Skip to main content

Radiation-Induced Bioradicals

Technologies and Research

  • Chapter
Physics and Chemistry Basis of Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 7))

  • 372 Accesses

Abstract

This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambroz, H. B., Kemp, T. J., Kornacka, E. M., and Przybytniak, G. K. 1998. The role of copper and iron ions in the gamma-radiolysis of DNA. Part1. EPR studies at cryogenic temperatures. Radiat. Phys. Chem. 53:491–499.

    ADS  Google Scholar 

  • Atherton, N. M. 1993. Principles of electron spin resonance, Ellis Honvood Limited, Chichester

    Google Scholar 

  • Atherton, N. M., Davies, M. J., and Gilbert, B. C. 1996. Electron spin resonance, Volume 15. The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Baerends, E. J., and Gritsenko, 0. V. 1997. A quantum chemical view of density functional theory. J. Phys. Chem. A 101:5383–5403.

    Article  Google Scholar 

  • Ban, F. Q., Wetmore, S. D., and Boyd, R. J. 1999. A density-functional theory investigation of the radiation products of L-alpha-alanine. J. Phys. Chem. A 103:4303–4308.

    Article  Google Scholar 

  • Barbarin, N., Crucq, A. S., and Tilquin, B. 1996. Study of volatile compounds from the radiosterilisation of solid cephalosporins. Radiat. Phys. Chem. 48: 787–794.

    Article  ADS  Google Scholar 

  • Barnes, J., Bernhard, W. A., and Mercer, K. R. 1991. Distribution of electron trapping in DNA — protonation of one-electron reduced cytosine. Radiat. Res. 126: 104–107.

    Google Scholar 

  • Barnes, J., and Bernhard, W. A. 1994. Irreversible protonation sites of one-electron-reduced adenine — comparisons between the C5 and the C2 or C8 protonation sites. J. Phys. Chem. 98:10969–10977.

    Google Scholar 

  • Barnes, J., and Bernhard, W. A. 1995a. The distribution of electron-trapping in DNA — one-electron-reduced oligodeoxynuclotides of adenine and thymine. Radiat. Res. 143:85–92.

    Google Scholar 

  • Barnes, J., and Bernhard, W. A. 1995b. The electron scavenging ability of the DNA bases in glassy matrices X-irradiated at 4 K. J. Phys. Chem. 99:11248–11254.

    Article  Google Scholar 

  • Barone, V. 1995. Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods. In Recent advances in density functional methods, part 1 (D. P. Chong, Eds.), pp. 287–334. World scientific, Singapore.

    Google Scholar 

  • Basly, J. P., Duroux, J. L., and Bernard, M. 1996a. Gamma radiation induced effects on metronidazole. Int. J. Pharm. 139:219–221.

    Article  Google Scholar 

  • Basly, J. P., Duroux, J. L., and Bernard, M. 1996b. Gamma irradiation sterilisation of orciprenaline and fenoterol. Int.J. Pharm. 142:125–128.

    Google Scholar 

  • Basly, J. P., Duroux, J. L., Bernard, M., and Penicaut, B. 1996c. Gamma radiolysis of three antiparasitic agents: Metronidazole, ornidazole, and ternidazole. J. Chim. Phys. Phys-Chim. Biol. 93: 1–6.

    Google Scholar 

  • Basly, J. P., Longy, I., and Bernard, M. 1997a. ESR identification of radiosterilised pharmaceuticals: latamoxef and ceftriaxone. Int. J. Pharm. 158:241–245.

    Article  Google Scholar 

  • Basly, J. P., Longy, I., and Bernard, M. 1997b. Influence of radiation treatment on two antibacterial agents and four antiprotozoal agents: ESR dosimetry. Int. J. Pharm. 154:109–113.

    Article  Google Scholar 

  • Basly, J. P.. Longy, I., and Bernard, M. 1997c. Influence of radiation treatment on theodrenaline: ESR and HPLC study. Int. J. Pharm. 152:201–206.

    Article  Google Scholar 

  • Basly, J. P., Longy, I., and Bernard, M. 1997d. Radiation effects on dopamine and norepinephrine. Pharmaceut. Res. 14:1192–1196.

    Google Scholar 

  • Basly, J. P., Duroux, J. L., and Bernard, M. 1997e. The effect of gamma radiation on the degradation of Salbutamol. J. Pharmaceut. Biomed. Anal. 15:1137–1141.

    Article  Google Scholar 

  • Basly, J. P., and Bernard, M. 1997f. radiosterilisation dosimetry by ESR spectroscopy: Ritodrine hydrochloride and comparison with other sympathomimetics. Int. J. Pharm. 149:85–91.

    Article  Google Scholar 

  • Basly, J. P., Longy, I., and Bernard, M. 1997g. Radiation sterilisation of formoterol. Pharmaceut. Res. 14:810–814.

    Google Scholar 

  • Basly, J. P., Longy, I., and Bernard, M. 1997h. ESR dosimetry of irradiated ascorbic acid. Pharmaceut. Res. 14:1186–1191.

    Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1998a. Radiosterilisation dosimetry of vitamins: an ESR study. Int. J. adiat. Biol. 74:521–528.

    Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1998b. Radiation-induced effects on cefotaxime: ESR study. Free Radical Res. 29:67–73.

    Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1998c. ESR spectroscopy applied to the study of pharmaceuticals radiosterilisation: cefoperazone. J. Pharmaceut. Biomed. Anal. 17:871–875.

    Article  Google Scholar 

  • Basly, J. P., Longy, I., and Bernard, M. 1998d. Radiosterilisation dosimetry by electron-spin resonance spectroscopy: Cefotetan. Anal. Chim. Acta 359:107–113.

    Article  Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1998e. Electron spin resonance identification of irradiated ascorbic acid: Dosimetry and influence of powder fineness. Anal. Chim. Acta 372:373–378.

    Article  Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1998f. Electron spin resonance detection of radiosterilisation of pharmaceuticals: application to four nitrofurans. Analyst 123: 1753–1756.

    Article  ADS  Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1998g. Influence of radiation treatment on dobutamine. Int. J. Pharm. 170:265–269.

    Article  Google Scholar 

  • Basly, J. P., Basly, I., and Bernard, M. 1999. Radiation induced effects on cephalosporins: an ESR study, Int. J. Radiat. Biol. 75 259–263.

    Article  Google Scholar 

  • Becker, D., and Sevilla, M. 1993. The chemical consequences of radiation-damage to DNA. Advan. Radiat. Biol. 17:121–180.

    Google Scholar 

  • Becker, D., Lavere, T., and Sevilla, M. 1994. ESR detection at 77 K of the hydroxyl radical in the hydration layer of gamma-irradiated DNA. Radiat. Res. 140:123–129.

    Google Scholar 

  • Becker, D., Razskazovskii, Y., Callaghan, M. U., and Sevilla, M.1996. Electron spin resonance of DNA irradiated with a heavy-ion beam (O-16(8+)): Evidence for damage to the deoxyribose phosphate backbone. Radiat. Res. 146:361–368.

    Google Scholar 

  • Bernhard, W. A. 1989. Sites of electron trapping in DNA as determined by ESR of one-electron reduced oligonucleotides. J. Phys. Chem. 93:2187–2189.

    Article  Google Scholar 

  • Bernhard, W. A,, Barnes, J., Mercer, K. R., and Mroczka, N. 1994. The influence of packing on free-radical yields in crystalline nucleic-acids — the pyrimidine bases. Radiat. Res. 140: 199–214.

    Google Scholar 

  • Bernhard, W. A., Mroczka, N., and Barnes, J. 1994. Combination is the dominant free-radical process initiated in DNA by ionising-radiation — An overview based on solid-state EPR studies. Int. J. Radiat. Biol. 66:491–497.

    Google Scholar 

  • Berthomieu, C., and Boussac, A. 1995. FTIR and EPR study of radicals of aromatic-amino-acids 4-Methylimidazole and phenol generated by UV irradiation. Biospectroscopy 1: 187–206.

    Article  Google Scholar 

  • Binks, P. R. 1996. Radioresistant bacteria: Have they got industrial uses? J. Chem. Technol. Biotechnol. 67:319–322.

    Article  Google Scholar 

  • Boess, C., and Bogl, K. W. 1996. Influence of radiation treatment on pharmaceuticals — A review: Alkaloids, morphine derivatives, and antibiotics. Drug Develop. Ind. Pharm. 22: 495–529.

    Google Scholar 

  • Bohm, P. 1998. The re-implantation of extracorporeally devitalised bone segments for defect reconstruction in tumour orthopaedics — A review of the literature. Z. Urthop. Grenzgeb. 136:197–204.

    Google Scholar 

  • Bolch, W. E., Turner, J. E., Yoshida, H., Jacobson, K. B., Hamm, R. N., and Crawford, 0. H. 1998. Product yields from irradiated glycylglycine in oxygen-free solutions: Monte Carlo simulations and comparison with experiments. Radiat. Environ. Biophys. 37:157–166.

    Article  Google Scholar 

  • Box, H. C., Budzinski, E. E., and Freund, H. G. 1990. Electrons trapped in single crystals of sucrose — Induced spin-densities. J. Chem. Phys. 93:55–57.

    Article  ADS  Google Scholar 

  • Briden, P. E., Holt, P. D., and Simmons, J. A. 1999. The track structures of ionising particles and their application to radiation biophysics-I.A newanalyticalmethodfor investigating twobiophysical models. Radiat. Environ. Biophys. 38:175–184.

    Google Scholar 

  • Buchalla, R., Schuttler, C., and Bogl, K. W. 1993. Effects of ionising radiation on plastic food-packaging materials — A review.2. Global migration, sensory changes and the fate of additives. J. Food. Protect. 56:998–1005.

    Google Scholar 

  • Buchalla, R., Boess, C., and Bogl, K. W. 1999. Characterisation of volatile radiolysis products in radiation-sterilised plastics by thermal desorption-gas chromatography-mass spectrometry: screening of six medical polymers. Radiat. Phys. Chem. 56:353–367.

    Article  ADS  Google Scholar 

  • Burg, K. J. L., and Shalaby, S. W. 1996. Advances in food irradiation research, 254–261.

    Google Scholar 

  • Cadet, J., D’Ham, C., Douki, T., Pouget, J. P., Ravanat, J. L., and Sauvaigo, S. 1998. Facts and artefacts in the measurement of oxidative base damage to DNA. Free Radical Res. 29:541–550.

    Google Scholar 

  • Cadet, J., Douki, T., Gasparutto, D., Gromova, M., Pouget, J. P., Ravanat, J. L., Romieu, A,, and Sauvaigo, S. 1999. Radiation-induced damage to DNA: mechanistic aspects and measurement of base lesions. Nucl. Instrum. Meth. Phys. Res. B 151:l–7.

    Article  Google Scholar 

  • Capizzi, S., Chevallier, A,, and Schwartzbrod, J. 1999. Destruction of Ascaris ova by accelerated electron. Radiat. Phys. Chem. 56:591–595.

    Article  ADS  Google Scholar 

  • Carenza, M., and Veronese, F. M. 1994. Entrapment of biomolecules into hydrogels obtained by radiation-induced polymerisation. J. Control. Release 29:187–193.

    Article  Google Scholar 

  • Chalak, L., and Legave, J. M. 1997. Effects of pollination by irradiated pollen in Hayward kiwifruit and spontaneous doubling of induced parthenogenetic trihaploids. Sci. Hort. 68:83–93.

    Google Scholar 

  • Claverie, J. M. 1999. Computational methods for the identification of differential and co-ordinated gene expression. Hum. Mol. Genet. 8:1821–1832.

    Article  Google Scholar 

  • Close, D. M., Sagstuen, E., and Nelson, W. H.1988. Radical formation in X-irradiated single-crystals of guanine hydrochloride monohydrate.3. Secondary radicals and reaction mechanisms. Radiat. Res. 116:379–392.

    Google Scholar 

  • Close, D. M., Nelson, W. H., Sagstuen, E., and Hole, E. O. 1989. ESR and ENDOR studies of X-irradiated single-crystals of guanine derivatives. Free Radical Res. Commun. 6:83–85.

    Google Scholar 

  • Close, D. M. 1993. Radical ions and their reactions in DNA constituents-ESR/ENDOR studies of radiation-damage in the solid state. Radiat. Res. 135:1–15.

    Google Scholar 

  • Close, D. M., Nelson, W. H., Sagstuen, E., and Hole, E. 0. 1994. ESR and ENDOR study of single-crystals of deoxyadenosine monohydrate X-irradiated at 10 K. Radiat. Res. 137:300–309.

    Google Scholar 

  • Close, D. M. 1997. Where are the sugar radicals in irradiated DNA? Radiat. Res. 147:663–673.

    Google Scholar 

  • Close, D. M., Hole, E. O., Sagstuen, E., and Nelson, W. H. 1998. EPR and ENDOR studies of X-irradiated single crystals of deoxycytidine 5 ′-phosphate monohydrate at 10 and 77 K. J. Phys. Chem. A 102:6737–6744.

    Article  Google Scholar 

  • Colson, A. O., Besler, B., and Sevilla, M. 1992a. Ab-initio molecular-orbital calculations on DNA-base pair radical ions — effects of base pairing on proton-transfer energies, electron-affinities, and ionisation-potentials. J. Phys. Chem. 96:9787–9794.

    Google Scholar 

  • Colson, A. O., Besler, B., Close, D. M., and Sevilla, M. 1992b. Ab initio molecular-orbital calculations of DNA bases and their radical ions in various protonation states — evidence for proton-transfer in GC base pair radical-anions. J Phys. Chem. 96:661–668.

    Google Scholar 

  • Colson, A. O., Besler, B., and Sevilla, M. 1993a. Ab-initio molecular-orbital calculations on DNA-radicals.4. effect of hydration and electron-affinities and ionisation-potentials of base pairs, J. Phys. Chem. 97:13852–13859.

    Google Scholar 

  • Colson, A. O., Besler, B., and Sevilla, M. 1993b. Ab-initio molecular-orbital calculations on DNA radical ions.3. ionisation-potentials and ionisation sites in components of the DNA sugar-phosphate backbone. J. Phys. Chem. 97:8092–8097.

    Google Scholar 

  • Colson, A. O., and Sevilla, M. 1995a. Structure and relative stability of deoxyribose radicals in a model DNA backbone — Ab-initio molecular-orbital calculations. J Phys. Chem. 99:3867–3874.

    Google Scholar 

  • Colson, A. O., and Sevilla, M. 1995b. Elucidation of primary radiation-damage in DNA through application of ab-initio molecular-orbital theory. Int. J. Radiat. Biol. 67:627–645.

    Google Scholar 

  • Colson, A. O., and Sevilla, M. 1995c. Ab-initio molecular orbital calculations of radicals formed by H and’ OH addition to the DNA bases — electron affinities and ionisation potentials. J. Phys. Chem. 99:13033–13037.

    Google Scholar 

  • Colson, A. O., and Sevilla, M. 1996. Ab initio molecular orbital study of the structures of purine hydrates. J. Phys. Chem. 100:4420–4423.

    Article  Google Scholar 

  • Crucq, A. S., Tilquin, B. L., and Hickel, B. 1995. Radical mechanisms of cephalosporins — A pulse-radiolysis study. Free Radical Biol. Med. 18:841–847.

    Article  Google Scholar 

  • Crucq, A. S., and Tilquin, B. L. 1996. Attack of cefotaxime by different radicals: Comparison of the effects. Free Radical Biol. Med 21:827–832.

    Article  Google Scholar 

  • Cullis, P. M., Davis, A. S., Malone, M. E., Podmore, 1. D., and Symons, M. C. R. 1992a. Electron-paramagnetic resonance studies of the effects of 1/1 electrolytes on the action of ionising-radiation on aqueous DNA. J. Chem. SOC. Perkin Trans. 2 1409–1412.

    Google Scholar 

  • Cullis, P. M., McClymont, J. D., Malone, M. E., Mather, A. N., Podmore, I. D., Sweeney, M. C., and Symons, M. C. R. 1992b. Effects of ionising-radiation on deoxyribonucleic-acid.7. electron-capture at cytosine and thymine. J. Chem. SOC. Perkin Trans. 2 1695–1702.

    Google Scholar 

  • Cullis, P. M., Malone, M. E., Podmore, I. D., and Symons, M. C. R. 1995. Site of protonation of one-electron-reduced cytosine and its derivatives in aqueous-methanol glasses. J.Phys.Chem. 99:9293–9298.

    Article  Google Scholar 

  • Cullis, P. M., Malone, M. E., and MersonDavies, L. A. 1996. Guanine radical cations are precursors of 7,8-dihydro-8-oxo-2′-deoxyguanosine but are not precursors of immediate strand breaks in DNA. J. Amer. Chem. Soc. 118:2775–2781.

    Article  Google Scholar 

  • Davies, M. J. 1993. Detection and identification of macromolecule-derived radicals by EPR-spin trapping. Res. Chem. Intermediates 19:669–679.

    ADS  Google Scholar 

  • Davies, M. J., Gilbert, B. C., Hazlewood, C., and Polack, N. P. 1995. EPR spin-trapping studies of radical-damage to DNA. J. Chem. Soc. Perkin Trans. 2 13–21.

    Google Scholar 

  • Davies, M. J. 1996. Protein and peptide alkoxy1 radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch. Biochem. Biophys. 336:163–172.

    Article  Google Scholar 

  • Demertzis, P. G., Franz, R., and Welle, F. 1999. The effects of gamma-irradiation on compositional changes in plastic packaging films. Packag. Technol. Sci. 12:119–130.

    Article  Google Scholar 

  • Dewitte, K., and Keulemans, J. 1994. Restriction of the efficiency of haploid plant-production in apple cultivar Idared, through parthenogenesis in-situ. Euphytica 77:141–146.

    Google Scholar 

  • Dodd, N. J. F. 1995. Free radicals and food irradiation. Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives 247–258.

    Google Scholar 

  • Dore, C., and Marie, F.1993. Production of gynogenetic plants of onion (Allium-Cepra L) after crossing with irradiated pollen. Plant Preed. 111:142–147.

    Google Scholar 

  • Duroux, J. L., Basly, J. P., Penicaut, B., and Bernard, M. 1996. ESR spectroscopy applied to the study of drugs radiosterilisation: Case of three nitroimidazoles. Appl. Radiaf. Isotopes 47:1565–1568.

    Google Scholar 

  • Duroux, J. L., Basly, J. P., and Bernard, M. 1997. Drugs radiosterilisation. Importance of electron spin resonance in dosimetry. J. Chim. Phys. Phys-Chim. Bid. 94:405–409.

    Google Scholar 

  • Dyer, M. R., Cohen, D., and Herrling, P. L. 1999. Functional genomics: from genes to new therapies. Drug Discov. Today 4:109–114.

    Article  Google Scholar 

  • Eaton, S. S., and Eaton, G. R. 1996. EPR imaging. In Elecfron spin resonance, Volume 15, pp. 169–185. The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Fairbairn, D. W., Olive, P. L., and ONeill, K. L. 1995. The comet assay — A comprehensive review. Mutat. Res.-Rev. Genet. Toxicol. 339:37–59.

    Google Scholar 

  • Falque, M. 1994. Pod and seed development and phenotype of the M1 plants after pollination and fertilisation with irradiated pollen in cacao (Theobroma cacao L), Euphytica 75:19–25

    Article  Google Scholar 

  • Fattibene, P., Duckworth, T. L., and Desrosiers, M. F. 1996. Critical evaluation of the sugar-EPR dosimetry system, Appl. Radiat. Isotopes 47:1375–1379.

    Article  Google Scholar 

  • Fauconnet, A. L., Basly, J. P., and Bernard, M. 1996. Gamma radiation induced effects on isoproterenol. Int. J. Pharm. 144:123–125.

    Article  Google Scholar 

  • Garde, J. A,, Catala, R., and Gavara, R. 1998. Global and specific migration of antioxidants from polypropylene films into food simulates. J. Food. Protect. 61:1000–1006.

    Google Scholar 

  • Gibella, M., Crucq, A. S., and Tilquin, B. 1993. ESR measurements and the detection of radiosterilisation of drugs. J. Chim. Phys. Phys-Chim. Biol. 90:1041–1053.

    Google Scholar 

  • Gibella, M., Pronce, T., and Tilquin, B. 1994. ESR study of irradiated and photolysed drugs. J. Chim. Phys. Phys-Chim.Bid. 91:1868–1872.

    Google Scholar 

  • Goldfarb, D. 1996. Time domain EPR. In Electron spin resonance, Volume 15, pp. 186–243. The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Gopal, N. G. S., Patel, K. M., Sharma, G., Bhalla, H. L., Wills, P. A,, and Hilmy, N. 1988. Guide for radiation sterilisation of pharmaceuticals and decontamination of raw materials. Radiat. Phys. Chem. 32:619–622.

    Google Scholar 

  • Gordy, W. 1980. Theory andapplications of electron spin resonance, John Wiley & Sons, Inc., New York

    Google Scholar 

  • Goulas, A. E., and Kontominas, M. G.1996. Migration of dioctyladipate plasticiser from food-grade WC film into chicken meat products: Effect of gamma-radiation. Z. Lebensmiffel-Untersuch. Fors. 202:250–255.

    Google Scholar 

  • Haire, D. L., Chen, G. M., Janzen, E. G., Fraser, L., and Lynch, J. A. 1997. Identification of irradiated foodstuffs: a review of the recent literature. Food. Res. Int. 30:249–264.

    Article  Google Scholar 

  • Hamm, R. N., Stabin, M. G., and Turner, J. E. 1998. Investigation of a Monte Carlo model for chemical reactions. Radiat. Environ. Biophys. 37:151–156.

    Article  Google Scholar 

  • Hawkins, C. L., and Davies, M. J. 1998. Reaction of HOCl with amino acids and peptides: EPR evidence for rapid rearrangement and fragmentation, reactions of nitrogen-centred radicals. J. Chem. Soc. Perkin Trans. 2 1937–1945.

    Google Scholar 

  • Herak, J. N., Sankovic, K., and Hutterman, J. 1994. Thiocytosine as radiation energy trap in a single-crystal of cytosine hydrochloride. Int. J. Radiat. Biol. 66:3–9.

    Google Scholar 

  • Herak, J. N., Sankovic, K., Krilov, D., Jaksic, M., and Huttermann, J. 1997. Radiation energy transfer and trapping in single crystals of semihydrate and hydrochloride of 5-methylcytosine doped with 5-methylthiocytosine — An EPR study. Radiat. Phys. Chem. 50:141–148.

    Article  ADS  Google Scholar 

  • Herak, J. N., Sankovic, K., Krilov, D., and Huttermann, J. 1999. An EPR study of the transfer and trapping of holes produced by radiation in guanine(thioguanine) hydrochloride single crystals. Radiat. Res. 151:319–324.

    Google Scholar 

  • Hill, M. A. 1999. Radiation damage to DNA: The importance of track structure. Radiat. Meas. 31:15–23.

    Article  Google Scholar 

  • Hohenberg, P., and Kohn, W. 1964. XXX. Phys. Rev. B 136:864.

    ADS  MathSciNet  Google Scholar 

  • Hole, E. O., Sagstuen, E., Nelson, W. H., and Close, D. M. 1989. Free-radical formation in single-crystals of 2′-deoxyguanosine 5′-monophosphate, and guanine hydrobromide monohydrate after X-irradiation at 10 K and 65 K — An ESR, ENDOR and FSE study. Free Radical Res. Commun. 6:87–90.

    Google Scholar 

  • Hole, E. O., Sagstuen, E., Nelson, W. H., and Close, D. M. 1991a. Primary reduction and oxidation of thymine derivatives — ESR/ENDOR of thymidine and I-methylthymidine X-irradiated at 10 K. J. Phys. Chem. 95:1494–1503.

    Article  Google Scholar 

  • Hole, E. O., Sagstuen, E., Nelson, W. H., and Close, D. M. 1991b. Environmental effects on primary radical formation in guanine — solid-state ESR and ENDOR of guanine hydrobromide monohydrate. Radiat. Res. 125:119–128.

    Google Scholar 

  • Hole, E. O., Nelson, W. H., Sagstuen, E., and Close, D. M. 1992a. Free-radical formation in X-irradiated anhydrous crystals of inosine studied by EPR and ENDOR spectroscopy. Radiat. Res. 130:148–159.

    Google Scholar 

  • Hole, E. O., Sagstuen, E., Nelson, W. H., and Close, D. M. 1992b. The structure of the guanine cation-ESR/ENDOR of cyclic guanosine-monophosphate single-crystals after X-irradiation at 10 K. Radiat. Res. 129:1–10.

    Google Scholar 

  • Hole, E. O., Nelson, W. H., Sagstuen, E., and Close, D. M. 1992c. Free-radical formation in single-crystals of 2′-deoxyguanosine 5′-monophosphate tetrahydrate disodium salt — An EPR ENDOR study. Radiat. Res. 129:119–138.

    Google Scholar 

  • Hole, E. O., Sagstuen, E., Nelson, W. H., and Close, D. M. 1995. Free-radical formation in single-crystals of 9-methyladenine X-irradiated at 10K — An electron-paramagnetic-resonance and electron-nuclear double-resonance study. Radiat. Res. 144:258–265.

    Google Scholar 

  • Hole, E. O., Nelson, W. H., Sagstuen, E., and Close, D. M. 1998. Electron paramagnetic resonance and electron nuclear double resonance studies of X-irradiated crystals of cytosine hydrochloride. Part I: Free radical formation at 10 K after high radiation doses. Radiat. Res. 149:109–119.

    Google Scholar 

  • Huang, W. D., Han, J. W., Wang, X. Q., Yu, 2. L., and Zhang, Y. H. 1998. keV ion irradiation of solid glycine: an EPR study. Nucl. Instrum. Meth. Phys. Res. B 140:137–142.

    Article  ADS  Google Scholar 

  • IAEA-Tecdoc-971, 1997. Sewage sludge and wastewater for use in agriculture

    Google Scholar 

  • IAEA-Tecdoc-1023. 1998. Radiation technology for conservation of the environment

    Google Scholar 

  • Ibrahim, R., Mondelaers, W., and Debergh, P. C. 1998. Effectsof X-irradiation on adventitious bud regeneration from in vitro leaf explants of Rosa hybrida. Plant Cell Tissue Organ Cult. 54:37–44.

    Article  Google Scholar 

  • Iliakis, G. 1991. The role of DNA double strand breaks in ionising radiation-induced killing of eukaryotic cells. Bioessays 13:641–648.

    Google Scholar 

  • Jacobs, G. P., and Wills, P. A. 1988. Recent developments in the radiation sterilisation of pharmaceuticals. Radiat. Phys. Chem. 31:685–691.

    Google Scholar 

  • Jacobs, G. P. 1995. A review of the effects of gamma-radiation on pharmaceutical materials. J. Biomater. Appl. 10:59–96.

    Google Scholar 

  • Jacobs, G. P. 1998. A review on the effects of ionising radiation on blood and blood components. Radiat. Phys. Chem. 53 511–523.

    Article  ADS  Google Scholar 

  • Jensen, F. 1999. Introduction to computational chemistry, John Wiley & Sons, Ltd.

    Google Scholar 

  • Kabiljo, Z., Sankovic, K., and Herak, J. N. 1990. ESR study of the thymine anion radical in a single-crystal of thymine monohydrate. Int. J. Radiat. Biol 58:439–447.

    Google Scholar 

  • Kaetsu, I. 1996. Biomedical materials, devices and drug delivery systems by radiation techniques. Radiat. Phys. Chem. 47:419–424.

    Article  ADS  Google Scholar 

  • Kaetsu, I., Uchida, K., Shindo, H., Gomi, S., and Sutani, K. 1999. Intelligent type controlled release systems by radiation techniques. Radiihem. 55:193–201.

    Google Scholar 

  • Kim, H., Budzinski, E. E., and Box, H. C. 1989. The radiation-induced oxidation and reduction of guanine — Electron-spin-resonance electron nuclear double-resonance studies of irradiated guanosine cyclic monophosphate. J. Chem. Phys. 90:1448–1451.

    ADS  Google Scholar 

  • Kohn, W., and Sham, L. J. 1965. Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140:1133–1138.

    ADS  MathSciNet  Google Scholar 

  • Kohn, W., Becke, A. D., and Parr, R. G. 1996. Density functional theory of electronic structure. J. Phys. Chem. 100:12974–12980.

    Article  Google Scholar 

  • Koppen, G., Toncelli, L. M., Triest, L., and Verschaeve, L. 1999. The comet assay: a tool to study alteration of DNA integrity in developing plant leaves. Mech. Age. Dev. 110: 13–24.

    Article  Google Scholar 

  • Krzyminiewski, R., Pietrzak, J., and Konopka, R. 1990. An ESR study of the stable radical in a gamma-irradiated single crystal of 17-alpha-hydroxy-progesterone. J. Mol Struct. 240: 133–140.

    ADS  Google Scholar 

  • Krzyminiewski, R., Bernhard, W., and Mercer, K. 1995. Conversion of free-radicals upon annealing of X-irradiated single-crystal of cholets-4-ene-3-one. Radiat. Phys. Chem. 45: 883–888.

    Article  ADS  Google Scholar 

  • Kubli-Garfias, C. 1998a. Ab initio comparative study of the electronic structure of testosterone, epitestosterone and androstenedione. Theochem-J. Mol. Struct. 422:167–177.

    Google Scholar 

  • Kubli-Garfias, C., and Vazquez-Ramirez, R. 1998b. Ab initio calculations of the electronic structure of glucocorticoids. Theochem-J. Mol. Struct. 454:267–275.

    Google Scholar 

  • Kubli-Garfias, C. 1998c. Comparative study of the electronic structure of estradiol, epiestradiol and estrone by ab initio theory. Theochem-J. Mol. Struct. 452:17S-183.

    Google Scholar 

  • Kubli-Garfias, C., Vazquez, R., and Mendieta, J. 1998d. Austin Model 1 study of the effect of carbonyl and hydroxyl functional groups on the electronic structure of androstane. Theochem-J Mol. Struct. 428: 189–194.

    Google Scholar 

  • Kubli-Garfias, C. 1998e. Ab initio study of the electronic structure of progesterone and related progestins. Theochem-J. Mol. Struct. 425:171–179.

    Google Scholar 

  • Kubli-Garfias, C. 1999. Comparative study of the electronic structure of pregnanolones by ab initio theory. Int. J. Quantum Chem. 71:433–440.

    Article  Google Scholar 

  • Kumagai, J., Katoh, H., Kumada, T., Tanaka, A,, Tano, S., and Miyazaki, T. 2000. Strong resistance of Arabidopsis thaliana and Raphanus sativus seeds for ionising radiation as studied by ESR, ENDOR, ESE spectroscopy and germination measurement: Effect of long-lived and super-long-lived radicals. Rad. Phys. Chem. 57:75–83.

    Article  ADS  Google Scholar 

  • Lahorte, P., De Proft, F., Vanhaelewyn, G., Masschaele, B., Cauwels, P., Callens, F., Geerlings, P., and Mondelaers, W. 1999a. Density functional calculations of hyperfine coupling constants in alanine-derived radicals. J. Phys. Chem. A 103:6650–6657.

    Google Scholar 

  • Lahorte, P., De Proit, F., Callens, F., Geerlings, P., and Mondelaers, W. 1999b. A density functional study of hyperfine coupling constants in steroid radicals. J. Phys. Chem. A 103:11130–11135.

    Google Scholar 

  • Lahorte, P., Mondelaers, W., De Frenne, D., Callens, F., Vanhaelewyn, G., Schacht, E., Van Calenberg, S., Van Cleemput, O., and Huyghebaert, A. 1999c. Applied radiation research around a 15 MeV high-average-power linac. Radiat. Phys. Chem. 55:761–765.

    Article  ADS  Google Scholar 

  • Langer-Safer, P. R., Fitz, L. J., Whitley, M. Z., Wood, C. R., and Beier, D. R. 1997. Strategies for the application of functional genomics technology to biopharmaceutical drug discovery. Drug Develop. Res. 41:173–179.

    Google Scholar 

  • Lardon, A,, Georgiev, S., Aghmir, A,, Le Merrer, G., and Negrutiu, I. 1999. Sexual dimorphism in white campion: Complex control of carpel number is revealed by Y chromosome deletions. Genetics 151:1173–1185.

    Google Scholar 

  • Lassmann, G., Eriksson, L. A,, Himo, F., Lendzian, F., and Lubitz, W. 1999. Electronic structure of a transient histidine radical in liquid aqueous solution: EPR continuous-flow studies and density functional calculations. J. Phys. Chem. A 103:1283–1290.

    Article  Google Scholar 

  • Lett, J. T. 1994. The renaissance in basic cellular radiobiology and its significance for radiation therapy 181–223.

    Google Scholar 

  • Levine, I. N. 1991. Quantum chemistry4th

    Google Scholar 

  • Lin, W. Z., Tu, T. C., Dong, J. R., Zhang, J. S., and Lin, N. Y. 1998. ESR studies of gamma-irradiated histone octamer and the histone H3. Radiat. Phys. Chem. 53:651–655.

    Article  ADS  Google Scholar 

  • Luo, N., Litvin, A., and Osman, R. 1999. Theoretical studies of ribose and its radicals produced by hydrogen abstraction from ring carbons. J. Phys. Chem. A 103592–600.

    Google Scholar 

  • Mader, K. 1998. Pharmaceutical applications of in vivo EPR. Phys. Med. Biol. 43:1931–1935.

    ADS  Google Scholar 

  • Malkin, V. G., Malkina, 0. L., Eriksson, L. A,, and Salahub, D. R. 1995. The calculation of NMR and EPR spectroscopy parameters using density functional theory. In Modern density functional theory, a tool for chemistry (J. M. Seminario and P. Politzer, Eds.), pp. 273–347. Elsevier, Amsterdam.

    Google Scholar 

  • Malone, M. E., Cullis, P. M., Symons, M. C. R., and Parker, A. W. 1995. Biphotonic photoionisation of cytosine and its derivatives with UV-radiation at 248 nm —An EPR study in low-temperature perchlorate glasses. J. Phys. Chem. 99:9299–9308

    Article  Google Scholar 

  • Mathur, A. M., Moorjani, S. K., and Scranton, A. B. 1996. Methods for synthesis of hydrogel networks: A review. J. Macromol. Sci.-Rev. Macromol. 36:405–430.

    Google Scholar 

  • McLaughlin, W. L. 1993. ESR dosimetry. Radiat. Prot. Dosim. 47:255–262.

    Google Scholar 

  • Mehnert, R. 1996. Review of industrial applications of electron accelerators. Nucl. Instrum. Meth. Phys. Res. B 113:81–87.

    Article  ADS  Google Scholar 

  • Miaskiewicz, K., and Osman, R. 1994. Theoretical study of the deoxyribose radicals formed by hydrogen abstraction. J. Amer. Chem. Soc. 116:232–238.

    Article  Google Scholar 

  • Miyazaki, T., Arai, J., Kaneko, T., Yamamoto, K., Gibella, M., and Tilquin, B. 1994a. Estimationof irradiation dose of radiosterilised antibiotics by electron-spin-resonance — Ampicillin. J Pharm. Sci. 83:1643–1644.

    Google Scholar 

  • Miyazaki, T., Kaneko, T., Yoshimura, T., Crucq, A. S., and Tilquin, B. 1994b. Electron-spin-resonance study of radiosterilisation of antibiotics — Ceftazidime. J. Pharm. Sci. 83:68–71.

    Google Scholar 

  • Moiseenko, V.V., Hamm, R. N., Waker, A. J., and Prestwich, W. V. 1998a. Modelling DNA damage induced by different energy photons and tritium beta-particles. Int. J Radial. Biol. 74:533–550.

    Google Scholar 

  • Moiseenko, V. V., Hamm, R. N., Waker, A. J., and Prestwich, W. V. 1998b. The cellular environment in computer simulations of radiation induced damage to DNA. Radiat. Environ. Biophys. 37:167–172.

    Article  Google Scholar 

  • Mondelaers, W., Van Laere, K., and Uyttendaele, D. 1993. Treatment of primary tumours of bone and cartilage by extracorporeal irradiation with a low-energy high-power linac. Nucl Instrum. Meth. Phys. Res. B 79:898–900.

    ADS  Google Scholar 

  • Mondelaers, W. 1998. Low-energy electron accelerators in industry and applied research. Nucl. Instrum. Meth. Phys. Res. B 139:43–50.

    Article  ADS  Google Scholar 

  • Monk, J. D., Beuchat, L. R., and Doyle, M. P. 1995. Irradiation inactivation of food-borne microorganisms. J Food. Protect. 58:197–208.

    Google Scholar 

  • Moroff, G., Leitman, S. F., and Luban, N. L. C. 1997. Principles of blood irradiation, dose validation, and quality control. Transfusion 37:1084–1092.

    Article  Google Scholar 

  • Mroczka, N. E., and Bernhard, W. A. 1995. Electron-paramagnetic-resonance investigation of X-irradiated poly(U), poly(A) and poly(A)-poly(U) — Influence of hydration, packing and conformation on radical yield at 4 K. Radial. Res. 144:251–257.

    Google Scholar 

  • Mroczka, N. E., Mercer, K. R., and Bernhard, W. A. 1997. The effects of lattice water on free radical yields in x-irradiated crystalline pyrimidines and purines: A low-temperature electron paramagnetic resonance investigation. Radial. Res. 147:560–568.

    Google Scholar 

  • Musial, K., and Przywara, L. 1998. Influence of irradiated pollen on embryo and endosperm development in kiwifruit. Ann. Bot. 82:747–756.

    Article  Google Scholar 

  • Musial, K., and Przywara, L. 1999. Endosperm response to pollen irradiation in kiwifruit. Sex. Plant. Reprod. 12:110–117.

    Article  Google Scholar 

  • Naess, S. K., Swartz, H. J., and Bauchan, G. R. 1998. Ploidy reduction in blackberry. Euphyfica 99:57–73.

    Google Scholar 

  • Nelson, W. H., Hole, E. O., Sagstuen, E., and Close, D. M. 1988. ESRENDOR study of guanine.HC1.2H20 X-irradiated at 20 K. Int. J. Radiat. Biol. 54:963–986.

    Google Scholar 

  • Nelson, W.H., Close, D.M., Sagstuen, E., and Hole, E.0. 1989. Radiation-chemistryofadenine-derivatives following direct ionisation in solids — ESR and ENDOR investigations. Free Radical Res. Commun. 6:81–82.

    Google Scholar 

  • Nelson, W. H., Sagstuen, E., Hole, E. O., and Close, D. M. 1992a. On the proton transfer behaviour of the primary oxidation-product in irradiated DNA. Radial. Res. 131:10–17.

    Google Scholar 

  • Nelson, W. H., Sagstuen, E., Hole, E. O., and Close, D. M. 1992b. Ionisation of adenine-derivatives — EPR and ENDOR studies of X-irradiated adenine. HC1.1/2H20 and adenosine. HC1. Radiat. Res. 131:272–284.

    Google Scholar 

  • Nelson, W. H., Sagstuen, E., Hole, E. O., and Close, D. M. 1998. Electron spin resonance and electron nuclear double resonance study of X-irradiated deoxyadenosine: Proton transfer behaviour of primary ionic radicals. Radiat. Res. 149:75–86.

    Google Scholar 

  • Onori, S., Pantaloni, M., Fattibene, P., Signoretti, E. C., Valvo, L., and Santucci, M. 1996. ESR identification of irradiated antibiotics: Cephalosporins. Appl. Radiat. Isotopes 47:1569–1572.

    Google Scholar 

  • Patterson, L. K. 1987. Instruments for measurement of transient behaviour in radiation chemistry. In Radiation chemistry: principles and applications ( Farhataziz and M. Rodgers, Eds.), pp. 65–96. VCH Publishers, Inc., New York.

    Google Scholar 

  • Podmore, I. D., Malone, M. E., Symons, M. C. R., Cullis, P. M., and Dalgarno, B. G. 1991. Factors controlling the site of protonation of the one-electron adduct of cytosine and its derivatives. J. Chem. Soc. Faraday Trans. 87:3647–3652.

    Article  Google Scholar 

  • Pouget, J. P., Ravanat, J. L., Douki, T., Richard, M. J., and Cadet, J. 1999a. Use of the comet assay to measure DNA damage in cells exposed to photosensitisers and gamma radiation. J. Chim. Phys. Phys-Chim. Biol. 96:143–146.

    ADS  Google Scholar 

  • Pouget, J. P., Ravanat, J. L., Douki, T., Richard, M. J., and Cadet, J. 1999b. Measurement of DNA base damage in cells exposed to low doses of gamma-radiation: comparison between the HPLC-EC and comet assays. Int. J Radiat. Biol. 7551–58.

    Article  Google Scholar 

  • Prise, K. M., Ahnstrom, G., Belli, M., Carlsson, J., Frankenberg, D., Kiefer, J., Lobrich, M., Michael, B. D., Nygren, J., Shone, G., and Stenerlow, B. 1998. A review of dsb induction data for varying quality radiations. Int. J. Radiat. Biol. 74:173–184.

    Google Scholar 

  • Raffi, J., Thiery, C., Battesti, C., Agnel, J. P., Triolet, J., and Vincent, P. 1993. Electron-spin resonance studies of gamma-irradiated saccharides. J. Chim. Phys. Phys-Cbim. Biol. 90: 1009–1019.

    Google Scholar 

  • Riganakos, K. A,, Koller, W. D., Ehlermann, D. A. E., Bauer, B., and Kontominas, M. G. 1999. Effects of ionising radiation on properties of monolayer and multilayer flexible food packaging materials. Radiat. Phys. Chem. 54:527–540.

    Article  ADS  Google Scholar 

  • Rosiak, J. M., Ulanski, P., Pajewski, L. A., Yoshii, F., and Makuuchi, K. 1995. Radiation formation of hydrogels for biomedical purposes — Some remarks and comments. Radiat. Phys. Chem. 46:161–168.

    Article  ADS  Google Scholar 

  • Rosiak, J. M., and Yoshii, F. 1999. Hydrogels and their medical applications. Nucl. Instrum. Meib. Phys. Res. B 151:56–64.

    ADS  Google Scholar 

  • Sabo, D., Bernd, L., Ewerbeck, V., Eble, M., Wannenmacher, M., and Schulte, M. 1999. Intraoperative extracorporeal irradiation and replantation (IEIR) in the treatment of primary malignant bone tumours. Unfallchirurg 102:580–588.

    Article  Google Scholar 

  • Sagstuen, E., Lund, A., Awadelkarim, O., Lindgren, M., and Westerling, J. 1986. Free radicals in X-irradiated single crystals of sucrose: a reexamination. J. Phys. Chem. 90:5584–5588.

    Article  Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1988. Electron-spin-resonance ENDOR study of guanosine 5′-monophosphate (free acid) single-crystals X-irradiated at 10 K. Radiat. Res. 116: 196–209.

    Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1989a. Structure of the primary reduction product of thymidine after X-irradiation at 10 K. J. Phys. Chem. 93:5974–5977.

    Article  Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1989b. Free-radical formation in nucleosides and nucleotides of guanine-ESR and ENDOR of guanosine 5′-monophosphate and guanosine-dimethylformamide X-irradiated at 10 K. Free Radical Res. Commun. 6:91–92.

    Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1992a. Radiation-induced free-radical formation in thymine derivatives — EPWENDOR of anhydrous thymine single-crystals X-irradiated at 10 K. J. Phys. Chem. 96:1121–1126.

    Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1992b. Protonation state of radiation-produced cytosine anions and cations in the solid-state — EPR ENDOR of cytosine monohydrate single-crystals X-irradiated at 10 K. J. Phys. Chem. 96:8269–8276.

    Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1996. Radiation damage to DNA base pairs.1. Electron paramagnetic resonance and electron nuclear double resonance study of single crystals of the complex I-methylthymine-9-methyladenine X-irradiated at 10 K. Radiat. Res. 146:425–435.

    Google Scholar 

  • Sagstuen, E., Hole, E. O., Haugedal, S. R., and Nelson, W. H. 1997. Alanine radicals: Structure determination by EPR and ENDOR of single crystals X-irradiated at 295 K. J. Phys. Chem. A 101:9763–9772.

    Article  Google Scholar 

  • Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1998. Radiation damage to DNA base pairs. II. Paramagnetic resonance studies of I-methyluracil center dot 9-ethyladenine complex crystals X-irradiated at 10 K. Radiat. Res. 149:120–127.

    Google Scholar 

  • Sanderud, A,, and Sagstuen, E. 1998. EPR and ENDOR studies of single crystals of alpha-glycine X-ray irradiated at 295 K. J. Phys. Chem. B 102:9353–9361.

    Article  Google Scholar 

  • Sankovic, K., Krilov, D., and Herak, J. N. 1991. Postirradiation long-range energy-transfer in a single crystal of cytosine monohydrate — An EPR study. Radial. Res. 128:119–124.

    Google Scholar 

  • Sankovic, K., Krilov, D., PranjicPetrovic, T., Huttermann, J., and Herak, J. N. 1996. Nature of the chlorine-centred paramagnetic species in irradiated crystals of cytosine hydrochloride doped with thiocytosine. Int. J Radial. Biol. 70:603–608.

    Google Scholar 

  • Sauvaigo, S., Serres, C., Signorini, N., Emonet, N., Richard, M. J., and Cadet, J. 1998. Use of the single-cell gel electrophoresis assay for the immunofluorescent detection of specific DNA damage. Anal. Biochem. 259:1–7.

    Article  Google Scholar 

  • Scharf, W. H. 1994. Methods of accelerating charged particles. In Biomedical particle accelerators, pp.45–134. American Institute of Physics, New York.

    Google Scholar 

  • Seminario, J. M. 1995. An introduction to density functional theory in chemistry. In Modern density functional theory: a toolfor chemistry (J. M. Seminario and P. Politzer, Eds.), pp. 1–27. Elsevier, Amsterdam.

    Google Scholar 

  • Sendra, E., Capellas, M., Guamis, B., Felipe, X., MorMur, M., and Pla, R. 1996. Review: Food irradiation. General aspects. Food Sci. Technol. Int. 2:1–11.

    Google Scholar 

  • Sevilla, M., Yan, M., Becker, D., and Gillich, S. 1989. ESR investigations of the reactions of radiation-produced thiyl and DNA peroxyl radicals-formation of sulphoxyl radicals. Free Radical Res. Commun. 6:99–102.

    Google Scholar 

  • Sevilla, M., Becker, D., Yan, M. Y., and Summerfield, S. R. 1991. Relative abundance of primary ion radicals in gamma-irradiated DNA-cytosine vs. thymine anions and guanine vs. adenine cations. J. Phys. Chem. 95:3409–3415.

    Article  Google Scholar 

  • Sevilla, M., Besler, B., and Colson, A. 0. 1995. 6Ab-initio molecular-orbital calculations of DNA radical ions.5. scaling of calculated electron-affinities and ionisation-potentials to experimental values. J Phys. Chem. 99:1060–1063.

    Article  Google Scholar 

  • Shalaby, S. W. 1996. Radiochemical sterilisation: a new approach to medical device processing. In Irradiation of polymers, fundamentals and technological applications (R. L. Clough and S. W. Shalaby, Eds.), pp. 246–253. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Shao, C., Saito, M., and Yu, Z. 1999. Radiation induced DNA strand breaks measured by a modified method of gel scanning. Rtadiat. Phys. Chem. 56:547–551.

    ADS  Google Scholar 

  • Signoretti, E. C., Onori, S., Valvo, L., Fattibene, P., Savella, A. L., Desena, C., and Alimonti, S. 1993. Ionising-radiation induced effects on cephradine-influence of sample moisture-content, irradiation dose and storage-conditions. Drug Develop. Ind. Pharm. 19: 1693–1708.

    Google Scholar 

  • Signoretti, E. C., Valvo, L., Fattibene, P., Onori, S., and Pantaloni, M. 1994. Gamma-radiation induced effects on cefuroxime and cefotaxime — investigation on degradation and syn-anti isomerisation. Drug Develop. Ind. Pharm. 20:2493–2508.

    Google Scholar 

  • Spalletta, R. A,, and Bernhard, W. A. 1993. Influence of primary structure on initial free-radical products trapped in A-T polydeoxynucleotides X-irradiated at 4 K. Radial. Res. 133:143–150.

    Google Scholar 

  • Steel, G. G. E. 1993. Basic clinical radiobiology

    Google Scholar 

  • Stehlik, D., and Mobius, K. 1997. New EPR methods for investigating photoprocesses with paramagnetic intermediates. Annu. Rev. Phys. Chem. 48:745–784.

    Article  ADS  Google Scholar 

  • Swarts, S. G., Sevilla, M., Becker, D., Tokar, C. J., and Wheeler, K. T. 1992. Radiation-induced DNA damage as a function of hydration.1. release of unaltered bases. Radial. Res. 129:333–344.

    Google Scholar 

  • Swarts, S. G., Becker, D., Sevilla, M., and Wheeler, K. T. 1996. Radiation-induced DNA damage as a function of hydration.2. Base damage from electron-loss centers. Radial. Res. 145:304–314.

    Google Scholar 

  • Szyczewski, A,, and Mobius, K. 1994. An ENDOR study of the radicals in a gamma-irradiated single-crystal of 17-alpha,2I-dihydroxyprogesterone. J. Mol. Struct. 318:87–93.

    Article  ADS  Google Scholar 

  • Szyczewski, A. 1996. EPR/ENDOR investigations of gamma-irradiated steroid hormone single crystals. Appl. Radiat. Isotopes 41:1675–1681.

    Google Scholar 

  • Szyczewski, A,, Endeward, B., and Mobius, K. 1998. ENDOR study of gamma-irradiated hydrated testosterone orthorhombic single crystals. Appl. Radial. Isotopes 49:59–65.

    Google Scholar 

  • Talrose, V. L., and Trofimov, V. I. 1995. Cryoradiation sterilisation —contemporary state and outlook. Radiat. Phys. Chem. 46:633–637.

    Article  ADS  Google Scholar 

  • Thakur, B. R., and Singh, R. K. 1994. Food irradiation — Chemistry and applications. Food. Rev. Int. 10:437–473.

    Google Scholar 

  • Tilquin, B., and Crucq, A. S. 1999. The chemistry of the radiosterilisation of solid pharmaceuticals. J. Chim. Phys. Phys-Chim. Biol. 96:167–173.

    ADS  Google Scholar 

  • Triolet, J., Thiery, C., Agnel, J. P., Battesti, C., Raffi, J., and Vincent, P. 1990. ESR spin trapping analysis of gamma-induced radicals in sucrose. Free Radical Res. Commun. 10:57–61

    Google Scholar 

  • Triolet, J., Thiery, C., Battesti, C., Agnel, J. P., Raffi, J., and Vincent, P. 1991. Spin trapping study of gamma-radiolysis of sucrose. J. Chim. Phys. Phys-Chim. Biol. 88: 1237–1244.

    Google Scholar 

  • Triolet, J., Rafi, J., Agnel, J. P., Battesti, C., Thiery, C., and Vincent, P. 1992a. Electron-spin resonance study of spin-trapped radicals from gamma-irradiation of fructans. Magn. Reson. Chem. 30: 1051–1053.

    Article  Google Scholar 

  • Triolet, J., Thiery, C., Agnel, J. P., Battesti, C., Raffi, J., and Vincent, P. 1992b. ESR spin trapping analysis of gamma-induced radicals in sucrose.2. Free Radical Res. Commun. 16:183–196.

    Google Scholar 

  • Turro, N. J., and Khudyakov, I. V. 1999. Applications of chemically induced dynamic electron polarisation to mechanistic photochemistry. Res. Chem. Intermediates 25 505–529.

    Google Scholar 

  • Vanhaelewyn, G., Mondelaers, W., and Callens, F. 1999. Effect of temperature on the electron paramagnetic resonance spectrum of irradiated alanine. Radat Res. 151:590–594.

    Google Scholar 

  • Van Lancker, M., Herer, A., Cleland, M. R., Jongen, Y., and Abs, M. 1999. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing. Nucl. Instrum. Meth. Phys. Res. B 151:242–246.

    ADS  Google Scholar 

  • Ventura, 0. N., Kieninger, M., and Irving, K. 1997. Density functional theory: A useful tool for the study of free radicals. Advan. Quantum. Chem. 28:293–309.

    ADS  Google Scholar 

  • Von Sonntag, C., Bothe, E., Ulanski, P., and Deeble, D. J. 1995. Pulse-radiolysis in model studies toward radiation processing. Radiat. Phys. Chem. 46:527–532.

    ADS  Google Scholar 

  • Wang, W., and Sevilla, M. 1994a. Reaction of cysteamine with individual DNA-base radicals in gamma-irradiated nucleotides at low-temperature. Int. J. Radiat. Biol. 66:683–695.

    Google Scholar 

  • Wang, W., Razskazovskii, Y., and Sevilla, M. 1997. Secondary radical attack on DNA nucleotides: Reaction by addition to DNA bases and abstraction from sugars. Int. J. Radiat. Biol. 71:387–399.

    Google Scholar 

  • Wang, W. D., Yan, M. Y., Becker, D., and Sevilla, M. 1994b. The influence of hydration on the absolute yields of primary free-radicals in gamma-irradiated DNA at 77 K.2. Individual radical yields. Radiat. Res. 137:2–10.

    Google Scholar 

  • Ward, J. F. 1990. The yield of DNA double-strand breaks produced intracellularly by ionising radiation — A review. Int. J. Radiat. Biol. 57:1141–1150.

    Google Scholar 

  • Wardman, P., and Ross, A, B. 1991. Radiation-chemistry literature compilations — Their wider value in free-radical research. Free Radical Biol. Med. 10:243–247.

    Article  Google Scholar 

  • Wardman, P., Candeias, L. P., Everett, S. A,, and Tracy, M. 1994. Radiation-chemistry applied to drug design. Int. J. Radiat. Biol. 65:35–41.

    Google Scholar 

  • Weil, J., Bolton J., and Wertz, E. 1994. Electron paramagnetic resonance: elementary theory and practical applications. John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Weiland, B., Huttermann, J., Malone, M. E., and Cullis, P. M. 1996. Formation of CI′ located sugar radicals from X-irradiated cytosine nucleosides and-tides in BeF2 glasses and frozen aqueous solutions. Int. J. Radiat. Biol. 70:327–336.

    Article  Google Scholar 

  • Wetmore, S. D., Boyd, R. J., and Eriksson, L. A. 1998a. Theoretical investigation of adenine radicals generated in irradiated DNA components. J. Phys. Chem. B 102:10602–10614.

    Google Scholar 

  • Wetmore, S. D., Himo, F., Boyd, R. J., and Eriksson, L. A. 1998b. Effects of ionising radiation on crystalline cytosine monohydrate. J. Phys. Chem. B 102:7484–7491.

    Google Scholar 

  • Wetmore, S. D., Boyd, R. J., and Eriksson, L. A. 1998c. Radiation products of thymine, 1-methylthymine, and uracil investigated by density functional theory. J. Phys. Chem. B 102:5369–5377.

    Google Scholar 

  • Wetmore, S. D., Boyd, R. J., and Eriksson, L. A. 1998e. A comprehensive study of sugar radicals in irradiated DNA. J. Phys. Chem. B 102:7674–7686.

    Google Scholar 

  • Wetmore, S. D., Boyd, R. J., and Eriksson, L. A. 1998d. Comparison of experimental and calculated hyperfine coupling constants. Which radicals are formed in irradiated guanine? J. Phys. Chem. B 102:9332–9343.

    Google Scholar 

  • Woods, R., and Pikaev, A. 1994. Applied radiation chemistry: radiation processing. John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Yan, M. Y., Becker, D., Summerfield, S., Renke, P., and Sevilla, M. 1992. Relative abundance and reactivity of primary ion radicals in gamma-irradiated DNA at low-temperatures.2. single-stranded vs. double-stranded DNA. J. Phys. Chem. 96: 1983–1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lahorte, P., Mondelaers, W. (2001). Radiation-Induced Bioradicals. In: De Cuyper, M., Bulte, J.W.M. (eds) Physics and Chemistry Basis of Biotechnology. Focus on Biotechnology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46891-3_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46891-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7091-8

  • Online ISBN: 978-0-306-46891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics