Skip to main content

Radiation-Induced Bioradicals

Physical, Chemical and Biological Aspects

  • Chapter
Physics and Chemistry Basis of Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 7))

Abstract

This chapter is part one of a review in which the production and application of radiation-induced bioradicals is discussed. Bioradicals play a pivotal role in the complex chain of processes starting with the absorption of radiation in biological materials and ending with the radiation-induced biological after-effects. The general aspects of the four consecutive stages (physical, physicochemical, chemical and biological) are discussed from an interdisciplinary point of view. The close relationship between radiation dose and track structure, induced DNA damage and cell survival or killing is treated in detail. The repair mechanisms that cells employ, to insure DNA stability following irradiation, are described. Because of their great biomedical importance tumour suppressor genes involved in radiation-induced DNA repair and in checkpoint activation will be treated briefly, together with the molecular genetics of radiosensitivity. Part two of this review will deal with modern theoretical methods and experimental instrumentation for quantitative studies in this research field. Also an extensive overview of the applications of radiation-induced bioradicals will be given. A comprehensive list of references allows further exploration of this research field, characterised in the last decade by a substantial advance, both in fundamental knowledge and in range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams G., Bremmer J., Stratford I., et al. 1991. Nitroheterocyclic compounds a radiosensitisers and bioreductive drugs. Radiother. Oncol. 20: 85–91.

    Article  Google Scholar 

  • Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. 1994. Molecular biology of the cell, 3″ed. Garland Publishing, New York.

    Google Scholar 

  • Alper T. 1980. Keynote address: survival curve models. In Radiation biology in cancer research. (R. Meyn, H. Whiters, Eds.), pp. 3–18. Raven, New York.

    Google Scholar 

  • Andreo P. 1991. Monte Carlo techniques in medical radiation physics. Phys. Med. Biol. 36: 861–920.

    Article  Google Scholar 

  • Attix F.H. 1986. Introduction to Radiological Physics and Radiation Dosimetry. Wiley-Interscience, New York.

    Google Scholar 

  • Ballarini F., Merzagora M., Monforti F., et al. 1999. Chromosome aberrations induced by light ions: Monte Carlo simulations based on a mechanistic model. Int. J. Radiat. Biol. 75: 35–46.

    Article  Google Scholar 

  • Becker D., Sevilla M. 1993. The chemical consequences of radiation damage to DNA. Adv. Radiat. Biol. 17: 121–180.

    Google Scholar 

  • Bedford J. 1991. Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionising radiations. Radiat. Oncol. Biol. Phys. 21: 1457–1469.

    Google Scholar 

  • Begusova M., Tartier L., Sy D., et al. 1999. Monte Carlo simulation of radiolytic attack to 5′-d[T(4)G(4)](4) sequence in a unimolecular quadruplex. Int. J. Radiat. Biol. 75: 913–917.

    Google Scholar 

  • Biaglow J. 1987. Ionising radiation in mammalian cells. In Radiation Chemistry, Principles and Applications (Farathaziz, Rodgers M., eds.). pp. 527–563. VCH Publishers, New York, 1987.

    Google Scholar 

  • Box H., Freund H., Budzinski E., Wallace J., and Maccubbin A. 1995. Free radical —induced double—base lesions. Rad. Res. 141: 91–94.

    Google Scholar 

  • Brenner D. 1990. Track structure, lesion development, and cell survival. Radiat. Res. 124: 29–37.

    Google Scholar 

  • Briesmeister J. 1993. MCNP— a general Monte Carlo N-particle code, version 4A. Rep. LA-12625. Los Alamos National Laboratory, Los Alamos, New Mexico.

    Google Scholar 

  • Britt A. 1996. DNA damage and repair in plants. Ann. Rev. Plant Phys. Plant Molec. Biol. 47: 75–100.

    Google Scholar 

  • Brown J., Wouters B. 1999. Apoptosis, p53, and tumour cell sensitivity to anticancer agents. Canc. Res. 59: 1391–1399.

    Google Scholar 

  • Buxton G., Greenstock C., Helman W., and Ross A. 1988. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH°/0°) in aqueous solution. J. Phys. Chem. Ref. Data 17: 513–886.

    ADS  Google Scholar 

  • Cadet J., Douki T., Gasparutto D., Gromova M., Pouget J.-P., Ravanat J.-L., Romieu A,, and Sauvaigo S. 1999. Kadiation-induced damage to DNA: mechanistic aspects and measurement of base lesions. Nucl. Inst. Meth. B151: 1–7.

    ADS  Google Scholar 

  • Callens F., Van Laere K., Mondelaers W., Matthys P., and Boesman E. 1996. The study of the composite character of the ESR spectrum of alanine. Appl. Radiat. Isot. 47: 1241–1250.

    Article  Google Scholar 

  • Cartwright R., and McMillan T. 1993. The isolation of repair genes. In Molecular Biology for Oncologists (Yarnold J., Stratton M., and McMillan T., Eds.). Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Cassoni A,, McMillan T., Peackock J., and Steel C. 1992. Differences in the level of DNA-double-strand breaks in human tumour-cell lines following low dose-rate irradiation. Eur. J. Canc. 28A: 1610–1614.

    Google Scholar 

  • Colson A,, Sevilla M. 1995. Elucidation of primary radiation-damage in DNA through application of abinitio molecular-orbital theory. Int. J. Radiat. Biol. 67: 627–645.

    Google Scholar 

  • Cooper M. 1997. Compton scattering and the study of electron momentum density distributions. Radiat. Phys. Chem. 50: 102–112.

    Article  Google Scholar 

  • Courdi A. 1993. Radiobiological rationale for protontherapy. Pathol. Biol. 41: 117

    Google Scholar 

  • Curtis S. 1986. Lethal and potentially lethal lesions induced by radiation — a unified repair model. Radiat. Res. 106: 252–270.

    Google Scholar 

  • Dahm-Daphi J., Dikomey E., Brammer I. 1998. DNA-repair, cell killing and normal tissue damage. Strahlentherapie und Onkologie 174: 8–11.

    Google Scholar 

  • Dasika G., Lin S., Zhao S., et al. 1999. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumourigenesis. Oncogene 18: 7883–7899.

    Google Scholar 

  • Deacon J., Peckham M., and Steel G. 1984. The radio responsiveness of human tumours and the initial slope of the cell survival curve. Radiother. Oncol. 2: 317–323.

    Google Scholar 

  • Dealmodovar J., Nunez M., McMillan T., Olea N., Mort C., Villalobos M., Pedraza V., and Steel G. 1994. Initial radiation-induced DNA-damage in human tumour-cell lines — a correlation with intrinsic cellular radiosensitivity. Brit. J. Cancer 69: 457–462.

    Google Scholar 

  • De Marco J., Solberg T., and Smathers J. 1998. A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med. Phys. 21: 1943–1952.

    Google Scholar 

  • Diehl J. 1981. Radiolytic effects in foods, in Preservation of food by ionising radiation. CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Diehl J. 1995. Safety of irradjated foods. Marcel Dekker Inc., New York.

    Google Scholar 

  • Evans H. 1994. The prevalence of multilocus lesions in radiation-induced mutants. Radiat. Res. 137: 131–144

    Google Scholar 

  • FAO/IAEA. 1996. Food irradiation Newsletter. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Ferradini C., Jay-Gerin J. 1999. Radiolysis of water and aqueous solutions — History and present state of the science. Can. J. Chem. — Rev. Can. Chim. 77: 1542–1575.

    Google Scholar 

  • Fertil B., and Malaise E.-P. 1981. Inherent cellular radiosensitivity as a basic concept for human tumour radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 7: 621–629.

    Google Scholar 

  • Frankenburgschwager M., Harbich R., Beckonert S., and Frankenberg D. 1994. Half-live values for DNA double-strand break rejoining in yeast can vary by more than an order of magnitude depending on the irradiation conditions. Int. J. Rad. Biol. 66: 543–547.

    Google Scholar 

  • Fulford J., Bonner P., Goodhead D., Hill M., and O’Neill P. 1999. Experimental determination of the dependence of OH radical yield on photon energy: A comparison with theoretical simulations. 3. Phys. Chem. A 103: 11345–11349.

    Article  Google Scholar 

  • Gallagher W., Brown R. 1999. p53-oriented cancer therapies: Current progress. Ann. Oncol. 10: 139–150.

    Article  Google Scholar 

  • Genvard L. 1993. X-ray attenuation coefficients: current state of knowledge availability. Radiat. Phys. Chem. 50: 783–789.

    ADS  Google Scholar 

  • Glass W., Varma M. 1991. Physical and Chemical Mechanisms in molecular Radiation Biology. Plenum Press, New York.

    Google Scholar 

  • Goodhead D. 1988. Spatial and temporal distribution of energy. Health Phys. 55: 231–240.

    Google Scholar 

  • Goodhead D., Nikjoo H. 1989. Track structure analysis of ultrasoft X-rays compared to high-and low-LET radiations. Int. J. Radiat. Biol 55: 513–529.

    Google Scholar 

  • Halbeib J., and Mehlhom T. 1984. ITS: the Integrated Tiger Series of coupled electron photon Monte Carlo transport codes. Rep. SAND84-0573. Sandia National Laboratories. Albuquerque, New Mexico.

    Google Scholar 

  • Hall E. 1994. Radiobiologyfor the Radiobiologist. Lippincott, Philadelphia.

    Google Scholar 

  • Hall P., and Lane D. 1994. Genetics of growth arrest and cell death: key determinants of tissue homeostasis. Eur. J. Cancer 30: 2001–2012.

    Google Scholar 

  • Harding G. 1997. Inelastic scattering effects and applications in biomedical science and industry. Radiat. Phys. Chem. 50: 91–111.

    Article  ADS  Google Scholar 

  • Henke B., Gullikson E., Davis J. 1993. X-ray interactions: photoabsorption, scattering, transmission and reflection at E=50–30000 eV, Z=1–92. At. Data Nucl. Data Tables 54: 181–342.

    Article  ADS  Google Scholar 

  • Hildenbrand K., Schultefrohlinde D. 1990. ESR-spectra of radicals of single-stranded and double-stranded DNA in aqueous-solution — implications of OH-induced strand breakage. Free Rad. Res. Comm. 11: 195–206.

    Google Scholar 

  • Hill M. 1999. Radiation damage to DNA: The importance of track structure. Radiat. Mea. 31: 15–23.

    Google Scholar 

  • Houée-Levin C. 1994. Radiolysis of proteins. J. Chim. Phys. Physico-Chem. Biol. 91: 1107–1120.

    Google Scholar 

  • Hubbell J. 1999. Review of photon interaction cross section data in the medical and biological context. Phys. Med. Biol. 44: 1–22.

    Article  Google Scholar 

  • ICRU Report 37. 1984. Stopping Powers for Electrons and Positrons. International Commission on Radiation Units and Measurements, Bethesda, MD.

    Google Scholar 

  • ICRU Report 46. 1992. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. International Commission on Radiation Units and Measurements, Bethesda, MD.

    Google Scholar 

  • ICRU Report 49. 1993. Stopping Powers and Ranges for Protons and Alpha Particles. International Commission on Radiation Units and Measurements, Bethesda, MD.

    Google Scholar 

  • Isabelle V., Franchet-Beuzit J., Sabattier R., Laine B., Spotheim-Maurizot M., and Charlier M. 1993. Radioprotection of DNA by a DNA-binding protein-MC 1 chromosomal from the archaebacterium. Int. J. Radiat. Biol. 63: 749–758.

    Google Scholar 

  • Isabelle V., Prevost C., Spotheim-Maurizot M., Sabattier R., and Charlier M. 1995. Radiation-induced damages in single-and double-stranded DNA. Int.J.Rad.Biol. 67: 169–176.

    Google Scholar 

  • Joiner M. 1993. Models for radiation cell killing. In Basic clinical radiobiology, (G. Steel, Ed.), pp. 40–46. Edward Arnold Publishers, London.

    Google Scholar 

  • Katz R., Zachariah R., Cucinotta F., and Zhang C. 1994. Survey of cellular radiosensitivity parameters. Rad. Res. 140: 356–365.

    Google Scholar 

  • Kiefer J. 1990. Biological Radiation Effects, Springer, Berlin.

    Google Scholar 

  • Klassen N. 1987. Primary products in radiation chemistry. In Radiation Chemistry, Principles and Applications (Farathaziz, Rodgers M., eds.). pp. 29–64. VCH Publishers, New York, 1987.

    Google Scholar 

  • Knoll G. 1989. Radiation Detection and Measurement. Wiley & Sons, New York.

    Google Scholar 

  • Lahorte P., De Profl F., Vanhaelewyn G., Masschaele B., Cauwels P., Callens F., Geerlings P., and Mondelaers W. 1999a. Density functional calculations of hyperfine coupling constants in alanine-derived radicals. Journ. Phys. Chem. A 103: 6650–6657.

    Google Scholar 

  • Lahorte P., De Proft F., Callens F., Geerlings P., and Mondelaers W. 1999b. A density functional study of hyperfine coupling constants in steroid radicals. J. Phys. Chem. A 103: 11130–11135.

    Google Scholar 

  • Lane D. 1992. p53, guardian of the genome. Nature 358: 15–16.

    Article  ADS  Google Scholar 

  • Laverne J., Pimblott S. 1993. Yields of hydroxyl radical and hydrated electron scavenging reactions in aqueous-solutions of biological interest. Rad. Res. 135: 16–23.

    Google Scholar 

  • Lee J., Abrahamson J., Bernstein A. 1994. DNA-damage, oncogenesis and the p53 tumour-suppressor gene. Mutation Research 307: 573–581.

    Google Scholar 

  • Lee J., Bernstein A. 1995. Apoptosis, cancer and the p53 tumour suppressor gene. canc. Met. reviews 14: 149–161

    Google Scholar 

  • Lehmann A. et al. 1992. Workshop on DNA-repair. Mutation Research 273: 1–28.

    Google Scholar 

  • Ma C.-H. 1999a. Monte Carlo modelling of electron beams from medical accelerators. Phys. Med. Biol. 44: 157–189

    Article  Google Scholar 

  • McLaughlin W. 1993. Dosimetry — new approaches. Radiat. Phys. Chem. 41: 45–56.

    Article  ADS  Google Scholar 

  • McKenna W., Iliakis G., and Muschel R. 1992. Mechanism of radioresistance in oncogene transfected cell lines, In Radiation research: a twentieth century perspective (Dewey C. et al., Eds), pp. 392–397. Academic Press, San Diego.

    Google Scholar 

  • McMillan T., Cassoni A,, and Edwards S. 1990. The relation of DNA double-strand break induction to radiosensitivity in human tumour cell lines. Int. J. Radiat. Biol. 58: 427–438.

    Google Scholar 

  • McMillan T., Steel G. 1993. Molecular aspects of radiation biology. In Basic clinical radiobiology, (G. Steel, Ed.), pp. 211–224. Edward Arnold Publishers, London.

    Google Scholar 

  • Mee L. 1987. Radiation chemistry of biopolymers. In Radiation Chemistry, Principles and Applications (Farathaziz, Rodgers M., eds.). pp. 477–499. VCH Publishers, New York.

    Google Scholar 

  • Meek D. 1999. mechanisms of switching on p53: a role for covalent modification? Oncogene 13: 7666–7675.

    Google Scholar 

  • Michalik V., Maurizot M., and Charlier M. 1995. Calculation of hydroxyl radical attack on different forms ofDNA. J. Biom. Struct. & Dyn. 13: 565–575.

    Google Scholar 

  • Michalik V., Spotheim-Maurizot M., and Charlier M. 1995. Calculated radiosensitivities of different forms ofDNA in solutions. Nucl. Inst. Meth. B105: 328–331.

    ADS  Google Scholar 

  • Murray A. 1992. Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599–604.

    Article  ADS  Google Scholar 

  • Niemann E. 1982. Strahlenbiophysik. In Biophysik (Hoppe W., Lohmann W., Markl H., Eds.) pp. 300–312. Springer Verlag, Berlin.

    Google Scholar 

  • Nikjoo H., Uehara S., Wilson W., Hoshi M., Goodhead D. 1998. Track structure in radiation biology: theory and applications. Int. J. Radiat. Biol. 73: 355–364.

    Google Scholar 

  • Nunez M., McMillan T., Valenzuela M., Dealmodovar J., Pedraza V. 1996. Relationship between DNA damage, rejoining and cell killing by radiation in mammalian cells. Radiotherapy and Oncology 39: 155–165

    Google Scholar 

  • Obe G., Johannes C., and Schulte-Frohlinde D. 1992. DNA double-strand breaks induced by sparsely ionising radiation and endonucleases as critical lesions for cell death, chromosomal aberrations, mutations and oncogene transformation. Mutagenesis 7: 3–12.

    Google Scholar 

  • Oleinick N. 1990. Symposium summary — Ionising-radiation damage to DNA — molecular aspects. Radiat. Res. 124: 1–6.

    Google Scholar 

  • Olive P. 1999. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int. J. Rad. Riol. 75: 395–405.

    Google Scholar 

  • Overgaard J., Horsman M. 1993. Overcoming hypoxic cell radioresistance. In Basic clinical radiobiology, (G. Steel, Ed.), pp. 163–172. Edward Arnold Publishers, London.

    Google Scholar 

  • Overgaard J. 1994. Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumours. Oncol. Res. 6: 509–518.

    Google Scholar 

  • Platzer I., and Getoff N. 1998. Vitamin C act as radiation protecting agent. Radiat. Phys. Chem. 51: 73–76.

    Article  ADS  Google Scholar 

  • Pollard E. 1983. Effect of radiation at the cellular and tissue level. In Preservation of food by ionising radiation. Vol. II. (Josephson E., Peterson M., Eds), pp. 219–242. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Rathmell W., and Chu G. 1994. A DNA end-binding factor involved in double-strand repair and V(D)J recombination, Mol. Cell Biol. 14: 4741–4748.

    Google Scholar 

  • Rogers D. 1991. The role of Monte Carlo simulation of electron transport in radiation dosimetry. Int. J. Appl. Radiat. Isot. 42: 965–974.

    Google Scholar 

  • Rosenwald J. 1993. Physical background for protontherapy. Pathol. Biol. 41: 115–116.

    Google Scholar 

  • Rowley R., Phillips E., Schroeder A. 1999. The effects of ionising radiation on DNA synthesis in eukaryotic cells. Int. J. Rad. Biol. 75: 267–283.

    Google Scholar 

  • Sachs R., Hahnfeld P., Brenner D. 1997. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Rad. Biol. 72: 351–374.

    Google Scholar 

  • Savitsky K. 1995. A single Ataxia Telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753

    ADS  Google Scholar 

  • Schulte-Frohlinde D. 1989. The effect of oxygen and thiols on the radiation-damage of DNA. Free Radical Res. Com. 6: 181–183.

    Google Scholar 

  • Seymour C., Mothersill C. 1989. Lethal mutations, the survival curve shoulder and split-dose recovery. Int. J. Radiat. Biol. 56: 999–1010.

    Google Scholar 

  • Shackleford R., Kaufmann W., Paules R. 1999. Cell cycle control, checkpoint mechanisms, and genotoxic stress. Env. Health Pers. 107: 5–24.

    Google Scholar 

  • Sharpatyi V. 1995. Aspects of radiation-chemistry of protein molecules — a review. High Energy Chemistry 29: 77–90.

    Google Scholar 

  • Sionov R., Haupt Y. 1999. The cellular response to p53: the decision between life and death. Oncogene 18: 6145–6157

    Article  Google Scholar 

  • Spotheim-Maurizot M., Franchet-Beuzit J., Isabelle V., Tartier L., and Carlier M. 1995. DNA radiolysis: mapping of gene regulations domains. Nucl. Inst. Meth. B105: 308–313.

    ADS  Google Scholar 

  • Steel G. 1993. Response of normal and malignant tissues to radiation exposure. In Basic clinical radiobiology, (G. Steel, Ed.), pp. 211–224. Edward Arnold Publishers, London.

    Google Scholar 

  • Steel G. 1999. From targets to genes: a brief history of radiosensitivity, Phys. Med. Biol. 41: 205–222.

    Google Scholar 

  • Steele R., Thompson A., Hall P., Lane D. 1998. The p53 tumour suppressor gene. Brit. J. Surg. 85: 1460–1467

    Article  Google Scholar 

  • Thames H., and Hendry J. 1987. Fractionation in radiotherapy. Taylor & Francis, London.

    Google Scholar 

  • Thompson L., Brookman K., Jones N., Allen S., and Carrano A. 1990. Molecular cloning of human XRCCl gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10: 6160–6171.

    Google Scholar 

  • Tomita H., Kai M., Kusama T., and Ito A. 1997. Monte Carlo simulation of physicochemical processes of liquid water radiolysis — The effects of dissolved oxygen and OH scavengers. Rad. Env. Biophys. 36: 105–116.

    Google Scholar 

  • Turner J. 1992. An introduction to Microdosimetry. Rad. Prot. Management 9(3): 25–58.

    Google Scholar 

  • Turner J. 1995. Atoms, Radiation and Radiation Protection. John Wiley & Sons, New York.

    Google Scholar 

  • Van Laere K., Onori S., Bartolotta A., and Callens F. 1993. Study of intrinsic energy dependence of alpha-alanine and dose intercomparison with ESR and ISE techniques. Appl. Radiat. Isot. 44: 33–39.

    Google Scholar 

  • von Sonntag C. 1987. The Chemical Basis of Radiation Action, Taylor and Francis, London.

    Google Scholar 

  • von Sonntag C. 1991. The elucidation of peroxyl radical reactions in aqueous-solution with the help of radiation-chemical methods. Angew. Chem. (English) 30: 1229–1253.

    Google Scholar 

  • von Sonntag C. 1994. Radiation-chemistry in the 1990s — Pressing questions relating to the areas of radiation biology and environmental research. 65: 19–26.

    Google Scholar 

  • Ward J. 1990. The yield of DNA double-strand breaks produced intracellularly by ionising radiation: a review. Int. J. Radiat. Biol. 57: 1141–1150.

    Google Scholar 

  • Weichselbaum R., Hallahan D., Sukhatme V., Dritschilo A,, Sherman M., Kufe D. 1991. Biological consequences of gene-regulation after ionising radiation exposure. J. Nat. Canc. Inst. 83: 480–484.

    Google Scholar 

  • Wetmore S., Boyd R., and Eriksson L. 1998a. Theoretical investigation of adenine radicals generated in irradiated DNA components. J. Phys. Chem. 102: 10602–10614.

    Google Scholar 

  • Wetmore S., Boyd R., and Eriksson L. 1998b. Comparison of experimental and calculated hyperfine coupling constants. Which radicals are formed in guanine radicals? J. Phys. Chem. B102: 9332–9343.

    Google Scholar 

  • WHO. 1984. Codex General Standard for Irradiated Foods. United Nations Food and Agriculture Organisation, WHO Codex Alimentarius Commission, Codex Alimentarius, XV.

    Google Scholar 

  • Woods R., Pikaev A. 1994. Applied Radiation Chemistry: Radiation Processing. Wiley-Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mondelaers, W., Lahorte, P. (2001). Radiation-Induced Bioradicals. In: De Cuyper, M., Bulte, J.W.M. (eds) Physics and Chemistry Basis of Biotechnology. Focus on Biotechnology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46891-3_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46891-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7091-8

  • Online ISBN: 978-0-306-46891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics