. (1985) Electron transfers in chemistry and biology. Biochim. Biophys. Acta, 811,265–322.

    Google Scholar 

  21. Hoffman, B. M., and Ratner, M. A. (1987) Gated electron transfer: when are observed rates controlled by conformational interconversion. J. Am. Chem. Soc., 109,6237–6243

    Article  Google Scholar 

  22. Nocek, J. M., Stemp, E. D. A,, Finnegan, M. G., Koshy, T. I., Johnson, M. K., Margoliash; E., Mauk, A. G., Smith, M., and Hoffman, B. M. (1991) Low-temperature, cooperative conformational transition within Zn-cytochrome-c peroxidase, cytochrome-c. complexes-variation with cytochrome. J. Am. Chem. Soc., 113,6822–6831.

    Article  Google Scholar 

  23. Feitelson, J., and McLendon, G. (1991) Migration of small molecules through the structure of haemoglobin: Evidence for gating in a protein electron-transfer reaction. Biochem., 30, 5051–5055.

    Google Scholar 

  24. Ivkovic-Jensen, M. M., Ullmann, G. M., Young, S., Hansson, O., Crnogorac, M. M., Ejdeback, M., and Kostic, N. (1998) Effects of single and double mutatins in plastocyanin on the rate constant and activation parameters for the rearrangement gating the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin. Biochem., 37,9557–9569.

    Google Scholar 

  25. Walker, M. C., and Tollin, G. (1992) Laser flash photolysis study of the kinetics of electron transfer reactions of flavocytochrome b2 from Hansenula anomala: Further evidence for intramolecular electron transfer mediated by ligand binding. Biochem., 31,2798–2805.

    Google Scholar 

  26. Sullivan, E. P. J., Hazzard, T. J., Tollin, G., and Enemark, J. H. (1992) Inhibition of intramolecular electron transfer in sulphite oxidase by anion binding. J, Am. Chem. Soc., 114,9662–9663.

    Article  Google Scholar 

  27. Adir, N., Axelrod, H. L., Beroza, P., Isaacson. R. A,. Rongey, S. H., Okamura, M. Y., and Feher, G. (1996) Co-crystallisation and characterisation of the photosynthetic reaction centre-cytochrome c(2) complex from Rhodobacter sphaeroides. Biochem.. 35(8), 2535–2547.

    Google Scholar 

  28. Pelletier, H., and Kraut, J. (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science. 258, 1748–1755.

    ADS  Google Scholar 

  29. Chen, L., Durley, R. C. E., Mathews, F. S., and Davidson, V. L. (1994) Structure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c-555i. Science, 264, 86–90.

    ADS  Google Scholar 

  30. Ubbink, M., Ejdeback, M., Karlsson, B. G., and Bendall. D. S. (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure, 6(3), 323–335.

    Article  Google Scholar 

  31. Moser, C. C., and Dutton, P. L. (1988) Cytochrome c and c2binding dynamics and electron transfer with photosynthetic reaction centre protein and other integral membrane redox proteins. Biochem., 27, 2450–2461

    Google Scholar 

  32. Zhou, J. S., and Hoffman, B. M. (1994) Stern-volmer in reverse: 211 stoichiometry of the cytochrome c-cytochrome c peroxidase electron transfer complex. Science, 265, 1693–1696.

    ADS  Google Scholar 

  33. Peerey, L. M., Brothers, H. M., Hazzard, J. T., Tollin, G., and Kostic, N. M. (1991) Unimolecular and bimolecular oxidoreduction reactions involving diprotein complexes of cytochrome c and plastocyanin. Dependence of electron-transfer reactivity on charge and orientation of the docked metalloproteins. Biochem., 30,9297–9304.

    Google Scholar 

  34. Weber, P. C., and Tollin, G. (1985) Electrostatic interactions during electron transfer reactions between C-type cytochromes and flavodoxin. J Biol Chem.: 260, 5568–5573.

    Google Scholar 

  35. Stewart, D. E., LeGall, J., Moura, I., Moura, J. J. G., Peck, H. D. J., Xavier, A. V., Weiner, P. K., and Wampler, J. E. (1988) A hypothetical model of the flavodoxin tetrahaeme cytochrome-C3 complex of sulphate-reducing bacteria. Biochem. 27,2444–2450.

    Google Scholar 

  36. Poulos, T. L., and Mauk, A. G. (1983) Models for the complexes formed between cytochrome b5 and the subunits of methaemoglobin. J Biol. Chem., 258, 7369–7373.

    Google Scholar 

  37. Stayton, P. S., Poulos, T. L., and Sligar, S. G. (1989) Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam electron-transfer complex. Biochem. 28, 8201–8205.

    Google Scholar 

  38. Geren, L., Tuls, J., O’Brien, P., Millett, F.. and Peterson, J. A. (1986) The involvement of carboxylate groups of putidaredoxin in the reaction with putidaredoxin reductase. J. Biol. Chem., 261, 15491–15495.

    Google Scholar 

  39. Roitberg, A. E., Holden, M. J., Mayhew, M. P., Kurnikov, I. V., Beratan, D. N., and Vilker, V. L. (1998) Binding and electron transfer between putidaredoxin and cytochrome P45Ocam. Theory and experiments. J. Am. Chem. Soc., 120,8927–8932.

    Article  Google Scholar 

  40. Tegoni, M., White, S. A., Roussel, A., Mathews, F. S., and Cambillau, C. (1993) A hypothetical complex between crystalline flavocytochrome b2 and cytochrome c. Proteins: Struct. Funct. Genet., 16,408–422.

    Google Scholar 

  41. Cunha, C. A., Romao, M. J., Sadeghi, S. J., Valetti, F., Gilardi, G., and Soares, C. M. (1999) Effects of protein-protein interactions on electron transfer: docking and electron transfer calculations for complexes between flavodoxin and C-type cytochromes. J. Biol. Inorg. Chem., 4, 360–374.

    Google Scholar 

  42. Ruckpaul, K., Rein, H, and Blanck, J. (1989) Regulation mechanisms of the activity of the hepatic endoplasmic cytochrome P-450 in Basis and mechanisms of regulation of cytochrome P-450 (Ruckpaul, K., Rein, H., ed) Vol. 1, pp. 6–29, Taylor and Francis.

    Google Scholar 

  43. Guengerich, F. P. (1990) Enzymatic oxidation of xenobiotic chemicals. Crit. Rev. Biochem. Mol. Biol., 25(2), 97–153.

    Google Scholar 

  44. Halkier, B. A. (1996) Catalytic reactivities and structure/function relationships of cytochrome P450 enzymes. Phytochemistry, 43(1), 1–21.

    Article  Google Scholar 

  45. Poulos, T. L., Finzel, B.C., and Howard, A.J. (1987) High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol., 195,687–700.

    Article  Google Scholar 

  46. Ravichandran, K. G., Boddupalli, S.S., Hasemann, C.A., Peterson, J.A., and Deisenhofer, J. (1993) Crystal structure of haemoprotein domain of P450BM-3, a prototype for microsomal P450s. Science, 261, 731–736.

    ADS  Google Scholar 

  47. Cupp-Vickery, J. R., and Poulos, T.L. (1995) Structure of cytochrome P450eryf involved in erythromycin biosynthesis. Nat. Struct. Biol., 2, 144–153.

    Article  Google Scholar 

  48. Hasemann, C. A,, Ravichandran, K.G., Peterson, J.A., and Deisenfofer, J. (1994) Crystal structure and refinement of cytochrome P450terp at 2.3 Å resolution. J. Mol. Biol., 236, 1169–1185.

    Article  Google Scholar 

  49. Park, S. Y., Shimizu, H., Adachi, S., Nakagawa, A,, Tanaka, l., Nakahara, K., Shoun, H., Obayashi, E., Nakamura, H., Iizuka, T., and Shiro, Y. (1997) Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum. Nat. Struct. Biol., 4, 827–832.

    Article  Google Scholar 

  50. Williams, P. A., Cosme, J., Sridhar, V., Johnson E.F., and McRee, D.E. (2000) Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol. Cell., 5, 121–131.

    Article  Google Scholar 

  51. Graham, S. E., and Peterson, J.A. (1999) How similar are P450s and what can their differences teach us? Arch. Biochem. Biophys., 369(1), 24–29.

    Article  Google Scholar 

  52. Estabrook, R. W., Hildebrandt, A.G., Remmer, H., Schenkman, J.B., Rosenthal, O., and Cooper, D.Y. (1968) Role of cytochrome P-450 in microsomal mixed function oxidation reactions in Biochemie des Sauerstoffs (Hess, B., Staudinger, H., ed), pp. 142–177, Springer-Verlag, Berlin.

    Google Scholar 

  53. White, R. E,, and Coon, M.J. (1980) Oxygen activation by cytochrome P-450. Annu. Rev. Biochem., 49,3 15–356.

    Google Scholar 

  54. Daff, S. N., Chapman, S.K., Turner, K.L., Holt, R.A., Govindaraj, S., Poulos, T.L., and Munro, A.W. (1997) Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry, 36, 13816–13823.

    Article  Google Scholar 

  55. Wong, L.-L. (1998) Cytochrome P450 monooxygenases. Curr. Opin. Chem. Biol., 2, 263–268.

    Article  Google Scholar 

  56. Guengerich, F. P., and Schimada, T. (1998) Activation of procarcinogens by human cytochrome P450 enzymes. Mutat. Res., 400, 201–213.

    Google Scholar 

  57. Capdevila, J. H., Falck, J.R., and Harris, R.C. (2000) Cytochrome P450 and archidonic acid bioactivation: molecular and functional properties of the arachidonate monooxygenase. J. Lipid Res., 41(2), 163–181.

    Google Scholar 

  58. Estabrook, R. W., Shet, M.S., Faulkner, K., and Fisher, C.W. (1996) The use of electrochemistry for the synthesis of 17 alpha-hydroxyprogesterone by a fusion protein containing P450c17. Endocr. Res., 22(4), 665–671.

    Google Scholar 

  59. Hamman, M. A,, Thompson, G.A., and Hall, S.D. (1997) Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem. Pharmac., 54(1), 33–41.

    Article  Google Scholar 

  60. Narhi, L. O., and Fulco, A.J. (1986) Characterisation of a catalytically self-sufficient 119,000-Dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol.Chem., 261,7160–7169.

    Google Scholar 

  61. Boddupalli, S. S., Estabrook, W., and Peterson, J.A. (1990) Fatty acid monooxygenation by cytochrome P-450BM3. J. Biol. Chem.: 265,4233–4239.

    Google Scholar 

  62. Nakayama, N., Takemae, A,, and Shoun, H. (1996) Cytochrome P45Ofoxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J. Biochem., 119, 435–440.

    Google Scholar 

  63. Fruetel, J. A., Mackman, R.L., Peterson, J.A., and de Montellano, P.R.O. (1994) Relationship of active site topology to substrate specificity for cytochrome P45Oterp (CYPlO8). J. Biol. Chem., 46, 28815–28821

    Google Scholar 

  64. Alworth, W. L., Xia, Q. W., and Liu, H. M. (1997) Organochlorine substrates and inhibitors of P450 BM-3. FASEB J., 11, SS, P190.

    Google Scholar 

  65. Coon, M. J., McGinnity, D.F., Vaz, A.D.N, Liu. H.M., Mullin, D.A., Sato, H., and Shimizu, T. (1997) Novel substrates for mechanistic studies with cytochrome P450 BM3. FASEB J., 11, SS, 3326.

    Google Scholar 

  66. Darwish, K., Li, H., and Poulos, T.L. (1991) Engineering proteins, subcloning and hyperexpressing oxidoreductase genes. Prot. Engng., 4,701–708.

    Google Scholar 

  67. Lewis, D. F. V. (1995) 3-Dimensional models of’ human and other mammalian microsomal P45Os constructed from an alignment with P450 102 (P450(BM3)). Xenobiotica, 25(4), 333–366.

    Google Scholar 

  68. Chang, Y. T., Stiffelman, O.B., Vakser, I.A., Loew, G.H., Bridges, A,, and Waskell, L. (1997) Construction of a 3D model of cytochrome P450 294. Prot. Engng., 10, 119–129.

    Google Scholar 

  69. Dubois, M., Plaisance, H., Thome, J.P., and Kremers. P. (1996) Hierarchical cluster analysis of environmental pollutants through P450 induction in cultured hepatic cells— Indications for a toxicity screening test. Ecotoxicol. Environm. Safety, 34(3), 205–215.

    Google Scholar 

  70. Harayama, S. (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotech., 8, 268–273.

    Google Scholar 

  71. Alworth, W. L., Mullin, D.A., Xia, Q., Kang, L., Liu, H.-M, and Zhao, W. (1995) A site specific mutant of the bacterial cytochrome-P450-l02(BM-3) possessing a new capability to catalyse the hydroxylation of the polycyclic aromatic hydrocarbons pyrene and benzoapyrene. FASEB J, 9, A1491.

    Google Scholar 

  72. Logan, M. S., Newman, L.M., Schanke, C.A.. and Wackett, L.P. (1993) Cosubstrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P450cam. Biodegradation,4,39–50.

    Article  Google Scholar 

  73. Uotila, J. S., Kitunen, V.H., Saastamoinen, T., Coote, T.: Haggblom, M.M., and Salkinoja-Salonen, M.S. (1992) Characterisation of aromatic dehalogenases of Mycobacterium fortuitum CG-2. J. BacterioL, 174, 5669–5675.

    Google Scholar 

  74. Jones, J. P., O’Hare, E.J.: and Wong, L.-L. (2000) The oxidation of polychlorinated benzenes by genetically engineered cytochrome P450cam: potential applications in biorernediation. Chem. Commun.,3,247–248.

    Google Scholar 

  75. Wackett, L. P. (1995) Recruitment of co-metabolic enzymes for environmental detoxification of organohalides. Environ. Health Perspect., 103,45–48.

    Google Scholar 

  76. WerckReichhart, D., Hehn, A., and Didierjean. L. (2000) Cytochromes P450 for engineering herbicide tolerance.Trends Plants Sci.,5(3),116–123.

    Google Scholar 

  77. Erhardt, P. W. (1999) Drug metabolism-Databases and high-throughput testing during drug design and development, Published for International Union of Pure and Applied Chemistry by Blackwell Science Ltd, London.

    Google Scholar 

  78. Guengerich, F. P. (1999) Cytochrome P450: regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol., 39, 1–17.

    Article  Google Scholar 

  79. Li, A. P. (1998) The scientific basis of drug-drug interactions: mechanism and pre-clinical evaluation. Drug Info. J., 32, 657–664.

    Google Scholar 

  80. Crespi, C. L., and Miller, V.P. (1999) The use of heterologously expressed drug metabolising enzymes-state of the art and prospects for the future. Pharmacol ther., 84, 121–131.

    Article  Google Scholar 

  81. Rendic, S., and DiCarlo, F.J. (1997) Human cytochrome P450 enzymes: a status report summarising their reactions, substrates, inducers and inhibitors. Drug. Metab. Rev., 29,413–580.

    Google Scholar 

  82. Spatzenegger, M., and Jaeger, W. (1995) Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab. Rev., 27,397–417.

    Google Scholar 

  83. Bertz, R. J., and Cranneman, G.R. (1997) Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet., 32(3), 210–258.

    Google Scholar 

  84. Gillam, E. M. J., Guo, Z., and Guengerich, F.P. (1994) Expression of modified human cytochrome P450 2E1 in Escherichia coli, purification, and spectral and catalytic properties. Arch. Biochem. Biophys., 319, 59–66.

    Google Scholar 

  85. Lieber, C. S. (1997) Cytochrome P-4502E1: Its physiological and pathological role. Physiol. Rev., 77(2), 517–538.

    Google Scholar 

  86. Le Marchand, L., Sivaraman, L., Pierce, L., Seifried, A,, Lum, A., Wikens, L.R., and Lau, A.F. (1998) Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Canc. Res., 58(21), 4858–4863.

    Google Scholar 

  87. Beskin, M. J. (1980) Effect of combined phenylbutazone and ethanol administration on rat liver. Exp. Pathol.,18,487–491.

    Google Scholar 

  88. Sibbesen, O., Devoss, J. J., and Ortiz De Montellano, P. R. (1996) Putidaredoxin reductase-putidaredoxin-cytochrome P450cam triple fusion protein. J. Biol. Chem., 271(37), 22462–22469.

    Google Scholar 

  89. Valetti, F., Sadeghi, S. J., Meharenna, Y. T., Leliveld, S. R., and Gilardi, G. (1988) Engineering multi-domain redox proteins containing flavodoxin as bio-transformer: preparatory studies by rational design. Biosens. Bioelectron., 13,675–685.

    Google Scholar 

  90. Lamb, D. C., Kelly, D. E., Hanley, S. Z., Mehmood, Z., and Kelly, S. L. (1998) Glyphosate is an inhibitor of plant cytochrome P450: Functional expression of Thlaspi arvensae cytochrome P450 71B/reductase fusion protein in Escherichia coli. Biochem. Biophys. Res. Com., 244, 110–114.

    Google Scholar 

  91. Schroder, G., Unterbusch, E., Kaltenbach, M., Schmidt, J., Strack, D., Luca, V. D., and Schroder, J. (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylse.FEBS Lett., 458,97–102.

    Google Scholar 

  92. Shiota, N., Nagasawa, A,, Sakaki, T., Yabusaki, Y., and Ohkawa, H. (1994) Herbicide-Resistant Tobacco Plants Expressing the Fused Enzyme between Rat Cytochrome P4501A1 (CYP1A1) and Yeast NADPH-Cytochrome P450 Oxidoreductase. Plant Physiol., 106, 17–23.

    Article  Google Scholar 

  93. Lacour, T., and Ohkawa, H. (1999) Engineering and biochemical characterisation of the rat microsomal cytochrome P4501Al fused to ferredoxin and ferredoxin-NADP+ reductase from plant chloroplasts. Biochem. Biophys. Acta, 1433,87–102.

    Google Scholar 

  94. Friedberg, T. (2000) Recombinant in vitro tools to predict drug metabolism and safety. PSn, 3(3), 99–105.

    Google Scholar 

  95. Harlow, G. R., and Halpert, J. R. (1996) Mutagenesis study of Asp-290 in cytochrome p450 2B11 using a fusion protein with rat NADPH-cytochrome p450 reductase. Arch. Biochem. Biophys., 326(1), 85–92.

    Article  Google Scholar 

  96. Schet, M. S., Fisher, C. W., Holmans, P. L., and Estabrook, R. W. (1993) Human cytochrome P450 3A4: Enzymatic properties of a purified recombinant fusion protein containing NADPH-P450 reductase. Proc. Natl. Acad. Sci. USA, 90,11748–11752.

    ADS  Google Scholar 

  97. Fisher, C. W., Schet, M. S., Caule, D. L., Martin-Wintrom, C. A,, and Estabrook, R. W. (1992) High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Proc. Natl. Acad Sci. USA, 89, 10817–10821

    ADS  Google Scholar 

  98. Parikh, A., and Guengerich, F. P. (1996) Expression, purification and characterisation of a catalytically active human cytochrome P450 1A2:Rat NADPH-Cytochrome P450 reductase fusion protein. Prot. Exp. Purif., 9,346–354.

    Google Scholar 

  99. Estabrook, R. W., Faulkner, K. M., Shet, M. S., and Fisher, C. W. (1996) Application of Electrochemistry for P450-catalysed reactions. Methods in Enzymology, 272,44–51.

    Google Scholar 

  100. Eddowes, M. J., and Hill, H. A. 0. (1977) A novel method for the investigation of the electrochemistry of metallo proteins: cytochrome c. J. Chem. Soc. Chem. Commun., 3154.

    Google Scholar 

  101. Scouten, W. H., Luong, J. H. T., and Brown, R. S. (1995) Enzyme or protein immobilisation techniques for applications in biosensor design. TIBTECH, 113, 78–184.

    Google Scholar 

  102. Clark, L. C., and Lyons, C. (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 102,29.

    ADS  Google Scholar 

  103. Cass, A. E. G., Davis, G., Francis, G. D., Hill, H. A. O., Aston, W. J., Higgins, I. J., Plotkin, E. V., Scott, L. D. L., and Turner, A. P. F. (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem., 56,667.

    Google Scholar 

  104. Cass, A. E. G., Davis, G., Green, M. J., and Hill, H. A. 0. (1985) Ferricinium ion as an electron— acceptor for oxydo-reductases. J. Electroanal. Chem., 190,117.

    Article  Google Scholar 

  105. Bourdillon, C., Demaille, C., Moiroux, J., and Saveant, J.-M. (1993) New insights into the enzymatic catalysis of the oxidation of glucose by native and recombinant glucose-oxidase mediated by electrochemically generated one-electron redox cosubstrates. J. Am. Chem. Soc., 115,2.

    Google Scholar 

  106. Mor, J. R., and Guamaccia, R. (1977) Assay of glucose using an electrochemical enzymatic sensor. Anal. Biochem., 79,319.

    Article  Google Scholar 

  107. Montagne, M., and Marty, J.-L. (1995) Bioenzyme amperometric D-lactate sensor using macromolecular NAD(+). Anal. Chim. Acta, 315,297.

    Article  Google Scholar 

  108. Hill, H. A. O., and Higgins, I. J. (1981) Oxygen, oxidases, and the essential trace-metals. Philos. Trans. R. Soc. London, 302,267.

    ADS  Google Scholar 

  109. Janda, P., and Weber, J. (1991) Quinone-mediated glucose-oxidase electrode with the enzyme immobilised in polypyrrole. J. Electroanal. Chem., 300, 119.

    Article  Google Scholar 

  110. Foulds, N. C., and Lowe, C. R. (1986) Enzyme entrapment in electrically conducting polymers —immobilisation of glucose-oxidase in polypyrrole and its application in amperometric glucose sensors. J. Chem. Soc. Faraday Trans. I, 82, 1259.

    Article  Google Scholar 

  111. Hintz, M. J., and Peterson, J. A. (1980) The kinetics of reduction of cytochrome P-450cam by the dithionite anion monomer. J Biol. Chem., 255,7317–7325.

    Google Scholar 

  112. Contzen, J., and Jung, C. (1999) Changes in secondary structure and salt links of cytochrome P-450cam induced by photoreduction: A Fourier transform infrared spectroscopic study. Biochem., 38, 16253–16260.

    Google Scholar 

  113. Kazlauskaite, J., Westlake, A. C. G., Wong, L.-L., and Hill, H. A. 0. (1996) Direct electrochemistry of cytochrome P45Ocam. J. Chem. Soc., Chem. Commun.,255,2189–2190.

    Google Scholar 

  114. Zhang, Z., Nassar, A,-E. F., Lu, Z., Schenkman, J. B., and Rusling, J. F. (1997) Direct electron injection from electrodes to cytochrome P450cam in biomembrane-like films. J. Chem. Soc., Faraday Trans., 93(9), 1769–1774.

    Article  Google Scholar 

  115. Lo, K. K.-W., Wong, L.-L., and Hill, H. A. 0. (1999) Surface-modified mutants of cytochrome P450(cam): enzymatic properties and electrochemistry. FEBS Lett.,451,342–346.

    Article  ADS  Google Scholar 

  116. Lvov, Y. M., Lu, Z., Schenkman, J, B., Zu, X., and Rustling, J. F. (1998) Direct electrochemistry of myoglobin and cytochrome P450(carn) in alternate layer-by-layer films with DNA and other polyions. J. Am. Chem. Soc., 120,4073–4080.

    Article  Google Scholar 

  117. Lei, C., Wollenberger, U., Jung, C., and Scheller, F. W. (2000) Clay-bridged electron transfer between cytochrome P45Ocam and electrode. Biochem. Biophys. Res. Commun., 268,740–744.

    Article  Google Scholar 

  118. Dryhurst, G., Kadish, K. M., Scheller, F. W., and Renneberg, R. (1982) Biological electrochemistry, 1, Academic press, New York.

    Google Scholar 

  119. Scheller, F. W., Renneberg, R., Strnad, G., Pommerening, K., and Mohr, P. (1977), Bioelectrochem. Bioenerg., 4(500–507).

    Google Scholar 

  120. Sadeghi, S. J., Meharenna, Y. T., and Gilardi, G. (1999) Flavodoxin as module for transferring electrons to different c-type and P450 cytochromes in artificial redox chains in Flavins and Javoproteins (Ghisla, S., Kroneck, P., Marcheroux, P., and Sund, H., eds), pp. 163–166, R. Weber.

    Google Scholar 

  121. Sadeghi, S. J., Meharenna, Y. T., Fantuzzi, A,, Valetti, F., and Gilardi, G. (2000) Engineering artificial redox chains by molecular lego. J. Chem. Soc., Faraday Dis., 116, 135–153.

    ADS  Google Scholar 

  122. Watkins, J. A,, Cusanovich, M. A., Meyet, T. E., and Tollin, G. (1994) A “parallel plate” electrostatic model for bimolecular rate constants applied to electron transfer proteins. Protein Science, 3 (11), 2104–2114.

    Google Scholar 

  123. Sevrioukova, I. F., Hazzard, J. T., Tollin, G., and Poulos, T. L. (1999) The FMN to Heme Electron Transfer in Cytochrome P450BM-3. J. Biol. Chem., 274(51), 36097–36106.

    Article  Google Scholar 

  124. Hazzard, J. T., Govindaraj, S., Poulos, T. L., and Tollin, G. (1997) Electron transfer between the FMN and haem domains of cytochrome P450BM-3. J. Biol. Chem., 272(12), 7922–7926.

    Google Scholar 

  125. Tsotsou, G. E., Meharenna, Y. T., Ganini, S., Fairhead, M. J., Sadeghi, S. J., and Gilardi, G. (2000) Molecular lego in generation of macromolecular assemblies of P450 enzymes for high throughput screening. submitted.

    Google Scholar 

  126. Heering, H. A,, and Hagen, W. R. (1996) Complex electrochemistry of flavodoxin at carbon-based electrodes: results from a combination of direct electron transfer, flavin-mediated electron transfer and comproportionation. J Electroanal. Chem., 404,249–260.

    Article  Google Scholar 

  127. Ingelman-Sundberg, M., Oscarson, M, and McLellan, R.A. (1999) Polymorphic human cytochrome P450 enzymes: an opportunity for individualised drug treatment. Trends Pharmacol. Sci., 20,342–349.

    Article  Google Scholar 

  128. Zhao, H., and Arnold, F.H. (1997) Combinatorial protein design: strategies for screening protein libraries. Curr. Opin. Struct. Biol., 7,480–485.

    Article  Google Scholar 

  129. Burke, M. D., and Meyer, R.T. (1983) Differential effects of phenobartitone and 3-methylcholanthrene induction on the hepatic microsomal metabolism and cytochrome P-450-binding of phenoxazone and a homologous series of its 0-alkoxy ethers. Chem.-Biol. Interact., 45,243–258.

    Google Scholar 

  130. White, I. N. H. (1988) A continuous assay for cytochrome P-450-dependent mixed function oxidases using 3-cyano-7-ethoxycoumarin. Anal. Biochem., 172,304–310.

    Article  Google Scholar 

  131. Rodrigues, A. D., Kukulka, M.J., Surber, B.W., Thomas, S.B., Uchic, J.T., Potert, G.A., Michael, G., Thome-Kromer, B., and Machinist, J.M. (1994) Measurement of liver-microsomal cytochrome-P450(CYP2D6) activity using o-methyl-14C:. dextromethorphan. Anal. Biochem., 219(2), 309–320.

    Article  Google Scholar 

  132. Crespi, C. L., Miller, V.P., and Penman, B.W. (1997) Microtiter plate assays for inhibition of human, drug-metabolising cytochromes P450. Anal. Biochem., 248, 188–190.

    Article  Google Scholar 

  133. Onderwater, R. C. A., Venhorst, J., Commandeur, J.N.M., and Vermeulen, N.P.E. (1999) Design, synthesis and characterisation of 7-methoxy-4-(aminomethyl)coumarin as a novel and selective P450 2D6 substrate suitable for high-throughput screening. Chem. Res. Toxicol., 12(7), 555–559.

    Article  Google Scholar 

  134. VanBreemen, R. B., Nikolic, D., and Bolton, J.L. (1998) Metabolic screening using on-line ultrafiltration mass spectrometry. Drug Metab. Dispos., 26(2), 85–90.

    Google Scholar 

  135. Eddershaw, P. J., and Dickins, M. (1999) Advances in in vitro drug metabolism screening, Pharm. Sci. Technol. Today, 2(1), 13–19.

    Google Scholar 

  136. Yin, H., Racha, J., Li, S.Y., Olejnik, N., Satoh, H., and Moore, D. (2000) Automated high throughput human CYP isoform activity assay using SPE-LC/MS method: application in CYP inhibition evaluation. Xenobiotica, 30(2), 141–154.

    Google Scholar 

  137. Joo, H., Lin, Z.L., and Arnold, F.H. (1999) Laboratory evolution of a peroxide-mediated cytochrome P450 hydroxylation. Nature, 399(6737), 670–673.

    ADS  Google Scholar 

  138. Grigoryev, D. N., Kato, K., Njar, V.C.O., Long, B.J., Ling, Y.Z., Wang, X., Mohler, J., and Brodie, A.M.H. (1999) Cytochrome P45Ocl7-expressing Escherichia coli as a first-step screening system for 17a-hydroxylase-C17,20-lyase inhibitors. Anal. Biochem., 267,319–330.

    Article  Google Scholar 

  139. Parikh, A., Josephy, D., and Guengerich, F.P. (1999) Selection and characterisation of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry, 38,5283–5289.

    Google Scholar 

  140. Maves, S. A,, Yeom, H., McLean, M.A., and Sligar, S.G. (1997) Decreased substrate affinity upon alteration of the substrate-docking region in cytochrome P450 BM-3. FEBSLett., 414,213–218.

    Google Scholar 

  141. Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J., and Schmid, R.D. (1999) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal. Biochem., 269,359–366.

    Article  Google Scholar 

  142. Kaplan, N. O., Colowick, S.P., and Barnes, C.C. (1951) Effect of alkali on diphosphopyridine nucleotide. J. Biol. Chem., 191,461–472.

    Google Scholar 

  143. Lowry, 0. H., Roberts, N.R., and Kapphahn, J.I. (1957) The fluorometric measurement of pyridine nucleotides. J. Biol. Chem., 224, 1047–1064.

    Google Scholar 

  144. Childs, R. E., and Bardsley, W.G. (1975) The steady state kinetics of peroxidase with 2′2-Azino-di(3-ethyl-benzathiazoline-6-sulphonic acid) as chromagen. Biochem. J., 145,93–103.

    Google Scholar 

  145. Gasco, A,, Fruttero, R., and Sorba, G. (1996) NO-donors: An emerging class of compounds in medicinal chemistry. Farmaco, 51(10), 617–635.

    Google Scholar 

  146. Wang, M. H., Wade, D., Chen, L., White, S., and Yang, C. S. (1995) Probing the Active Site of Rat and Human Cytochrome P450 2E1 with Alcohols and Carboxylic Acids. Arch. Biochem Biophys., 317, 299–304.

    Article  Google Scholar 

  147. Li, H., and Poulos, T.L. (1997) The structure of the cytochrome P450 BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. Biol, 4, 140–146.

    Google Scholar 

  148. Chang, Y. T., Stiffelman, O.B., Vakser, LA., Loew, G.H., Bridges A,, and Waskell, L. (1997) Construction of a 3D model of cytochrome P450 2B4. Prot. Engng., 10(2), 119–129.

    Google Scholar 

  149. Shimoji, M., Yin, H., Higgins, L. A., and Jones, J. P. (1998) Design of a novel P450: A functional Bacterial-Human Cytochrome P450 chimera. Biochem., 37,8848–8852.

    Google Scholar 

  150. Waterman, M. R. (1996) Cytochrome P450. Meth. Enzymol., 272(B).

    Google Scholar 

  151. Nelson, D. R., and Strobel, H.W. (1998) On the membrane topology of vertebrate cytochrome P-450 proteins. J. Biol. Chem., 263,6038–6050.

    Google Scholar 

  152. Jenkins, C. M., and Waterman, M.R. (1998) NADPH-flavodoxin reductase and flavodoxin from Escherichia coli as a soluble microsomal P450 reductase. Biochemistry, 37,6106–6113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sadeghi, S.J., Tsotsou, G.E., Fairhead, M., Meharenna, Y.T., Gilardi, G. (2001). Rational Design of P450 Enzymes for Biotechnology. In: De Cuyper, M., Bulte, J.W.M. (eds) Physics and Chemistry Basis of Biotechnology. Focus on Biotechnology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46891-3_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46891-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7091-8

  • Online ISBN: 978-0-306-46891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics