Advertisement

Evolution of Side Biases: Motor versus Sensory Lateralization

Chapter

Keywords

Left Hemisphere Zebra Finch Hand Preference Behavioural Brain Research Bufo Bufo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, J., Castellano, M.A., & Rodriguez, M. (1991). Behavioural lateralization in rats: Prenatal stress and effects on sex differences. Brain Research, 539, 45–50.PubMedCrossRefGoogle Scholar
  2. Bauer, R.H. (1993). Lateralization of neural control for vocalization by the frog (Rana pipiens). Psychobiology, 21, 243–248.Google Scholar
  3. Andrew, R.J., Clifton, P.J., & Gibbs, M.E. (1981). Enhancement of effectiveness of learning by testosterone in domestic chicks. Journal of Comparative Physiology and Psychology, 95, 406–417.Google Scholar
  4. Bisazza, A., Cantalupo, C, Capocchiano, M., & Vallortigara, G. (2000). Population lateralization and social behaviour: A study with sixteen species of fish. Laterality, in press.Google Scholar
  5. Bisazza, A., Cantalupo, C., Robins, A., Rogers, L. J., & Vallortigara, G. (1996). Right-pawedness in toads. Nature, 379, 408.CrossRefGoogle Scholar
  6. Bisazza, A., Cantalupo, C., Robins, A., Rogers, L.J., & Vallortigara, G. (1997) Pawedness and motor asymmetries in toads. Laterality, 1, 161–175.Google Scholar
  7. Bisazza, A., de Santi, A., & Vallortigara, G. (1999). Laterality and cooperation: Mosquitofish move closer to a predator when the companion is on their left side. Animal Behaviour, 57, 1145–1149.PubMedCrossRefGoogle Scholar
  8. Bisazza, A., Pignatti, R., & Vallortigara, G. (1997a). Detour tests reveal task-and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behavioural Brain Research, 89, 237–242.PubMedCrossRefGoogle Scholar
  9. Bisazza, A., Pignatti, R., & Vallortigara, G. (1997b). Laterality in detour behaviour: Interspecific variation in poeciliid fish. Animal Behaviour, 54, 1273–1281.PubMedGoogle Scholar
  10. Bisazza, A., Rogers, L.J., & Vallortigara, G. (1998). The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neuroscience and Biobehavioral Reviews, 22, 411–426.PubMedCrossRefGoogle Scholar
  11. Bisazza, A., & Vallortigara, G. (1996). Rotational bias in mosquitofish (Gambusia hoolbrooki): The role of lateralization and sun-compass navigation. Laterality, 1, 161–175.PubMedCrossRefGoogle Scholar
  12. Bisazza, A., & Vallortigara, G. (1997). Rotational swimming preferences in mosquito fish: Evidence for brain lateralization? Physiology and Behavior, 62, 1405–1407.PubMedCrossRefGoogle Scholar
  13. Bradshaw, J. L., & Rogers, L.J. (1993). The evolution of lateral asymmetries, language, tool use, and intellect. San Diego: Academic Press.Google Scholar
  14. Bradshaw, J.L., & Rogers, L.J. (1996). Tool use and evolutionary development of manual asymmetry. In D. Elliott and E.A. Roy (eds.), Manual asymmetries in motor performance (pp. 33–54). Boca Raton: CRC Press.Google Scholar
  15. Britton, R. H., & Moser, M. E. (1982). Size specific predation by herons and its effecton the sex-ratio of natural populations of the mosquitofish Gambusia affinis. Oecologia, 53, 146–151.CrossRefGoogle Scholar
  16. Cameron, R., & Rogers, L.J. (1999). Hand preferenceof the common marmoset, problem solving and responses in a novel setting. Journal of Comparative Psychology, 113, 149–157.CrossRefGoogle Scholar
  17. Canfield, J. G., & Rose, G. J. (1993). Activation of the Mauthner neurons during prey capture. Journal ofComparative Physiology, 172, 611–618.Google Scholar
  18. Cannon, C.E. (1983). Descriptions of foraging behaviour of eastern and pale-headed rosellas. Bird Behaviour, 4, 63–70.Google Scholar
  19. Cantalupo, C., Bisazza, A., & Vallortigara, G. (1995). Lateralization of predator-evasion response in a teleost fish (Girardnus falcatus). Neuropsychologia, 33, 1637–1646.PubMedCrossRefGoogle Scholar
  20. Casperd, J. M., & Dunbar, R.I. M. (1996). Asymmetriesin the visual processing of emotional cues during agonistic interactions by gelada baboons. Behavioural Processes, 37, 57–65.CrossRefGoogle Scholar
  21. Clayton, N. S., & Krebs, J. (1993). Lateralization and unilateral transfer in marsh tits. Journal of Comparative Physiology, 171, 799–806.Google Scholar
  22. Collins, R.L. (1985). On the inheritance of direction and degree of asymmetry. In Glick, S.D. (ed.), Cerebrallateralization innonhuman species (pp. 41–71). New York: Academic Press.Google Scholar
  23. Corballis, M. (1991). The lopsided ape: Evolution of the generative mind. Oxford: Oxford University Press.Google Scholar
  24. Cowell, P. E., Waters, N. S., & Denenberg, V. H. (1997). The effects of early environment on the development of functional laterality in Morris maze performance. In Fagot, J., Rogers, L. J., Ward, J. P., Bulman-Fleming, B., & Hopkins, W. (eds.), Hemispheric specialisation in animals and humans (pp. 221–232). Hove: Psychology Press.Google Scholar
  25. Cynx, J., Williams, H., & Nottebohm, F. (1992). Hemispheric differences in avian song discrimination. Proceedings of the National Academy of Sciences, U.S.A., 89, 1372–1375.Google Scholar
  26. Deckel, A.W. (1995). Laterality of aggressive responses in Anolis. Journal of Experimental Zoology, 272, 194–200.CrossRefGoogle Scholar
  27. Deckel, A.W. (1996). Behavioural changes in Anolis carolinensis following injection with fluoxetine. Behavioural Brain Research, 78, 175–182.PubMedGoogle Scholar
  28. Deckel, A.W. (1998). Hemispheric control of territorial aggression in Anolis carolinensis: Effects of mild stress. Brain Behaviour and Evolution, 51, 33–39.Google Scholar
  29. Deckel, A.W., & Jevitts, E. (1997). Left-vs. right-hemisphere regulation of aggressive behaviours in Anoliscarolinensis: Effects of eye-patching and fluoxetine administration. The Journal of Experimental Zoology, 278, 9–21.Google Scholar
  30. Denenberg, V.H. (1981). Hemispheric laterality in animals and the effects of early experience. The Behavioural and Brain Sciences, 4, 1–49.Google Scholar
  31. Denenberg, V.H., Hofmann, M., Garbanati, J.A., Sherman, G.F., Rosen, G. D., & Yutzey, D. (1980). Handlingin infancy, taste aversion, and brain laterality in rats. Brain Research, 200, 123–133.PubMedCrossRefGoogle Scholar
  32. Dharmaretnam, M., & Andrew, R.J. (1994). Age-and stimulus-specific effects on use ofright and left eyes by the domestic chick. Animal Behaviour, 48, 1395–1406.CrossRefGoogle Scholar
  33. Diamond, A.C., & McGrew, W.C. (1994). True handedness in the cotton-top tamarin (Saguinus oedipus). Primates, 35, 69–77.Google Scholar
  34. Dill, L.M. (1977). “Handedness” inthe Pacifictree frog (Hyla regilla). Canadian Journal of Zoology, 55, 1926–1929.CrossRefGoogle Scholar
  35. Ducker, G., Luscher, C., & Schultz, P. (1986). Problemlöseverhalten von stieglitzen (Carduelis carduelis) bei “manipulativen” aufgaben. Zoologisches Beitr, 23, 377–412.Google Scholar
  36. Ehret, G. (1987). Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature, 325, 249–251.PubMedCrossRefGoogle Scholar
  37. Fine, M. L., McElroy, D., Rafi, J., King, C.B., Loesser, K. E., & Newton, S. (1996). Lateralization of pectoral stridulation sound production in the channel catfish. Physiologyand Behavior, 60, 753–757.Google Scholar
  38. Friedman, H., & Davis, M. (1938). “Left handedness” in parrots. Auk., 80, 478–480.Google Scholar
  39. Geschwind, N., & Galaburda, A. M. (1987). Cerebrallateralization: Biological mechanisms, associations, and pathology. Cambridge, MA: The MIT Press.Google Scholar
  40. Glick, S.D. (1985). Heritable differences in turning behavior of rats. Life Sciences, 36, 499–503.PubMedCrossRefGoogle Scholar
  41. Glick, S.D., & Shapiro, R. M. (1984). Functional and neurochemical asymmetries. In N. Geschwind & A.M. Galaburda (eds.), Cerebral dominance: The biologicalfoundations (pp. 147–166). Cambridge: Harvard University Press.Google Scholar
  42. Glick, S.D., & Shapiro, R.M. (1985). Functional and neurochemical mechanisms of cerebral lateralizationinrats. In S.D. Glick (ed.), Cerebral lateralization in nonhuman species (pp. 158–184). New York: Academic Press.Google Scholar
  43. Goodyear, C.P., & Ferguson, D. E. (1969). Sun-compass orientation in the mosquitofish Gambusia affinis. Animal Behaviour, 17, 636–640.Google Scholar
  44. Green, A.J. (1997). Asymmetrical turning during spermatophore transfer in the male smooth newt. Animal Behaviour, 54, 343–348.PubMedCrossRefGoogle Scholar
  45. Gunturkun, 0. (1985). Lateralization of visually controlled behaviour in pigeons. Physiology and Behavior, 43, 575–577.Google Scholar
  46. Güntürkün, O., Kesch, S., & Delius, J.D. (1988). Absence of footedness in domestic pigeons. Animal Behaviour, 36, 602–604.Google Scholar
  47. Hamilton, C.R., & Vermeire, B. A. (1991). Functional lateralization in monkeys. In F. L. Kitterle (ed.), Cerebral laterality: Theory and research: The Toledo symposium (pp. 19–34). Hillsdale: Erlbaum.Google Scholar
  48. Harris, L. J. (1989). Footedness in parrots: Three centuries of research, theory, and mere surmise. Canadian Journal of Psychology, 43, 369–396.PubMedGoogle Scholar
  49. Hauser, M. D. (1993). Right hemisphere dominance for the production of facial expression in monkeys. Science, 261, 475–477.PubMedGoogle Scholar
  50. Hauser, M. D., Agnetta, B., & Perez, C. (1998). Orienting asymmetries in rhesus monkeys: The effect of time-domain changes on acoustic perception. Animal Behaviour, 56, 41–47.CrossRefPubMedGoogle Scholar
  51. Heinrich, M.L. & Klaasen, H.E. (1985) Side dominance in constricting snakes. Journal of Herpetology, 19, 531–533.Google Scholar
  52. Hellige, J.B. (1993). Hemispheric asymmetry: What’s right and what’s left. Cambridge: Harvard University Press.Google Scholar
  53. Hook-Costigan, M. A., & Rogers, L. J. (199). Hand preferences in New World primates. International Journal of Comparative Psychology, 19, 173–207.Google Scholar
  54. Hook-Costigan, M.A., & Rogers, L.J. (1998a). Lateralized use of the mouth in production of vocalizations by marmosets. Neuropsychologia, 36, 1265–1273.PubMedCrossRefGoogle Scholar
  55. Hook-Costigan, M.A., & Rogers, L.J. (1998b). Eye preferences in common marmosets (Callithrix jacchus): Influence of age, stimulus and hand preference. Laterality, 3, 109–130.PubMedGoogle Scholar
  56. Hopkins, W.D., & Bard, K.A. (1993). Hemispheric specialization in infant chimpanzees (Pan troglodytes): Evidence for a relation with gender and arousal. Developmental Psychobiology, 26, 219–235.PubMedCrossRefGoogle Scholar
  57. Hopkins, W. D. & Bennett, A. (1994). Handedness and approach-avoidance behaviour in chimpanzees. Journal of Experimental Psychology, 20, 413–418.PubMedGoogle Scholar
  58. Hopkins, W.D., & Parr, L.A. (1998). Lateralized behaviour and lymphocyte counts in chimpanzees (Pan troglodytes): A cross-sectional and longitudinal assessment. Developmental Neuropsychology, 14, 519–533.CrossRefGoogle Scholar
  59. Hopkins, W.D., & Morris, R. D. (1989). Laterality of visuospatial processing in two language trained chimpanzees (Pan troglodytes). Behavioral Neuroscience, 103, 227–239.PubMedCrossRefGoogle Scholar
  60. Kim, D., Carlson, J.N., Seegal, R.F., & Lawrence, D.A. (1999). Differential immune responses in mice with left-and right-turning preference. Journal of Neuroimmunology, 93, 164–171.PubMedCrossRefGoogle Scholar
  61. King, J.E. (1995). Laterality in hand preferences and reaching accuracy of cotton-top tamarins (Saguinus oedipus). Journal of Comparative Psychology, 109, 34–41.PubMedCrossRefGoogle Scholar
  62. Konishi, M. (1994). An outlineofrecent advances in bird song neurobiology. Brain, Behaviour and Evolution, 44, 279.CrossRefGoogle Scholar
  63. Laska, M. (1996). Manual laterality in spider monkeys: Solving visually and tactually guided food-reaching tasks. Cortex, 32, 717–726.PubMedGoogle Scholar
  64. McCasland, J.S. and Konishi, M. (1981). Interaction between auditory and motor activities in an avian song control nucleus. Proceedings of the NationalAcademy of Sciences, U.S.A., 78, 7815–7819.Google Scholar
  65. McGrew, W.C., & Marchant, L. F. (1993). Primate ethology: A perspective on human and nonhuman handedness. In P.K. Bock (ed.), Handbook of psychological anthropology. New York: Greenwood Press.Google Scholar
  66. McKenzie, R., Andrew, R.J., & Jones, R.B. (1998). Lateralization in chicks and hens: New evidence for control of response by the right eye system. Neuropsychologia, 36, 51–58.PubMedCrossRefGoogle Scholar
  67. MacNeilage, P. F., Studdert-Kennedy, M. I., & Lindblom, B. (1987). Primate handedness reconsidered. The Behavioural and Brain Sciences, 10, 247–303.Google Scholar
  68. Marchant, L. F., & McGrew, W. C. (1996). Laterality of limb function in wild chimpanzees of Gombe National Park: Comprehensive study of spontaneous activities. Journal of Human Evolution, 30, 427–443.CrossRefGoogle Scholar
  69. Mathews, L. J. (1978). The natural history of the whale. London: Weidenfeld and Nicholson.Google Scholar
  70. Mench, J. A., & Andrew, R.J. (1986). Lateralization of a food search task in the domestic chick. Behavioral and Neural Biology, 46, 107–114.PubMedCrossRefGoogle Scholar
  71. Miklósi, A., Andrew, R.J., & Dharmaretnam, M. (1996). Auditory lateralization: Shifts in ear use during attachment in the domestic chick. Laterality, 1, 215–224.PubMedGoogle Scholar
  72. Mióklsi, A., Andrew, R.J., & Savage, H. (1998). Behavioural lateralization of the tetrapod type in the zebrafish (Brachydanio rerio). Physiology and Behavior, 63, 127–135.Google Scholar
  73. Naitoh, T., & Wassersug, R. (1996). Why are toads right handed? Nature, 380, 353.CrossRefGoogle Scholar
  74. Neveu, P. J. (1988). Cerebral neocortex modulation of immune functions. Life Sciences, 42, 1917–1923.PubMedCrossRefGoogle Scholar
  75. Neveu, P.K., Barneoud, P., Vitiello, S., Betancur, C., & LeMoal, M. (1988). Brain modulation of the immune system: Association between lymphocyte responsiveness and paw preference in mice. Brain Research, 157, 392–394.Google Scholar
  76. Nottebohm, F. (1971). Neural lateralization of vocal control in a Passerine bird. I. Song. The Journal of Experimental Zoology, 177, 229–261.PubMedGoogle Scholar
  77. Nottebohm, F. (1977). Asymmetries in neural control of vocalization in the canary. In S. Harnad, R.W. Doty, L. Goldstein, J. Jaynes, & G. Krauthamer, (eds.), Lateralizationin the nervous system (pp. 23–44). New York: Academic Press.Google Scholar
  78. Nottebohm, F. (1980). Brain pathways for vocal learning in birds: A review of the first 10 years. In J.M. Sprague, & A. N. Epstein (eds.), Progress in psychobiology and physiological psychology (pp. 85–124). New York: Academic Press.Google Scholar
  79. Nottebohm, F., Stokes, T. M., & Leonard, C. M. (1976). Central control of song in the canary, Serinus canarius. Journal of Comparative Neurology, 165,457.Google Scholar
  80. Petersen, M., Beecher, M., Zoloth, S., Moody, D., & Stebbins, W. (1978). Neural lateralization of species-specific vocalisations by Japanese macaques (Macaca fuscata). Sciences, 202, 324–327.Google Scholar
  81. Rashid, N., & Andrew, R.J. (1989). Right hemisphere advantage for topographic orientation in the domestic chick. Neuropsychologia, 27, 937–948.PubMedCrossRefGoogle Scholar
  82. Ridgway, S.H. (1986). Physiological observation on dolphins’ brains. In R.J. Schusterman, J.A. Thomas, & F.J. Wood (eds.), Dolphin cognition and behavior: A comparitive approach (pp. 31–60). Hillsdale, N.J: Erlbaum.Google Scholar
  83. Robins, A., Lippolis, G., Bisazza, A., Vallortigara, G., & Rogers, L.J. (1998). Lateralized agonistic responses and hindlimb use in toads. Animal Behaviour, 56, 875–881.PubMedCrossRefGoogle Scholar
  84. Rogers, L. J. (1980). Lateralization in the avian brain. Bird Behaviour, 2, 1–12.Google Scholar
  85. Rogers, L. J. (1981). Enviromental influences on brain lateralization. Behavioural and Brain Sciences, 4, 35–36.CrossRefGoogle Scholar
  86. Rogers, L. J. (1989). Laterality in animals. International Journal of Comparative Psychology, 3, 5–25.Google Scholar
  87. Rogers, L. J. (1990). Light input and the reversal of functional lateralization in the chicken brain. Behavioural Brain Research, 38, 211–221.PubMedCrossRefGoogle Scholar
  88. Rogers, L. J. (1991). Development of lateralization. In R.J. Andrew (ed.), Neural and behavioural plasticity: The use of the domestic chick as a model (pp. 507–535). Oxford: Oxford University Press.Google Scholar
  89. Rogers, L. J. (1995). The development of brain and behaviour in the chicken. Oxon: CAB International.Google Scholar
  90. Rogers, L. J (1996). Behavioural, structural and neurochemical asymmetries in the avian brain: A model system for studying visual development and processing. Neuroscience and Biobehavioral Reviews, 20, 487–503.PubMedGoogle Scholar
  91. Rogers, L. J. (1997). Early experiential effects on laterality. In J. Fagot, L.J. Rogers, J.P. Ward, B. Bulman-Fleming, & W. Hopkins (eds.), Hemispheric specialisation in animals and humans (pp. 199–220). Hove: Psychology Press.Google Scholar
  92. Rogers, L. J. (1998). Light experience and hormone levels in chick embryo affect posthatching behaviour. In N.J. Adams & R.H. Slotow (eds.), Making rain for African ornithology: Proceedingsof the 22 nd International Ornithological Congress 16–22 August 1998, Durban. Johannesburg: Birdlife South Africa, S46.2.Google Scholar
  93. Rogers, L. J. (2000). Evolution of hemispheric specialisation; advantages and disadvantages. Brain and Language, in press.Google Scholar
  94. Rogers, L.J., & Anson, J.M. (1979). Lateralization of function in the chicken forebrain. Pharmacology, Biochemistry and Behaviour, 10, 679–686.CrossRefGoogle Scholar
  95. Rogers, L. J., & Bradshaw, J. L. (1996). Motor asymmetries in birds and nonprimate mammals. In D. Elliott & E.A. Roy (eds.), Manual asymmetries in motor performance (pp. 3–31). Boca Raton: CRC Press.Google Scholar
  96. Rogers, L. J., & Kaplan, G. (1996). Hand preferences and other lateral biases in rehabilitated orang-utans (Pongo pygmaeus pygmaeus). Animal Behaviour, 51, 13–25.CrossRefGoogle Scholar
  97. Rogers, L.J., & Workman, L. (1993). Footedness in birds. Animal Behaviour, 45, 409–411.Google Scholar
  98. Rogers, L. J., & Workman, L. (1989). Light exposure during incubation affects competitive in domestic chicks. Applied Animal Behaviour Science, 23, 187–198.CrossRefGoogle Scholar
  99. Rogers, L. J., Ward, J. P., & Stafford, D. (1994). Eye dominance in the small-eared bushbaby, Otolemur garnettii. Neuropsychologia, 32, 257–264.PubMedCrossRefGoogle Scholar
  100. Rogers, L. J., Andrew, R. J., & Burne, T. H. J. (1998). Light exposure of the embryo and the development of behavioural lateralization in chicks., I: Olfactory responses. Behavioural Brain Research, 97, 195–200.PubMedCrossRefGoogle Scholar
  101. Rogers, L.J., Zappia, J.V., & Bullock, S.P. (1985). Testosterone and eye-brain asymmetry for copulationin chickens. Experientia, 1, 1447–1449.Google Scholar
  102. Sherman, G.F., Garbanati, J.A., Rosen, G.D., Yutzey, D.A., & Denenberg, V.H. (1980). Brain and behavioral asymmetries fors patial preference in rats. Brain Research, 192, 61–67.PubMedCrossRefGoogle Scholar
  103. Sobel, N., Supin, A.Y., & Mislobodoski, M.S. (1994). Rotational swimming tendenciesin the dolphin (Tursiops truncatus). Behavioural Brain Research, 65, 41–45.PubMedCrossRefGoogle Scholar
  104. Suthers, R.A. (1990). Contributions to birdsong from the left and right sides of the syrinx. Nature, 347, 473.CrossRefGoogle Scholar
  105. Tommasi, L., & Vallortigara, G. (1999). Footedness in binocular and monocular chicks. Laterality, 4, 89–95.PubMedCrossRefGoogle Scholar
  106. Vallortigara, G., Rogers, L.J., Bisazza, A., Lippolis, G., & Robins, A. (1998). Complementary right and left hemifield use for predatory and agonistic behavior. Neuroreport, 9, 3341–3344.PubMedGoogle Scholar
  107. Vallortigara, G., Zandforlin, M., & Cailotto, M. (1988). Right-left asymmetryin position learning of male chicks. Behavioural Brain Research, 27, 189–191.PubMedCrossRefGoogle Scholar
  108. Vicario, D. S., & Yohay, K. H. (1994). Song-selective auditory input to a forebrainvocal controlnucleus in the zebra finch. Journal of Neurobiology, 24, 288.Google Scholar
  109. Walker, S. F. (1980). Lateralization of function in the vertebrate brain: A review. British Journal of Psychology, 71, 329–367.PubMedGoogle Scholar
  110. Ward, J.P., & Hopkins W. D. (1993). Primate laterality: Current behavioral evidence of primate asymmetries. New York: Springer-Verlag.Google Scholar
  111. Ward, J.P., Milliken, G.W., & Stafford, D. K. (1993). Patterns of lateralized behavior in prosimians. In J.P. Ward, & W.D. Hopkins (Eds.), Primate laterality: Current behavioral evidence of primate asymmetries (pp. 43–75). New York: Springer-Verlag.Google Scholar
  112. Wiechmann, A.F., & Wirsig-Wiechmann, C.R. (1992). Asymmetric distribution of melatonin receptors in the brain of the lizard Anolis carolinensis. Brain Research, 593, 281–286.PubMedCrossRefGoogle Scholar
  113. Williams, H. (1990). Bird song. In R.R. Kesner & D.S. Olton (eds.), Neurobiology of comparative cognition (pp. 77–126). Hillsdale: Erlbaum.Google Scholar
  114. Williams, H., Crane, L.A., Hale, T.K., & Espositeo, M.A. (1992). Right-side dominance of song control in the zebra finch. Journal of Neurobiology, 23, 1006–1020.PubMedCrossRefGoogle Scholar
  115. Zappia, J.V., & Rogers, L.J. (1987). Sex differences and reversal of brain asymmetry by testosterone in chickens. Behavioural Brain Research, 23, 261–267.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.University of New EnglandAustralia

Personalised recommendations