Skip to main content

Transgenic Fish: Production, Testing, and Risk Assessment

  • Chapter
Book cover Biotechnology in Animal Husbandry

Part of the book series: Focus on Biotechnology ((FOBI,volume 5))

Abstract

Domestic fish production through transgenic techniques offers many potential economics advantages for commercial aquaculture production, including introduction of new or novel traits and increased response to selection for faster growth. The traditional method of producing transgenic fish is still microinjection, however, advancements have been made using pseudotyped retroviral vectors and electroporation. Some success has also been shown using particle bombardment, but other methods such as sperm-mediated gene transfer, liposome-mediated DNA uptake, MPG peptide vector-oligonucleotide complex-mediated transfer, and nuclear transfer have had limited success in aquaculture. Several factors influence success of integration and expression, these include: the initial amount of DNA used in the injection (or electroporation), form of the DNA used (linear versus supercoiled), site of integration, copy number, and orientation of multiple transgene copies and matrix attachment regions (MARS).The species of origin and insertion of the transgene has also been shown to be important. Most promoters used in aquaculture are either constitutive or inducible, and except for being able to turn on or off the expression with inducible promoters, the level of expression remains uncontrolled. Progress has been made toward tissue specific promotion. The escape or introduction of transgenic fish into natural communities is a major ecological concern. Risk assessment can be addressed using the Net Fitness Approach (NFA) whereby critical fitness parameters are estimated on transgenic fish relative to wild type and incorporated into a model to predict risk. The net fitness parameters include viability to sexual maturity, age at sexual maturity, mating success, fecundity, fertility, and longevity. In this way, it is possible for regulators to develop a set of unambiguous tests to assess risk. Although it is impossible to measure these parameters under a totally natural setting, one can conclude if these parameters show no risk under a relatively favorable laboratory setting, they are even less likely to be a risk in nature?s more rigorous conditions. On the other hand, if the model predicts risk, it is not possible to conclude that this will translate into a real risk in nature, but adequate protection measures should be taken to prevent a de novo test of the hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, M. V. and Sutterlin, A. (1999) The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon, Anim. Behav. 58, 933–942.

    Article  Google Scholar 

  • Amsterdam, A., Lin, S. and Hopkins, N. (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos, Dev.Biol. 171, 123–129.

    Article  CAS  Google Scholar 

  • Bachiller, D., Schellander, K., Peli, J. and Rilther, U. (1991) Liposome-mediated DNA uptake by sperm cells, Mol. Reprod. Dev. 30, 194–200.

    Article  CAS  Google Scholar 

  • Bayer, T.A. and Campos-Ortega, J.A. (1992) A transgene containing lacZ is expressed in primary sensory neurons in zebrafish, Dev. 115,421–426.

    CAS  Google Scholar 

  • Brem, G., Brenig, B., Hörstgen-Schwark, G. and Winnacker, EL., (1988) Gene transfer in Tilapia (Oreochromisniloticus), Aquaculture 68, 209–2

    Article  CAS  Google Scholar 

  • Bright, C. (1996) Understanding the threat of biological invasions. in Starke L. (ed.) A World Watch Institute Report onprogress towarda sustainable society Norton W.W., New York, pp 95–113

    Google Scholar 

  • Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M.K. and Palmiter, R.D. (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs, Proc. Natl. Acad. Sci. USA 82, 4438–4442.

    CAS  Google Scholar 

  • Buono, R.J. and Linser, P.J. (1991) Transgenic zebrafish by electroporation, Bio-Rad US/EG Bulletin 1354, 1–3.

    Google Scholar 

  • Bums, J.C., Friedmann, T., Driever, W., Burrascano, M. and Yee, J.K., (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells, Proc. Natl.. Acad. Sci. USA 90,8033–8037.

    Google Scholar 

  • Caldovic, J., Agalliu, D. and Hackett, P.B. (1999) Position-independent expression of transgenes in zebrafish, Transgenic Res. 8, 321–334.

    Article  CAS  Google Scholar 

  • Chan, W.K. and Devlin, R.H. (1993) Polymerase chain reaction amplification and functional characterization of sockeye salmon histone H3, metallothionein-B, and protamine promoters, Mol. Mar. Biol. Biotech. 2,308–318.

    CAS  Google Scholar 

  • Chang, D.C. (1989) Cell poration and cell fusion using an oscillating electric field, Biophys. J. 56, 641–652.

    Article  CAS  Google Scholar 

  • Chang, D.C. and Reese, T.S. (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezingelectron microscopy, Biophys. J. 58, 1–12.

    CAS  Google Scholar 

  • Chen, T.T., Lu, J.K., Shamblott, M.J., Cheng, C.M., Lin, C.M., Bums, J.C., Reimschuessel, R., Chatakondi, N. and Dunham, R.A. (1995) Transgenic fish: ideal models for basic research and biotechnological applications, Zool. Stud. 34, 251–234.

    Google Scholar 

  • Chong, S.S.C. and Vielkind, J.R. (1989) Expression and fate of CAT reporter gene microinjected into fertilized medaka (Orpias latipes) eggs in the form of plasmid DNA, recombinant phage particles and its DNA, Theor.Appl. Genet. 78,369–380.

    Article  CAS  Google Scholar 

  • Chourrout, D., Guyomard, R. and Houdebine, L.M. (1986) High efficiency gene transfer in rainbow trout (Salmo gairdneri RICH.) by microinjection into egg cytoplasm, Aquaculture 51, 143–150.

    Article  CAS  Google Scholar 

  • Clark, A. J. (1997) Transgene rescue, in Houdebine L.M. (ed.), Transgenic animals generation and use Harwood academic publisher, France, pp 267–272.

    Google Scholar 

  • Culp, P., Nüsslein-Volhard, C. and Hopkins, N. (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs, Proc. Natl. Acad. Sci. USA 88, 7953–7957.

    CAS  Google Scholar 

  • Davies, P.L., Hew, C.L. and Fletcher, G.L. (1988) Fish antifreeze proteins: physiology and evolutionary biology, Can. J.Zool. 66, 2611–2617.

    Article  CAS  Google Scholar 

  • de Gaudemar, B. (1998) Sexual selection and breeding patterns: insights from salmonids (salmonidae), Acta Biotheoretica 46, 235–251.

    Google Scholar 

  • Devlin, R.H. (1997) Transgenic Salmonids, in Transgenic animals generation and use, Houdebine L.M. (ed.), Hanvood Academic Publishers, France, pp. 105–117.

    Google Scholar 

  • Devlin, R.H. and Donaldson, E.M. (1992) Containment of genetically altered fish with emphasis on salmonids, in Hew, C.L. and Hew G.L. (eds.) Transgenic Fish, World. Sci. Pub. Co. Singapore, pp. 229–265.

    Google Scholar 

  • Devlin, R.H, T.Y. Yesaki, C.A. Biagi, and E.M. Donaldson. (1994a) Extraordinary salmon growth. Nature. 371,209–210.

    Article  Google Scholar 

  • Devlin, R.H., Yesaki, T.Y., Biagi, C., Donaldson, E.M. and Chan, W.K. (1994b) Production and breeding oftransgenic salmon, Proc. 5th World Cong Genet. Appl. Livest. Prod. 19, 372–378.

    Google Scholar 

  • Devlin, R.H., Yesaki, T.Y., Donaldson, E.M., Du, S.J. and Hew, C.L. (1995a) Production of germline transgenic Pacific salmonids with dramatically increased growth performance, Can. J. Fish. Aquat. Sci. 52, 1376–1384.

    Google Scholar 

  • Devlin, R.H., Yesaki, T.Y., Donaldson, E.M. and Hew, C.L. (1995b) Transmission and phenotypic effects ofan antifreeze/GHgene construct in coho salmon (Oncorhynchus kisutch), Aquaculture 137, 161–169.

    CAS  Google Scholar 

  • Devlin, R.H., Johnsson, J.I., Smailus, D.E., Biagi, C.A., Jonsson, E. and Bjornsson, B.Th. (1999) Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutch (Walbaum), Aquacult. Res. 30, 479–482.

    Article  Google Scholar 

  • Donoghue, M.J., Patton, B.L., Sanes, J.R. and Merlie, J.P. (1992) An axial gradient of transgene methylation in murine skeletal muscle: genomic imprint of rostrocaudal position, Development 116, 1101–1112.

    CAS  Google Scholar 

  • Drake, J.A. and Mooney, H.A. (1986) Ecology of Biological Invasions of North America and Hawaii, Springer-Verlag edit, New York.

    Google Scholar 

  • Du, S. J., Gong, Z., Fletcher, G.L., Shears, M.A., King, M.J., Idler, D.R. and Hew, C.L. (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct, BioTechnology 10, 176–181.

    CAS  Google Scholar 

  • Dunham, R.A. (1999) Utilization of transgenic fish in developing countries: potential benefits and risks, J World Aquacult. Soc. 30, 1–11

    Google Scholar 

  • Dunham, R.A., Eash, J., Askins, J. and Townes, T.M. (1987) Transfer of the metallothionein-human growth hormone fusion gene into channel catfish, Trans. Am. Fisheries Soc. 116, 87–91.

    CAS  Google Scholar 

  • Farrell, A.P., Bennett, W. and Devlin, R.H. (1997) Growth-enhanced transgenic salmon can be inferior swimmers, Can. J Zool. 75,335–337.

    Google Scholar 

  • Fleming, I.A. (1998) Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids, Can. J. FisheriesAquatic Sci. Soc. 55 suppl1, 59–76.

    Google Scholar 

  • Fleming, I.A. (1996) Reproductive strategies of Atlantic salmon: ecology and evolution, Rev. Fish Biol. Fisheries 6,379–416.

    Article  Google Scholar 

  • Fletcher, G.L. and Davies, P.L. (1991) Transgenic fish for aquaculture, Genet. Engineer. 13, 331–370.

    CAS  Google Scholar 

  • Fletcher, G.L., Davies, P.L. and Hew, C.L. (1992) Genetic engineering of freeze resistant Atlantic salmon, in Hew, C.L. and Fletcher, G.L. (eds.) Transgenic Fish, World Scientific Publishing Co., Singapore, pp. 190–208.

    Google Scholar 

  • Fu, C., Cui, Y., Hung, S.S.O. and Zhu, Z. (1998) Growth and feed utilization by F4 human growth hormone transgenic carp fed diets with different protein levels, J. Fish Biol. 53, 115–129.

    CAS  Google Scholar 

  • Gibbs, P.D.L., Peek, A. and Thorgaard, G. (1994) An in vivo screen for the luciferase transgene in zebrafish, Mol. Mar. Biol. Biotech. 3, 307–316.

    CAS  Google Scholar 

  • Ginsburg, A.S. (1968) Fertilization in fishes and the problem of polyspermy. Academy of Sci.s of the USSR, Institute of Developmental Biology. Translated from Russian by Z. Blake and edited by B. Golek. (Israel program for Scientific Translations, Jerusalem) 1972, Keter Press Binding: Wiener Binding Ltd. Jerusalem. 366 pages.

    Google Scholar 

  • Gong, Z., Hew, C.L. and Vielkind, J.R. (1991) Functional analysis and temporal expression of promoter regions from fish antifreeze protein genes in transgenic Japanese medaka embryos, Mol. Mar. Biol. Biotech. 1,64–72.

    CAS  Google Scholar 

  • Hallerman, E.M. and Kapuscinski, A. (1990) Transgenic fish and public policy: regulatory concerns, Fisheries 15, 12–20

    Google Scholar 

  • Hamada, K., Tamaki, K., Sasado, Y., Watai, Y., Kani, S., Wakamatsu, Y., Ozato, K., Kinoshita, M., Kohno, R., Takagi, S. and Kimura, M. (1998) Usefulness of the medaka b-actin promoter investigated using a mutant GFP reporter gene in transgenic medaka (Oryzius latipes), Mol. Mar. Bid. Biotech. 7, 173–180.

    CAS  Google Scholar 

  • Hanky, S., Smith, T.J., Muller, F., Maclean, N., Uzbekova, S., Prunet, P. and Breton, B. (1998) Isolation and functional analysis of the histone H3 promoter from Atlantic salmon (Salmo salar L.), Mol. Mar. Biol. Biotech. 7, 165–172.

    Google Scholar 

  • Higashijima, S.I., Okamoto, H., Ueno, N, Hotta, Y. and Eguchi, G. (1997) High frequency generation of transgenic zebrafish which reliably express GFP in whole muscles orthe whole body by using promoters of zebrafish origin, Develop. Biol. 192, 289–299.

    CAS  Google Scholar 

  • Houdebine, L.M. and Chourrout, D. 1991. Transgenesis in fish, Experientia 47, 891–897.

    Article  CAS  Google Scholar 

  • Howard, R.D., Martens, R.S., Lnnes, S.A., Drnevich, J.M. and Hale, J. (1998) Mate choice and mate competition influence male body size in Japanese medaka, Anim. Behav. 55, 1151–1163.

    Google Scholar 

  • Inoue, K. and Yamashita, S. (1997) The techniques using electroporation to generate transgenic fish, in Houdebine, L.M. (ed.) Transgenic animals generation and use, Harwood academic publishers, France, pp. 129–132.

    Google Scholar 

  • Inoue, K., Yamashita, S., Hata, J., Kabeno, S., Asada, S., Nagahisa, E. and Fujita, T. (1990) Electroporation as a new technique for producing transgenic fish, Cell Diff Develop. 29, 123–128.

    CAS  Google Scholar 

  • Iwamatsu, T. (1983) A new technique for dechorionation and observations on the development of the naked egg in Oryzias latipes, J.Exper.Zool 228, 83–89.

    Google Scholar 

  • Iyengar, A. and Maclean, N. (1995) Transgene concatemerization and expression in rainbow trout (Oncorhynchus mykiss), Mol. Mar. Biol. Biotech. 4, 248–254.

    CAS  Google Scholar 

  • Iyengar, A., Müller, F. and Maclean, M. (1996) Regulation and expression of transgenes in fish— a review, TransgenicRes. 5, 147–166.

    CAS  Google Scholar 

  • Johnsson, J.I. (1993) Big and brave — size selection affects foraging under risk of predation in juvenile rainbow-trout, Oncorhynchusmykiss,Anim. Behav. 45, 1219–1225.

    Article  Google Scholar 

  • Johnsson, J.I., Petersson, E., JOnsson, E., Bjömsson, B.T. and Jarvi, T. (1996) Domestication and growth hormone alter antipredator behaviour and growth patterns in juvenile brown trout (Salmo trutta), Can. J. Fish. Aquatic Sci.53, 1546–1554.

    CAS  Google Scholar 

  • Johnsson, J.I., Petersson, E., Jönsson, E., Jarvi, T. and Björnsson, B.T. (1999) Growth hormone-induced effects on mortality, energy status and growth: a field study on brown trout (Salmo trutta), Funct. Ecol. 13,514–522.

    Article  Google Scholar 

  • Johnsson, J.I. and Bjomsson, B.T. (1994) Growth hormone increases growth rate, appetite and dominance injuvenile rainbow trout, Oncorhynchusmykiss,Anim. Behav. 48,177–186.

    Article  Google Scholar 

  • Jönsson, E., Johnsson, J.I. and Björnsson, B.T. (1998) Growth hormone increases aggressive behavior in juvenile rainbow trout, Horm. Behav. 33, 9–15.

    Google Scholar 

  • Jbnsson, E., Johnsson, J.I. and Björnsson, B.T. (1996) Growth hormone increases predation exposure of rainbow trout, Proc. RoyalSoc. London Series B 263,647–651.

    Google Scholar 

  • Ju, B., Xu, Y., He, J., Liao, J., Yan, T., Hew, C.L., Lam, T.J. and Gong, Z. (1999) Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters, Develop. Genet. 25, 158–167.

    CAS  Google Scholar 

  • Kapuscinski, A.R. and Hallerman, E.M. (1990) Transgenic fish and public policy: anticipating environmental impacts oftransgenic fish, Fisheries 15,2–11.

    Article  Google Scholar 

  • Khoo, H.-W., Ang, L.H., Lim, H.B. and Wong, K.Y. (1992) Sperm cells as vectors for introducing foreign DNA into zebrafish, Aquaculture 107, 1–19.

    Article  CAS  Google Scholar 

  • Kinoshita, M., Toyohara, H., Sakaguchi, M., Inoue, K., Yamashita, S., Satake, M., Wakamatsu, Y. and Ozato, K. (1996) A stable line of transgenic medaka (Oryzias latipes) carrying the CAT gene, Aquaculture 143, 267–276.

    Article  Google Scholar 

  • Knibb, W. (1997) Risk from genetically engineered and modified marine fish, Transgenic Res. 6, 59–67.

    Article  CAS  Google Scholar 

  • Komatsu, S., Okazaki, Y., Tateno, M., Kawai, J., Konno, H., Kusakabe, M., Yoshiki, A., Muramatsu, M., Held, W.A. and Hayashizaki, Y. (2000) Methylation and downregulated expression of mac25/insulin-like growth factor binding protein-7 is associated with liver tumorigenesis in SV40T/tantigen transgenic mice, screened by restriction landmark genomic scanning for methylation (RLGS-M), Bioch. Biophys. Res. Comm.267, 109–117.

    CAS  Google Scholar 

  • Krasnov, A., Pitklnen, T.I. and Mölsä, H.. (1999a) Gene transfer for targeted modification of salmonid fish metabolism: genetic Analysis, Biomol. Engineer. 15, 115–119.

    CAS  Google Scholar 

  • Krasnov, A., Pitklnen, T.I., Nishikimi, M. and Mölsä, H. (1999b) Expression of human glucose transporter type I and rat hexokinase type II complementary DNAs in rainbow trout embryos, effects on glucose metabolism, Mar. Biotechnol. 1, 25–32.

    CAS  Google Scholar 

  • Krisher, R.L., Gibbons, J.R. and Gwazdauskas, F.C. (1995) Nuclear transfer in the bovine using microinjected donor embryos: assessment of development and deoxyribonucleic acid detection frequency, J. Dairy Sci. 78, 1282–1288.

    Article  CAS  Google Scholar 

  • Lakra, W.S. and Das, P. (1998) Genetic engineering in aquaculture, Ind. J. Anim. Sci. 68, 873–879.

    Google Scholar 

  • Lin, S., Gaiano, N., Culp, P., Bums, J.C., Friedmann, T., Yee, J.K. and Hopkins, N. (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish, Science 265, 666–669.

    CAS  Google Scholar 

  • Linney, E., Hardison, N.L., Lonze, B.E., Lyons, L. and DiNapoli, L. (1999) Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-microinjection approaches, Develop. Biol. 213, 207–216.

    Article  CAS  Google Scholar 

  • Liu, Z., Li, P. and Dunham, R.A. (1998) Characterization of an A/T-rich family of sequences from channel catfish (Ictalurus punctatus), Mol. Mar. Biol. Biotech. 7, 232–239.

    CAS  Google Scholar 

  • Lodge, D.M. (1993) Biological invasions: lessons for ecology, Trends Ecol. Evol. 8, 133–137.

    Google Scholar 

  • Long, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J. and Lin, S. (1997) GATA-I expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene, Development 124,4105–4111.

    CAS  Google Scholar 

  • Lu, J.K., Burns, J.C. and Chen, T.T. (1997) Pantropic retroviral vector integration, expression, and germline transmission in medaka (Oryzias Iatipes),Mol. Mar. Biol. Biotech. 6, 289–295.

    CAS  Google Scholar 

  • Lu, J.K., Chen, T.T., Allen, S.K., Matsubara, T. and Burns, J.C. (1996) Production of transgenic dwarf surfclams, Mulinia lateralis, with pantropic retroviral vectors, Proc. Natl. Acad. Sci. USA 93, 3482–3486.

    CAS  Google Scholar 

  • Martinez, R., Estrada, M.P., Rerlanga, J., Guillen, I., Hernandez, O., Cabrera, E., Pimentel, R., Morales, R., Herrera, F., Morales, A., Pina, J.C., Abad, Z., Sanchez, V., Melamed, P., Leonart, R. and de la Fuente, J. (1996) Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone, Mol. Mar. Biol. Biotech. 65, 62–70.

    Google Scholar 

  • Matzke, A., Neuhuber, F., Park, Y.D., Ambros, P.F. and Matzke, A.J.M. (1994) Homology-dependent gene silencing in transgenic plants-epistatic silencing loci contain multiple copies of methylated transgenes, Mol. Gen. Genet. 244,219–229.

    Article  CAS  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. (1995) Homology-dependent gene silencing in transgenic plants: what does it really tell us?, Trends Genet. 11, 1–3.

    Article  CAS  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. (1998) Gene silencing in plants: relevance for genomic evolution and the acquisition of genomic methylation patterns, Epigenetics 214, 168–180.

    CAS  Google Scholar 

  • Moran, P., Pendas, A.M., Beall, E. and Garcia-Vazquez, E. (1996) Genetic assessment of the reproductive success of Atlantic salmon precocious parr by means ofVNTR loci, Heredity 77, 655–660.

    Google Scholar 

  • Mori, T. and Devlin, R.H. (1999) Transgene and host growth hormone gene expression in pituitary and nonpituitary tissues of normal and growth hormone transgenic salmon, Mol. Cell. Endocrinol. 149, 129–139.

    Article  CAS  Google Scholar 

  • Morris, M.C., Vidal, P., Chaloin, L., Heitz, F., and Divita, G. (1997) A new peptide vector for efficient delivery ofoligonucleotides into mammalian cells, Nucl. AcidRes. 25, 2730–2736.

    CAS  Google Scholar 

  • Muir W.M., Hostetler, H.A, Rider, S.D.Jr, Schulte, S.J., and Howard, R.D. (2000) Effect of the Atlantic salmon growth hormone promoter (sGH) human growth hormone (hGH) gene construct on growth and survival in Japanese medaka (Oryzius latipes), submitted.

    Google Scholar 

  • Muir, W.M. and Howard, R.D. (2000) Methods to Assess Ecological Risks of Transgenic Fish Releases, in Letourneau, D.K. and Burrows, B.E. (eds) Genetically Engineered Organisms: Assessing Environmental andHuman Health Effects, CRC Press, in Press.

    Google Scholar 

  • Muir, W.M. and Howard, R.D. (1999) Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis, Proc. Natl. Acad. Sci. USA 96, 13853–13856.

    Article  CAS  Google Scholar 

  • Muir, W.M., Howard, R.D., and Bidwell, C. (1994) Use of multigenerational studies to assess genetic stability, fitness, and competitive ability of transgenic Japanese medaka: I. Methodology, Proc. Biotech. Risk Assess. Symp., pp. 170–193.

    Google Scholar 

  • Muir, W.M., R. D. Howard, R. S. Martens, S. Schulte, and C. A. Bidwell. (1996) Use of multigenerational studies to assess genetic stability, fitness, and competitive ability of transgenic Japanese medaka, III. results and predictions, Proc. 8 th Inter. Conf RiskAssess. Method

    Google Scholar 

  • Muir. W.M., Martens, R., Howard, R.D. and Bidwell, C. (1995) Use ofmultigenerational studies to assess genetic stability, fitness, and competitive ability of transgenic Japanese medaka: II. Development of transgenic medaka and mating preferences, Proc.2 nd Inter. Conf Risk Assess. Method.

    Google Scholar 

  • Muldoon, R.R., Levy, J.P., Kain, S.R., Kitts, P.A. and Link, C.J. Jr. (1997) Tracking and quantitation of retroviral-mediated transfer using a completely humanized, red-shifted green fluorescent protein gene, BioTech.22, 162–167.

    CAS  Google Scholar 

  • Muller, F., Lele, Z., Varadi, L., Menczel, L. and Orbán, L. (1993) Efficient transient expression system based on square pulse electroporation and in vivo luciferase assay of fertilized fish eggs, FEBS324, 27–32.

    CAS  Google Scholar 

  • Murakami, Y., Motohashi, K.. Yano, K., Ikebukruo, K., Yokoyama, K., Tamiya, E. and Karube, I. (1994) Micromachined electroporation system for transgenic fish, J. Biotech. 34, 35–42.

    Article  CAS  Google Scholar 

  • Nam. Y.K., Jeong, C.H. and Kim, D.S. (1998) A simple clearing method for improved visualization oflacZ expression in fish larvae, TransgenicRes. 7, 397–399.

    CAS  Google Scholar 

  • Namciu, S.J., Blochlinger, K.B. and Foumier, R.E.K. (1998) Human matrix attachment regions insulate transgene expression from chromosomal position effect in Drosophila melunogaster, Mol. Cell. Biol. 18,2382–2391.

    CAS  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y. and Hofschneider, P.N. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBOJ. I, 841–845.

    Google Scholar 

  • Ozato, K., Kondoh, H., Inohara, H., Iwamatsu, T. Wakamatsu, Y. and Okada, T.S. (1986) Production of transgenic fish: introduction and expression of chicken d-crystallin gene in medaka embryos, Cell Diff 19,237–244.

    CAS  Google Scholar 

  • Ozato, K., Inoue, K. and Wakamatsu, Y. (1989) Transgenic fish: biological and technical problems, Zool. Sci. 6,445–457.

    Google Scholar 

  • Palmiter, R.D., Norstedt, G., Gelinas, R.E., Hammer, R.E. and Brinster, R.L. (1983) Metallothionein-hGH fusion genes stimulate growth of mice, Science 222, 809–814.

    CAS  Google Scholar 

  • Park, Y.D., Papp, Y., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J.M. and Matzke, M.A. (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity, PlantJ. 9, 183–194.

    CAS  Google Scholar 

  • Patil, J.G., Wong, V. and Khoo, H.W. (1994) Assessment of pMTL construct for detection in vivo of luciferase expression and fate of the transgene in the zebra fish, Brachydanio rerio, Zool. Sci. 11, 63–68.

    CAS  Google Scholar 

  • Penman, D.J., Beeching, A.J., Penn, S. and Maclean, N. (1990) Factors affecting survival and integration following microinjection of novel DNA into rainbow trout eggs, Aquaculture 85, 35–50.

    Article  CAS  Google Scholar 

  • Pitktinen, T.I., Krasnov, A., Teerijoki, H. and Mölsä, H. (1999b) Transfer of growth hormone (GH) transgenesinto Arcticcharr (Salvelinus alpinus L.) I. Growth responseto various GH constructs. Genetic Analysis, Biomol. Engin. 15, 91–98.

    Google Scholar 

  • Pitkänen, T.I., Krasnov, A., Reinisalo, M. and Mölsä, H. (1999a) Transfer and expression of glucose transporter and hexokinase genes in salmonid fish, Aquaculture 173, 319–332.

    Google Scholar 

  • Prather, R.S., Barnes, F.L., Sims, M.M., Robl, J.M., Eyestone, M.H. and First, N.L. (1987) Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte, Biol. Reprod. 37, 859–866.

    Article  CAS  Google Scholar 

  • Rahman, M.A. and Maclean, N. (1992) Production of transgenic tilapia (Oreochromis niloticus) by one-cell stage microinjection, Aquaculture 105,119–232.

    Article  Google Scholar 

  • Rahman, M.A. and Maclean, N. (1999) Growth performance of transgenic tilapia containing an exogenous piscine growth hormone gene, Aquaculture 173, 333–346.

    Article  CAS  Google Scholar 

  • Rahman, M.A., Lyengar, A. and Maclean, N. (1997) Co-injection strategy improves integration efficiency of a growth hormone gene construct, resulting in lines of transgenic tilapia (Oreochromis niloticus) expressing an exogenous growth hormone gene, Transgenic Res. 6, 369–378.

    CAS  Google Scholar 

  • Rahman, M.A., Mak, R., Ayad, H., Smith, A. and Maclean, N. (1998) Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus), Transgenic Res 7, 357–369.

    Article  CAS  Google Scholar 

  • Salehi-Ashtiani, K., Widrow, R.J., Marker, C.L. and Goldberg, E. (1993) Testis-specific expression of a metallothionein 1-driven transgene correlates with undermethylation of the locus in testicular DNA, Proc. Natl. Acad. Sci. USA 90, 8886–8890.

    CAS  Google Scholar 

  • Saunders, R.L., Fletcher, G.L. and Hew, C.L. (1998) Smolt development in growth hormone transgenic Atlantic salmon, Aquaculture 168, 177–193.

    Article  CAS  Google Scholar 

  • Schaefer-Ridder, M., Wang, Y. and Hofschneider, P.H. (1982) Liposomes as gene carriers: efficient transformation ofmouse L cells by thymidine kinase gene, Science 215, 166–168.

    CAS  Google Scholar 

  • Shears, M.A., Fletcher, G.L., Hew, C.L., Gauthier, S., and Davies, P.L. (1991) Transfer, expression, and stable inheritance of antifreeze protein genes in Atlantic salmon (Salmo salar), Mol. Mar. Biol. Biotech. 1, 58–63.

    CAS  Google Scholar 

  • Shears, M.A., King, M.J., Goddard, S.V. and Fletcher, G.L. (1992) Gene transfer in salmonids by injection through the micropyle, in Hew C.L. and Fletcher G.L. (eds), Transgenic fish. World Scientific Publishing Co., Singapore, pp. 44–60.

    Google Scholar 

  • Sheela, S.G., Chen. J.D., Mathavan, S. and Pandian, T.J. (1998) Construction, electroporation transfer and expression of ZpbypGH and ZpbrtGH in zebrafish, J. Biosci. 23, 565–576.

    CAS  Google Scholar 

  • Sheela, S.G., Pandian, T.J. and Mathavan, S. (1999) Electroporation transfer, stable integration, expression and transmission of pZpfb ypGH and pZpbrtGH in Indian catfish, Heteropneustes (Bloch), Aquaculture Res. 30, 233–248.

    Google Scholar 

  • Shigekawa, K. and Dower, W.J. (1988) Electroporation of eukaryotes and prokaryotes: a general approach to the introduction ofmacromolecules into cells, BioTech. 6, 742–75 I.

    CAS  Google Scholar 

  • Sims, M. and First, N.L. (1993) Production of calves by transfer of nuclei from cultured inner cell mass cells, Proc. Natl. Acad. Sci. USA 90, 6143–6147.

    Google Scholar 

  • Sin, F.Y.T. (1997) Transgenic fish, Rev. Fish Biol Fish. 7,417–441.

    Google Scholar 

  • Sippel, A.E., Saueressig, H., Huber, M.C., Faust, N. and Bonifer, C. (1997) Insulation of transgenes from chromosomal position effects, in Houdebine L.M. (ed.), Transgenic animals generation and use, Harwood academic publishers, France, pp. 257–265.

    Google Scholar 

  • Snibson, K.J. and Adams, T.E. (1997) Transgenic methylation in transgenic animals, in Houdebine L.M. (ed.), Transgenic animals generation and use, Harwood academic publishers, France, pp 237–243.

    Google Scholar 

  • Stuart, G.W., Vielkind, J.R., McMurray, J.V. and Westerfield, M. (1990) Stable lines of transgenic zebratish exhibit reproducible patterns of transgene expression, Develop 109, 577–584.

    CAS  Google Scholar 

  • Stuart, G.W., McMurray, J.V. and Westerfield, M. (1988) Replication, integration and stable germ-line transmission offoreign sequences injected into early zebrafish embryos, Develop. 103,403–412.

    CAS  Google Scholar 

  • Takagi, S., Sasado, T., Tamiya, G., Ozato, K., Wakamatsu, Y., Takeshita, A. and Kimura, M. (1994) An efficient expression vector for transgenic medaka construction, Mol. Mar. Biol. Biotech. 3, 192–199.

    CAS  Google Scholar 

  • Thomaz D, Beall E, and Burke, T. (1997) Alternative reproductive tactics in Atlantic salmon: Factors affecting mature parr success, Proc. Royal Soc. London Series B-Biol. Sci. 264,219–226.

    Google Scholar 

  • Tiedje, J.M., Colwell, R.K., Grossman, Y.L., Hodson, R.E., Lenski, R.E., Mack, R.N. and Regal, P.J. (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations, Ecology 70, 298–315.

    Google Scholar 

  • Tse, C.-M. and Young, J.D. (1990) Glucose transport in fish erythrocytes, variable cytochalasin-B-sensitive hexose transport activity in the common eel (Anguilla japonica) and transport deficiency in the paddyfish eel (Monopterus albus) and rainbow trout (Salmo gairdneri), J. Exp. Biol 148, 367–383.

    CAS  Google Scholar 

  • Vain, P., Worland, B., Rohli, A., Snape, J.W., Christou, P., Allen, G.C. and Thompson, M.F. (1999) Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny, PlantJ18, 233–242.

    CAS  Google Scholar 

  • Vielkind, J.R. (1992) Medaka and zebrafish, ideal as transient and stable transgenic systems, in Hew C.L. and Fletcher, G.L. ([eds.), Transgenic fish, World Scientific Publishing Co., Singapore, pp. 72–91

    Google Scholar 

  • Volckaert, F.A., Hellemans, B.A., Galbusera, P., Sekkali, B., Belayew, A. and Ollevier, F. (1994) Replication, expression, and fate of foreign DNA during embryonic and larval development of the African catfish (Clariasgariepinus), Mol. Mar. Biol. Biotech. 3, 57–69.

    CAS  Google Scholar 

  • Wall, R.J. and Burdon, T.G. (1997) The fate of microinjected genes in preimplantation embryos, in Houdebine L.M. (ed.), Transgenic animals generation and use, Harwood academic publishers, France, pp215–217.

    Google Scholar 

  • Wallace, K, Ansell, R., Clark, J. and McWhir, J. (2000) Pre-selection of integration sites imparts repeatable transgene expression, Nucl. Acids Res. 28, 1455–1464.

    Article  CAS  Google Scholar 

  • Walton, C.-M. and Cowey, C.B. (1982) Aspects of intermediary metabolism insalmonid fish, Comp. Biochem. Physiol. B 73, 59–79

    Google Scholar 

  • Winkler, C. and Schartl, M. (1997) Gene transfer in laboratory fish, model organisms for the analysis of gene function, in Houdebine L.M. (ed.), Transgenic animals generation and use, Harwood academic publishers, France, pp 387–395.

    Google Scholar 

  • Wright, S. 1969. Evolution and the Genetics of Populations. Vol. 2. The Theories of Gene Frequencies, Univ.of Chicago Press.

    Google Scholar 

  • Wright, S. 1982. The shifting balance theory ofmacroevolution, Ann. Rev. Genet. 16, 1–19.

    CAS  Google Scholar 

  • Xie, Y., Liu, D., Zou, J., Li, G. and Zhu, Z. (1993) Gene transfer via electroporation in fish, Aquaculture 111,207–213.

    Article  CAS  Google Scholar 

  • Zelenin, A.V., Alimov, A.A., Barmintzev, V.A., Beni, A.O., Zelenina, I.A., Krasnov, A.M. and Kolesnikov, V.A. (1997) The delivery of foreign genes into fertilized fish eggs using high microprojectiles. FEBS 287 (1,2), 118–120.

    Google Scholar 

  • Zhang, P., Hayat, M., Joyce, C., Gonzalez-Villaseñor, L.I., Lin, C.M., Dunham, R.A., Chen, T.T. and Powers, D.A. (1990) Gene transfer, expression and inheritance of pRSV-rainbowtrout-GH cDNA in the common carp, Cyprinuscarpio (Linnaeus), Mol Reprod, Dev 25, 3–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Muir, W.M., Hostetler, W.M. (2001). Transgenic Fish: Production, Testing, and Risk Assessment. In: Renaville, R., Burny, A. (eds) Biotechnology in Animal Husbandry. Focus on Biotechnology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-46887-5_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46887-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6851-9

  • Online ISBN: 978-0-306-46887-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics