Skip to main content

Surface Protein Anchoring and Display in Staphylococci

  • Chapter
Staphylococcus aureus Infection and Disease

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

  • 631 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowy, E D. Staphylococcus aureus infections. New Engl. J. Med. 339, 520–532 (1998).

    CAS  PubMed  Google Scholar 

  2. Hiramatsu, K. et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 1670–1673 (1997).

    CAS  PubMed  Google Scholar 

  3. Sieradzki, K., Roberts, R. B., Haber, S. W. & Tomasz, A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. New Engl. J. Med. 340, 517–523 (1999).

    CAS  PubMed  Google Scholar 

  4. Gold, H. S. & Moellering, R. C. Antimicrobialdrug resistance. New Engl. J. Med. 335, 1445–1453 (1996).

    CAS  PubMed  Google Scholar 

  5. Neu, H. C. The crisis in antibiotic resistance. Science 257, 1064–1073 (1992).

    CAS  PubMed  Google Scholar 

  6. Foster, T. J. & Höök, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).

    CAS  PubMed  Google Scholar 

  7. Jensen, K. A normally occuring staphylococcus antibody in human serum. Acta Path. Microbiol. Scandin. 44, 421–428 (1958).

    Google Scholar 

  8. Forsgren, A. Protein A from Staphylococcus aureus. VI. Reaction with subunits from guinea piggamma-1-and gamma-2-globulin. J. Immunol. 100, 927–930 (1968).

    CAS  PubMed  Google Scholar 

  9. Sjödahl, J. Repetitive sequences inprotein A from Staphylococcu saureus. Arrangement of five regions within the protein, four being highly homologous and Fc-binding. Eur. J. J. Biochem. 73, 343–351 (1977).

    Google Scholar 

  10. Guss, B. et al. Region X, the-cell-wall-attachment part of staphylococcal protein A. Eur.J. Biochem. 138, 413–420 (1984).

    CAS  PubMed  Google Scholar 

  11. Jonsson, P., Lindberg, M., Haraldsson, I. & Wadstrom, T. Virulence of Staphylococcus aureusin a mouse mastitis model: studies of hemolysin, coagulase, and protein A as possible virulence determinants with protoplast fusion and gene cloning. Infect. Immun. 49, 765–769 (1985).

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Patel, A. H., Nowlan, P., Weavers, E. D. & Foster, T. Virulence of protein A-deficient and alpha-toxindeficientmutants of Staphylococcus aureus isolated by allele replacement. Infect. Immun. 55, 3103–3110 (1987).

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Flock, J. I. et al. Cloning and expression of the gene for afibronectin-binding protein from Staphylococcus aureus. EMBO J. 6, 2351–2357 (1987).

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Signas, C. et al. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc. Natl. Acad. Sci. USA 86, 699–703 (1989).

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Jönsson, K., Signäs, C., Müller, H. P. & Lindberg, M. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur. J. Biochem. 202, 1041–1048 (1991).

    PubMed  Google Scholar 

  16. Greene, C. et al. Adhesion properties of mutans of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol. Microbiol. 17, 1143–1152 (1995).

    CAS  PubMed  Google Scholar 

  17. Sottile, J., Schwarzbauer, J., Selegue, J. & Mosher, D. F. Five type I modules of fibronectin forma functional unit that binds to fibroblasts and Staphylococc usaureus. J. Biol. Chem. 266, 12840–12843 (1991).

    CAS  PubMed  Google Scholar 

  18. McGavin, M. J., Raucci, G., Gurusiddappa, S. & Höök, M. Fibronectin binding determinants of the Staphylococcus aureus fibronectin receptor. J. Biol. Chem. 266, 8343–8347 (1991).

    CAS  PubMed  Google Scholar 

  19. McGavin, M. J. et al. Fibronectin receptors from Streptococcus dysgalactiae and Staphylococcus aureus. Involvement of conserved residues in ligand binding. J. Biol. Chem. 268, 23946–23953 (1993).

    CAS  PubMed  Google Scholar 

  20. Patti, J. M., Allen, B. L., McGavin, M. J. & Hook, M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48, 89–115 (1994).

    Google Scholar 

  21. Springer, T. A. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Annu. h. Cell Biol. 6, 359–402 (1990).

    CAS  Google Scholar 

  22. Wesson, C. A. et al. Staphylococcus aureus Agr and Sar global regulators influence internalization and induction of apoptosis. Infect. Immun. 66, 5238–5243 (1998).

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Patti, J. M. et al. Molecular characterization and expression of agene encoding a Staphylococcus aureus collagen adhesin. J. Biol. Chem. 267, 4766–4772 (1992).

    CAS  PubMed  Google Scholar 

  24. Smeltzer, M. S., Gillaspy, A.F., Pratt, F. L. J., Thames, M. D. & Iandolo, J. J. Prevalence and chromosomal map location of Staphylococcus aureus adhesin genes. Gene 196, 249–259 (1997).

    CAS  PubMed  Google Scholar 

  25. Snodgrass, J. L. et al. Functional analysis of the Staphylococcus aureus collagen adhesin B domain. Infect. Immun. 67, 3952–3959 (1999).

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Switalski, L. M. et al. A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol. Microbiol. 7, 99–107 (1993).

    CAS  PubMed  Google Scholar 

  27. Ryding, U., Flock, J. I., Flock, M., Sderquist, B. & Christensson, B. Expression of collagen-binding protein and types 5 and 8 capsular polysaccharide in clinical isolates of Staphylococcus aureus. J. Infect. Dis. 176, 1096–1099 (1997).

    CAS  PubMed  Google Scholar 

  28. McDevitt, D., Francois, P., Vaudaux, P. & Foster, T. J. Molecularcharacterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11, 237–248 (1994).

    CAS  PubMed  Google Scholar 

  29. McDevitt, D., Francois, P., Vaudaux, P. & Foster, T. J. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol. Microbiol. 16, 895–907 (1995).

    CAS  PubMed  Google Scholar 

  30. McDevitt, D. et al. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 247, 416–424 (1997).

    CAS  PubMed  Google Scholar 

  31. Hartford, O., Francois, P., Vaudaux, P. & Foster, T. J. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus auras cell surface. Mol. Microbiol. 25, 1065–1076 (1997).

    CAS  PubMed  Google Scholar 

  32. Ní Eidhin, D. et al. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol. 30, 245–257 (1998).

    PubMed  Google Scholar 

  33. Josefsson, E. et al. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiol. 144, 3387–3395 (1998).

    CAS  Google Scholar 

  34. Josefsson, E., O’Connell, D., Foster, T. J., Durussel, I. & Cox, J. A. The binding of calcium to the B-repeat segment of SrdD, a cell surface protein of Staphylococcus aureus. J. Biol. Chem. 273, 31145–31152 (1998).

    CAS  PubMed  Google Scholar 

  35. Vaudaux, P. E. et al. Use of adhesiondefective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infect. Immun. 63, 585–590 (1995).

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Nilsson, M. et al. A fibrinogen binding protein of Staphylococcus epidermidis. Infect. Immun. 66, 2666–2673 (1998).

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Sjōquist, J., Meloun, B. & Hjelm, H. Protein A isolated from Staphylococcus aureus after digestion with lysostaphin. Eur. J. Biochem. 29, 572–578 (1972)

    PubMed  Google Scholar 

  38. Lofdahl, S., Guss, B., Uhlèn, M., Philipson, L. & Lindberg, M. Gene for staphylococcal protein A. Proc. Natl. Acad. Sci. USA 80, 697–701 (1983).

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Uhlèn, M. et al. Complete sequence of the staphylococcal gene encoding protein A. J. Biol. Chem. 259, 1695–1702 and 13628 (Corr.) (1984).

    PubMed  Google Scholar 

  40. Uhln, M., Guss, B., Nilsson, B., Gotz, F. & Lindberg, M. Expression of the gene encoding protein A in Staphylococcus aureus and coagulase-negative staphylococci. J. Bacteriol 159, 713–719 (1984).

    Google Scholar 

  41. Deisenhofer, J., Jones, T. A., Huber, R., Sjdahl, J. & Sjōquist, J. Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from Staphylococcus aureus. Hoppe-Seyl. Zeitsch. Physiol. Chem. 359, 975–985 (1978).

    CAS  Google Scholar 

  42. Navarre, W. W. & Schneewind, O. Surface proteins of Gram-positive bacteria and the mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999).

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Sjōquiste, J., Movitz, J., Johansson, I.-B. & Hjelm, H. Localization of protein A in the bacteria. Eur. J. Biochem. 30, 190–194 (1972).

    Google Scholar 

  44. Schneewind, O., Model, P. & Fischetti, V. A. Sorting of protein A to the staphylococcal cell wall. Cell 70, 267–281 (1992).

    CAS  PubMed  Google Scholar 

  45. Schneewind, O., Mihaylova-Petkov, D. & Model, P. Cell wall sorting signals in surface protein of Gram-positive bacteria. EMBO 12, 4803–4811 (1993).

    CAS  Google Scholar 

  46. Navarre, W. W. & Schneewind, O. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbial. 14, 115–121 (1994).

    CAS  Google Scholar 

  47. Schneewind, O., Fowler, A. & Faull, K. F. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268, 103–106 (1995).

    CAS  PubMed  Google Scholar 

  48. Mazmanian, S. K., Liu, G., Ton-That, H. & Schneewind, O. Staphylococcusaureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760–763 (1999).

    CAS  PubMed  Google Scholar 

  49. Ton-That, H. & Schneewind, O. Anchor structure of staphylococcal surface proteins. IV. Inhibitors of the cell wall sorting reaction. J. Biol. Chem. 274, 24316–24320 (1999).

    CAS  PubMed  Google Scholar 

  50. Ton-That, H., Faull, K. F. & Schneewind, O. Anchor structure of staphylococcalsurface proteins. I. A branched peptide that links the carboxyl terminus of proteins to the cell wall. J. Biol. Chem. 272, 22285–22292 (1997).

    CAS  PubMed  Google Scholar 

  51. Navarre, W. W., Ton-That, H., Faull, K.F. & Schneewind, O. Anchor structure of staphylococcal surface proteins. II. COOH-terminal structure of muramidase and amidase-solubilized surface protein. J. Biol. Chem. 273, 29135–29142 (1998).

    CAS  PubMed  Google Scholar 

  52. Jones, C.L. & Khan, S. A. Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J. Bacteriol. 166, 29–33 (1986).

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Tweten, R.K. & Iandolo, J. J. Transport and processing of staphylococcalenterotoxin B. J. Bacteriol. 153, 297–303 (1983).

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Wang, P.-Z. & Novick, R.P. Nucleotide sequence and expression of the β-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. J. Bacteriol. 169, 1763–1766 (1987).

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Navarre, W. W. & Schneewind, O. Cell wall sorting of lipoproteins in Staphylococcus aureus. J Bacteriol. 178, 441–446 (1996).

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Schindler, C. A. & Schuhardt, V.T. Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc. Natl. Acad. Sci. USA 51, 414–421 (1964).

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Recsei, P. A., Gruss, A. D. & Novick, R. P. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc. Natl. Acad. Sci. USA 84, 1127–1131 (1987).

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Heath, H. E., Heath, L. S., Nitterauer, J. D., Rose, K. E. & Sloan, G. L. Plasmid-encoded lysostaphin endopeptidase resistance of Staphylococcus simulans biovar staphylolyticus. Biochem. Biophys. Res. Com. 160, 1106–1109 (1989).

    CAS  PubMed  Google Scholar 

  59. Thumm, G. & Götz, F. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (lif) of Staphylococcus auras biovar staphylolyticus. Mol. Microbiol. 23, 1251–1265 (1997).

    CAS  PubMed  Google Scholar 

  60. Baba, T. & Schneewind, O. Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to thecell wall of Staphylococcus aureus. EMBO J. 15, 4789–4797 (1996).

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Samuelson, P. et al. Cell surface display of recombinant proteins on Staphylococcus carnosus. J. Bacteriol. 177, 1470–1476 (1995).

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Pozzi, G., Contorni, M., Oggioni, M. R., Manganeli, R. & Fischetti, V. A. Expression of the M6 protein gene of Streptococcus pyogenes in Streptococcus gordonii after chromosomal integration and transcriptional fusion. Infect. Immun. 60, 1902–1907 (1992).

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Piard, J. C. et al. Cell wall anchoring of the Streptococcus Pyogenes M6 proteinin various lacticacid bacteria. J. Bacteriol. 179, 3068–3072 (1997).

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Strauss, A. & Gotz, F. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 21, 491–500 (1996).

    CAS  PubMed  Google Scholar 

  65. Gunneriusson, E., Samuelson, P., Uhlen, M., Nygren, P. A. & Stähl, S. Surface display of a function alsingle-chain Fv antibody on staphylococci. J. Bacteriol. 178, 1341–1346 (1996).

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Berger-Bachi, B. Expression of resistance to methicillin. Trends Microbiol. 2, 389–309 (1994).

    CAS  PubMed  Google Scholar 

  67. Hartman, B. J. & Tomasz, A. Low affinity penicillin binding protein associated withb-lactam resistance in Staphylococcus aureus. J. Bacteriol. 158, 513–516 (1984).

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Matsuhashi, M. et al. Molecular cloning of the gene for penicillin-binding protein supposed to cause high resistance to b-lactamase antibiotics in Staphylococcus aureus. J. Bacteriol. 167, 975–980 (1986).

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Berger-Bachi, B., Barberis-Maino, L., Strassle, A. & Kayser, F. H. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus. molecular cloning and characterization. Mol. Gen. Genet. 219, 262–269 (1989).

    Google Scholar 

  70. Berger-Bachi. Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother 36, 1367–1373 (1992).

    PubMed Central  CAS  PubMed  Google Scholar 

  71. DeLencastre, H. & Tomasz, A. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother 38, 2590–2598 (1994).

    PubMed Central  PubMed  Google Scholar 

  72. de Jonge, B. L. M. et al. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J. Bacteriol. 175, 2779–2782 (1993).

    PubMed Central  PubMed  Google Scholar 

  73. Henze, U., Sidow, T., Wecke, J., Labischinski, H. & Berger-Bachi, B. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J. Bacteriol. 175, 1612–1620 (1993).

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Maidhof, H., Reinicke, B., Blumel, P., Berger-Bachi, B. & Labischinski, H. femA, which encodesafactoressentialforexpressionofmethicillinresistance,affectsglycinecontent of peptidgylcan in methicillin-resistant and methicillin susceptible Staphylococcus aureus stains. J. Bacteriol. 173, 3507–3513 (1991).

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Stranden, A., Ehlert, K., Labischinski, H. & Berger-Bachi, B. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 1997, 9–16 (1997).

    Google Scholar 

  76. Gustafson, J., Strassle, A., Hachler, H., Kayser, F. H. & Berger-Bachi, B. The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J. Bacteriol. 176, 1460–1467 (1994).

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Jolly, L. et al. The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J. Bacteriol. 179, 5321–5325 (1997).

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Kopp, U., Roos, M., Wecke, J. & Labischinski, H. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Microb. Drug Resist. 2, 29–41 (1996).

    CAS  PubMed  Google Scholar 

  79. Rohrer, S., Ehlert, K., Tschierske, M., Labischinski, H. & Berger-Bächi, B. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. USA 96, 9351–56 (1999).

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Matsuhashi, M., Dietrich, C. P. & Strominger, J. L. Incorporation of glycineintothecell wall glycopeptide in Staphylococcus aureus. Role of sRNA and lipid intermediates. Proc. Natl. Acad. Sci. USA 54,587–594 (1965).

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Matsuhashi, M., Dietrich, C. P. & Strominger, J. L. Biosynthesis of the peptidoglycan of bacterialcell walls. III. J. Biol. Chem 242, 3191–3206 (1967).

    CAS  Google Scholar 

  82. Petit, J.-F., Munoz, E. & Ghuysen, J. M. Peptide cross-links in bacterial cell wall peptidoglycans studied with specific endopeptidases from Streptomyces albus G. Biochemistry 5, 2764–2776 (1966).

    CAS  PubMed  Google Scholar 

  83. Ton-That, H., Labischniski, H., Berger-Bachi, B. & Schneewind, O. Anchor structure of staphyococcal surface proteins. III. The role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall. J. Biol. Chem. 273, 29143–29149 (1998).

    CAS  PubMed  Google Scholar 

  84. Mazmanian, S. K., Liu, G., Jensen, E. R., Lenoy, E. & Schneewind, O. Staphylococcus aureus mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97, 5510–5515 (2000).

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Ton-That, H., Liu, G., Mazmanian, S. K., Faull, K. F. & Schneewind, O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96, 12424–12429 (1999).

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Lipmann, F. & Tuttle, L. C. The detection of activated carboxyl groups with hydroxylamine as interceptor. J. Biol. Chem. 161, 415–416 (1945).

    CAS  PubMed  Google Scholar 

  87. Ton-That, H., Mazmanian, H., Faull, K. & Schneewind, O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. I. Sortase catalyzed in vitro transpeptidation reactionusing LPXTG peptide and NH2-Gly3 substrates. J. Biol. Chem. 275, 9876–9881 (2000).

    CAS  PubMed  Google Scholar 

  88. Ghuysen, J.-M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32, 425–464 (1968).

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Tipper, D. J. & Strominger, J. L. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-alanine. Proc. Natl. Acad. Sci. USA 54, 1133–1141 (1965).

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ghuysen, J.-M. & Strominger, J. L. Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. II. Separation and structure of the disaccharides. Biochemistry 2, 1919–1125 (1963).

    Google Scholar 

  91. Ghuysen, J.-M., Tipper, D. J., Birge, C. H. & Strominger, J. L. Structure of the cell wall of Staphylococcus aureus strain Copenhagen. VI. The soluble glycopeptide and its sequential degradation by peptidases. Biochemistry 4, 2245–2254 (1965).

    CAS  Google Scholar 

  92. Ghuysen, J.-M. Serine beta-lactamases and penicillin binding proteins. Annu. Rev. Microbiol. 45, 37–67 (1991).

    CAS  PubMed  Google Scholar 

  93. Strominger, J. L., Izaki, K., Matsuhashi, M. & Tipper, D. J. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Fed. Proc. 26, 9–18 (1967).

    CAS  PubMed  Google Scholar 

  94. Strominger, J. L. Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lectures 64, 179–213 (1968).

    CAS  PubMed  Google Scholar 

  95. Ramussen, J. R. & Strominger, J. L. Utilization of depsipeptide substrate for trapping acyl-enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases. Proc. Natl. Acad. Sci. USA 75, 84–88 (1978).

    Google Scholar 

  96. Kozarich, J. W., Tokuzo, N., Willoughby, E. & Strominger, J. L. Hydroxylaminolysis of penicillin binding components is enzymatically catalyzed. J. Biol. Chem. 252, 7525–7529 (1977).

    CAS  PubMed  Google Scholar 

  97. Kozarich, J. W. & Strominger, J. L. A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J. Biol. Chem. 253, 1272–1278 (1978).

    CAS  PubMed  Google Scholar 

  98. Ferguson, M. A. J., Homans, S. W., Dwek, R. A. & Rademacher, T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239, 753–759 (1988).

    CAS  PubMed  Google Scholar 

  99. Borst, P. & Cross, G. A. Molecular basis for trypanosome antigenic variation. Cell 29, 291–303 (1982).

    CAS  PubMed  Google Scholar 

  100. Ferguson, M. A., Duszenko, M., Lamont, G. S., Overath, P. & Cross, G. A. Biosyn-thesis of Trypanosoma brucei variant surface glycoproteins. N-glycosylation and addition of a phosphatidylinositol membrane anchor. J. Biol. Chem. 261, 356–362 (1986).

    CAS  PubMed  Google Scholar 

  101. Fox, J. A., Duszenko, M., Ferguson, M. A., Low, M. G. & Cross, G. A. Purification and characterization of a novel glycan-phosphatidylinositol-specific phospholipase C from Trypanosoma brucei. J. Biol. Chem. 261, 15767–15771 (1986).

    CAS  PubMed  Google Scholar 

  102. Cross, G. A. Glycolipid anchoring of plasma membrane proteins. Annu. Rev. Cell Biol. 6, 1–39 (1990).

    CAS  PubMed  Google Scholar 

  103. Cross, G. A. Structure of the variant glycoproteins and surface coat of Trypanosoma brucei. Phil. Trans. Royal Soc. 307, 3–12 (1984).

    CAS  Google Scholar 

  104. Hoeijmakers, J. H., Frasch, A. C., Bernards, A., Borst, P. & Cross, G. A. Novel expression-linked copies of the genes for variant surface antigens in trypanosomes. Nature. 284, 78–80 (1980).

    CAS  PubMed  Google Scholar 

  105. Menon, A. K., Mayor, S., Ferguson, M. A., Duszenko, M. & Cross, G. A. Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins. J. Biol. Chem. 263, 1970–1977 (1988).

    CAS  PubMed  Google Scholar 

  106. Kodukula, K., Gerber, L. D., Amthauer, R., Brink, L. & Udenfriend, S. Biosynthesis of glycosylphosphatidylinositoal (GP1)-anchored membrane proteins inintact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment. J. Cell Biol. 120, 657–664 (1993).

    CAS  PubMed  Google Scholar 

  107. Caras, I. W., Weddell, G. N. & Williams, S. R. Analysis of thesignalfor attachment of a glycophospholipid membrane anchor. J. Cell Biol. 108, 1387–1396 (1989).

    CAS  PubMed  Google Scholar 

  108. Udenfriend, S. & Kodukula, K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64, 563–591 (1995).

    CAS  PubMed  Google Scholar 

  109. Benghezal, M., Lipke, P. N. & Conzelmann, A. Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae. J. Ce. Biol. 130, 1333–1344 (1995).

    CAS  Google Scholar 

  110. Leidich, S. D. & Orlean, P. Gpil, a Saccharomyces cerevisiaeprotein that participates in the first step in glycosylphosphatidylinotisol anchor synthesis. J. Biol. Chem. 271, 27829–27837 (1996).

    Google Scholar 

  111. Benghezal, M., Benachour, A., Rusconi, S., Aebi, M. & Conzelmann, A. Yeast Gpi8 is essential for GPI anchor attachment onto proteins. EMBO J. 15, 6575–6583 (1996).

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Hamburger, D., Egerton, M. & Riezman, H. Yeast Gaalp is required for attachment of a complete GPI anchpr onto proteins. J. Cell Biol. 129, 629–639 (1995).

    CAS  PubMed  Google Scholar 

  113. Ramalingam, S. et al. COOH-terminal processing of nascent polypeptides by the glycosylphosphatidylinositol transamidase in the presence of hydrazine is governed by the same parameters as glycosylphosphatidylinositol addition. Proc. Natl. Acad.Sci. USA 93, 7528–7533 (1996).

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Yu, J. et al. The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase. Proc. Natl. Acad. Sci. USA 94, 12580–12585 (1997).

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Yeung, M. K. & Cisar, J. O. Sequence homology between the subunits of two immunologically and functionally distinct types offimbriae of Actinomyces spp. J. Bacteriol. 172, 2462–2468 (1990).

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Yeung, M. K., Donkersloot, J. A., Cisar, J. O. & Ragsdale, P. A. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. J. Bacteriol. 66, 1482–1491 (1998).

    CAS  Google Scholar 

  117. Dhar, G., Faull, K. F. & Schneewind, O. Anchor structureof cell wall surfaceproteins in Listeria monoqtogenes. Biochemistry in press (2000).

    Google Scholar 

  118. Yeung, M. K., Donkersloot, J. A., Cisar, J. O. & Ragsdale, P. A. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infection & Immunity 66, 1482–1491 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ton-That, H., Mazmanian, S.K., Liu, G., Schneewind, O. (2001). Surface Protein Anchoring and Display in Staphylococci. In: Honeyman, A.L., Friedman, H., Bendinelli, M. (eds) Staphylococcus aureus Infection and Disease. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46848-4_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46848-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46591-8

  • Online ISBN: 978-0-306-46848-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics