Skip to main content

The Fossil Record: Tracing the Roots of the Cyanobacterial Lineage

  • Chapter
The Ecology of Cyanobacteria

Summary

Since the mid-1960s, following a century of unrewarded search, impressive progress has been made toward deciphering the Precambrian fossil record, evidence of life extant during the earliest seven-eighths of geologic time. Hundreds of fossiliferous units have been discovered containing thousands of microbial fossils—dominantly but not exclusively cyanobacterial — and the documented antiquity of life has been extended to an age roughly three-quarters that of the Earth. Mutually reinforcing lines of evidence, paleontological, geological, and isotopic geochemical, indicate that stromatoliticmicrobial ecosystems,evidently including cyanobacteria and other members of the bacterial domain, were extant ~3500 Ma ago; methanogenic archaeans by ~2800 Ma ago; and Gram-negative sulfate-reducing bacteria at least as early as ~2700 Ma ago.The discrepancy between these dates and those suggested for emergence of these groups by a recently proposed amino acid-based “molecular clock” is too great and too consistent to be ignored. The challengeis to unify the molecular data with the increasingly well-established paleobiologicrecord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson PH and Hoering T (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Nat Acad Sci USA 47: 623–632

    CAS  PubMed  Google Scholar 

  • Altermann W and Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleonvironmental and evolutionary implications. Precambrian Res 75: 65–90

    Article  CAS  PubMed  Google Scholar 

  • Barghoom ES, Knoll AH, Dembricki H and Meinschein WG (1977) Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation. Geochim Cosmochim Acta 41: 425–430

    Google Scholar 

  • Barghoorn ES and Tyler SA (1965) Microorganisms of the Gunflint chert. Science 147: 563–577

    CAS  Google Scholar 

  • Barley ME, Dunlop JSR, Glover JE and Groves DI (1979) Sedimentary evidence for an Archean shallow-water volcanic-sedimentary facies, eastern Pilbara Block, Western Australia. Earth Planet Sci Lett 43: 74–84

    Article  Google Scholar 

  • Belyaev SS, Wolkin R, Kenealy WR, DeNiro MJ, Epstein S and Zeikus J G (1983) Methanogenic bacteria from the Bondyuzhskoe Oil Field: General characterization and analysis of stable-carbon isotopic fractionation. App Env Microbiol 45: 691–697

    CAS  Google Scholar 

  • Blake TS and McNaughton NJ (1984) A geochronological framework for the Pilbara region. In: Muhling DK, Groves DK and Blake TS (eds) Archean & Proterozoic Basins of the Pilbara, Western Australia: Solution and Mineralization Potential (Publication 9), pp. 1–22. University of Western Australia Geology Department and University Extension, Perth, Australia

    Google Scholar 

  • Calder JA. and Parker PL (1973) Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim Cosmochim Acta 37: 133–140

    Article  CAS  Google Scholar 

  • Cloud P (1983) Early biogeologic history: The emergence of a paradigm. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 14–31. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiol 2: 351–387

    CAS  Google Scholar 

  • Darwin CR (1859) The Origin of Species by Means of Natural Selection. John Murray, London

    Google Scholar 

  • Des Marais DJ, Bauld J, Palllmisano AC, Summons RE and Ward DM (1992) The biogeochemistry of carbon in modem microbial mats. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 299–308. Cambridge University Press, New York

    Google Scholar 

  • Doolittle RF, Feng D-F, Tsang S, Cho G and Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 47–77

    Google Scholar 

  • Fairchild TR (1975) The Geologic Setting and Paleobiology of a Late Precambrian Stromatolitic Microflora from South Australia. Ph.D. Thesis, Department of Geology, University of California, Los Angeles

    Google Scholar 

  • Fuchs G, Thauer R, Ziegler H and Stichler W (1979) Carbon isotopic fractionation by Methanobacterium thermo-autotrophicum. Arch Microbiol 120: 135–139

    Article  CAS  Google Scholar 

  • Fuex AN (1977) The use of stable carbon isotopes in hydrocarbon exploration. J Geochem Explor 7: 155–158

    Article  CAS  Google Scholar 

  • Games LM and Hayes JM (1976) On the mechanisms of CO2 and CH4 production in natural anaerobic environments. In: Nriagu JO (ed) Environmental Biogeochemistry Volume 1, Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles, pp 51–73. Ann Arbor Science, Ann Arbor, MI

    Google Scholar 

  • Giavannoni SJ, Turner S, Olsen GJ, Bams S, Lane DJ and Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592

    Google Scholar 

  • Golubic S (1976a) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites, Developments in Sedimentology 20, pp. 113–126. Elsevier, Amsterdam

    Google Scholar 

  • Golubic S (1976b) Taxonomy of extant stromatolite-building cyanophytes. In: Walter MR (ed) Stromatolites, Developments in Sedimentology 20, pp. 127–140. Elsevier, Amsterdam

    Google Scholar 

  • Golubic S and Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic mats: Cell division and degradation. J Paleontol 50: 1074–1082

    Google Scholar 

  • Groves DI, Dunlop JSR and Buick R (1981) An early habitat of life. Scient Am 245: 64–73

    Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis: A speculative hypothesis. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 291–301. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geol. 113: 111–125

    CAS  Google Scholar 

  • Hayes JM (1994) Global methanotrophy at the Archean-Proterozoic transition. In: Bengtson S (ed) Early Life on Earth, pp. 220–236. Columbia University Press, New York

    Google Scholar 

  • Hayes JM, Kaplan JR and Wedeking KM (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 93–134. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hayes, JM, Takigiku R, Ocampo R, Callot HJ and Albrecht P (1987) Isotopic compositions and probable origins of organic molecules in the Eocene Messel Shale. Nature 329: 48–51

    Article  CAS  PubMed  Google Scholar 

  • Hermann TN (1981) Nitchatye mikroorganizmy lakhandinskoj svity reki Mai [Filamentous microorganisms from the Lakhanda Formation on the Maya River]. Paleontol Zhur 1981(2): 126–131 (in Russian)

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: Significance and systematics. J Paleontol 50: 1040–1073

    Google Scholar 

  • Hofmann HJ and Schopf JW (1983) Early Proterozoic microfossils. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 321–360. Princeton University Press, Princeton NJ

    Google Scholar 

  • Holland, HD (1994) Early Proterozoic atmospheric change. In: Bengstson S (ed) Early Life on Earth, pp. 237–244. Columbia University Press, New York

    Google Scholar 

  • Holo H and Sirevåg R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Archiv Microbiol 145: 173–180

    CAS  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S and Miyata T (1989) Evolutionary relationships of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Nat Acad Sci USA 86: 9355–9359

    CAS  PubMed  Google Scholar 

  • Jankauskas TV (1980) Novye vodorosli iz verkhnego rifeya yuzhnogo Urala i priural’ya [New algae from the upper Riphean of the southern Urals and adjacent areas]. Paleontol Zhur 1980(4): 107–113 (in Russian)

    Google Scholar 

  • Kakegawa T, Kawai H and Ohmoto H (1994) Biological activities and hydrothermal activity recorded in the ~2.5 Mount McRae Shale, Hamersley District, Western Australia. II. Sulfur isotopic composition of pyrite. Resource Geol 44: 284–285

    Google Scholar 

  • Kaplan IR and Nissenbaum A (1966) Anomalous carbon isotope ratios in nonvolatile organic material. Science 153: 744–745

    CAS  Google Scholar 

  • Kasting, JF (1992) Proterozoic climates: The effect of changing atmospheric carbon dioxide concentrations. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 165–168. Cambridge University Press, New York

    Google Scholar 

  • Klein C and Buekes NJ (1992) Time distribution, stratigraphy, sedimentologic setting, and geochemistry of Precambrian iron-formations. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 139–146. Cambridge University Press, New York

    Google Scholar 

  • Knoll AH, Strother PK and Rossi S (1988) Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia. Precambrian Res 38: 257–279

    Article  CAS  PubMed  Google Scholar 

  • Krylov IN and Sergeev VN (1987) Rifeiskie mikrofossilii uzhnogo Urala v raione goroda Kusa [Riphean microfossils of the southern Urals near the town of Kusa]. Paleontol Zhur 1987(2): 107–116 (in Russian)

    Google Scholar 

  • Licari GR, Cloud, PE, Jr and Smith, WD (1969) A new chroococcacean alga from the Proterozoic of Queensland. Proc Nat Acad Sci USA 62: 56–62

    Google Scholar 

  • Mendelson CV and Schopf JW (1992) Proterozoic and selected Early Cambrianmicrofossils and microfossil-like objects. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 865–951 Cambridge University Press, New York

    Google Scholar 

  • Mizutani H and Wada E (1982) Effect of high atmospheric CO2 on δ13C of algae. Origins Life 12: 377–390

    CAS  Google Scholar 

  • Ogurtsova RN and Sergeev VN (1987) Mikrobiota chichkanskoj svity verkhnego dokembriya Malago Karatau (Yuzhnyj Kazakhstan) [Microbiota of the Chichkan Formation, Little Karatau Range (South Kazakhstan)]. Paleontol Zhur 1987(2): 107–116 (in Russian)

    Google Scholar 

  • Ohmoto H, Kakegawa T and Lowe DR (1993) 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence. Nature 262: 555–557

    CAS  Google Scholar 

  • O-Leary MH (1981) Carbon isotopic fractionation in plants. Phytochem 20: 553–567

    CAS  Google Scholar 

  • Olsen GJ and Woese CR (1993) Ribosomal RNA: A key to phylogeny. FASEB J 7: 113–123

    CAS  PubMed  Google Scholar 

  • Pardue JW, Scalan RS, Van Baalen C and Parker PL (1976) Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim Cosmochim Acta 40:309–312

    Article  CAS  Google Scholar 

  • Rubey EG, Jannasch HW and Deuser WG (1987) Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxiding bacteria. App Env Microbiol 53: 1940–1943

    Google Scholar 

  • Schidlowski M, Hayes JM and Kaplan IR (1983) Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen, and nitrogen. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 149–186. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. J Paleontol 42: 651–688

    Google Scholar 

  • Schopf JW (1970) Precambrian micro-organisms and evolutionary events prior to the origin of vascular plants. Biol Rev Cambridge Phil Soc 45: 651–688

    Google Scholar 

  • Schopf JW (1977) Biostratigraphic usefulness of stromatolitic Precambrian microbiotas: A preliminary analysis. Precambrian Res 5: 143–173

    Google Scholar 

  • Schopf JW (1992a) Historical development of Proterozoic micropaleontology. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 179–183. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW (1992b) Times of origin and earliest evidence of major biologic groups. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 587–593. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW (1992c) Paleobiology of the Archean. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 25–39. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW (1992d) Proterozoic prokaryotes: Affinities, geologic distribution, and evolutionary trends. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 195–218. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW (1992e) Informal revised classification of Proterozoic microfossils. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 1119–1168. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW (1992f) Atlas of representative Proterozoic microfossils. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 1055–1117. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science 260: 640–646

    CAS  PubMed  Google Scholar 

  • Schopf JW (1994a) Disparate rates, differing fates: Tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc Nat Acad Sci USA 91: 6735–6742

    CAS  PubMed  Google Scholar 

  • Schopf JW (1994b) The oldest known records of life: Stromatolites, microfossils, and organic matter from the Early Archean of South Africa and Western Australia. In: Bengtson S (ed) Early Life on Earth, pp. 193–206. Columbia University Press, New York

    Google Scholar 

  • Schopf JW (1996a) Cyanobacteria: Pioneers of the early Earth. Nova Hedwigia 112: 13–32

    Google Scholar 

  • Schopf JW (1996b) Metabolic memories of Earth’s earliest biosphere. In: Marshall CR and Schopf JW (eds) Evolution and the Molecular Revolution, pp. 73–107. Jones & Bartlett, Boston, MA

    Google Scholar 

  • Schopf JW (In Press) Tracing the roots of the universal tree of life. In: Brack A (ed) The Molecular Origins of Life: Assembling the Pieces. Cambridge University Press, New York

    Google Scholar 

  • Schopf JW and Blacic JM (1971) New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. J Paleontol 45: 925–961

    Google Scholar 

  • Schopf JW and Fairchild TR (1975) Late Precambrian microfossils: A new stromatolitic biota from Boorthanna, South Australia. Nature 242: 537–538.

    Google Scholar 

  • Schopf JW, Ford TD and Breed, WJ (1973) Microorganisms from the Late Precambrian of the Grand Canyon, Arizona. Science 179: 1319–1321

    Google Scholar 

  • Schopf JW, Hayes JM and Walter MR (1983) Evolution of Earth’s earliest ecosystems: Recent progress and unsolved problems. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 361–384. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Schopf JW and Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth’s Earliest Biosphere, Its Origin and Evolution, pp. 214–239. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Sirevåg R, Buchanan BB, Berry JA and Troughton JH (1977) Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Archiv Microbiol 112: 35–38

    Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18: 149–158

    Article  CAS  Google Scholar 

  • Strauss H, Des Marais DJ, Hayes JM and Summons R E (1992) The carbon-isotopic record. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 117–127. Cambridge University Press, New York

    Google Scholar 

  • Strauss H and Moore TB (1992) Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 709–798. Cambridge University Press, New York

    Google Scholar 

  • Summons RE and Hayes JM (1992) Principles of molecular and isotopic biogeochemistry. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, A Multidisciplinary Study, pp. 83–93. Cambridge University Press, New York

    Google Scholar 

  • Thorpe RI, Hickman AH, Davis DW, Mortensen JK and Trendall AF (1992) U-Pb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Res 56: 169–189

    Article  CAS  Google Scholar 

  • Towe KM (1990) Aerobic respiration in the Archaean? Nature 348: 54–56

    Article  CAS  PubMed  Google Scholar 

  • Towe KM (1991) Aerobic carbon cycling and cerium oxidation: Significance forArchean oxygen levels and banded iron-formation deposition. Palaeogeog Palaeoclimatol Palaeoecol 97: 113–123

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the Cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp. 1–25. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O and Whellis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Nat Acad Sci USA 87: 4576–4579

    CAS  PubMed  Google Scholar 

  • Wolfe RS (1971) Microbial formation of methane. Adv Microbial Physiol 6: 107–146

    CAS  Google Scholar 

  • Wong W, Sackett WM and Benedict CRB (1975) Isotope fractionation in photosynthetic bacteria during carbon dioxide assimilation. Plant Physiol 55: 475–479

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schopf, J.W. (2000). The Fossil Record: Tracing the Roots of the Cyanobacterial Lineage. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics