Skip to main content

Pathophysiology of Central Nervpis System Trauma: Proteolytic Mechanisms and Related Therapeutic Approaches

  • Chapter
Role of Proteases in the Pathophysiology of Neurodegenerative Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Kontos and J.T. Povlishock, Oxygen radicals in brain injury, CNS Trauma 3(4):257 (1986).

    CAS  Google Scholar 

  2. E.D. Hall, Lipid antioxidants in acute central nervous system injury. [Review] Ann. Emerg. Med. 22(6):1022 (1993).

    PubMed  CAS  Google Scholar 

  3. T.K. McIntosh, M. Juhler, and T. Weiloch, Novel pharmacologic strategies in the treatment of experimental brain trauma, J. Neurotrauma 15:731 (1998).

    PubMed  CAS  Google Scholar 

  4. N.L. Banik, D.C. Shields, S. Ray, and E.L. Hogan, The pathophysiological role of calpain in spinal cord injury, in: The Pharmacology and Toxicology of Calpain, K.K.W. Wang and P.-W. Yuen, eds., Taylor and Francis Publishers, Washington DC (1999).

    Google Scholar 

  5. R.T. Bartus, The calpain hypothesis of neurodegeneration: Evidence for a common cytotoxic pathway, Neuroscientist 3:314 (1997).

    CAS  Google Scholar 

  6. R.L. Hayes, A. Kampfl, and R. Posmantur, The contribution of calpain proteolysis to neuronal death following traumatic brain injury, in: Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, K.K.W. Wang and P.-W. Yuen, eds, Taylor and Francis, Philadelphia, PA (1999).

    Google Scholar 

  7. N.L. Banik, D. Matzelle, G. Gantt-Wilford, and E.L. Hogan, Calpain and its inhibitors in spinal cord injury: Destruction and Neuroprotection, in: “Neuroprotective Agents, Third International Conference”, Annals of the New York Academy of Sciences, W. Slikker and B. Tremblay, eds. Plenum Press, New York (1997).

    Google Scholar 

  8. N.L. Banik, J.M. Powers and E.L. Hogan, The effects of spinal cord trauma on myelin, J. Neuropath. Exp. Neurol. 9:232 (1980).

    Google Scholar 

  9. J.T. Povlishock, A. Marmarou, T.K. McIntosh, J.Q. Trojanowski, and J. Moroi, Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration, J. Neuropathol. Exp. Neurol. 56:347 (1997).

    PubMed  CAS  Google Scholar 

  10. R. Nath, K.J. Raser, D. Stafford, I. Hajimohammadreza, A. Posner, H. Allen, R. Talanian, P. Yuen, R.B. Gilbertsen and K.K.W. Wang, Non-erythroid α-spectrin breakdown by calpain and interleukin 1 b-converting enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis, 319:683 (1996).

    CAS  Google Scholar 

  11. T.C. Saido, H. Sorimachi, and K. Suzuki, Calpain: new perspectives in molecular diversity and physiological-pathological involvement, FASEB J. 8:814 (1994).

    PubMed  CAS  Google Scholar 

  12. N.L. Banik and A.N. Davison, Lipid and basic protein interaction in myelin, Biochem J. 143:39 (1974).

    PubMed  CAS  Google Scholar 

  13. M.B. Lees and D.S. Chan, Proteolytic digestion of bovine brain white matter proteolipid, J. Neurochem. 25:595 (1975).

    PubMed  CAS  Google Scholar 

  14. M.B. Lees and S.W. Brostoff, Proteins of myelin, in Myelin, P. Morell, ed, Plenum Press, New York, (1985).

    Google Scholar 

  15. A. Pope and R.A. Nixon, Proteases of human brain, Neurochem. Res. 9:291 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. H.A. Krebs, Uber die proteolyse der tumoren, Biochem. 2.238: 174 (1931).

    Google Scholar 

  17. M.F. Kerekes, T. Feszt, and A. Kovacs, Catheptic activity in the cerebral tissue of the rabbit during allergic encephalomyelitis, Experientia 21:42 (1965).

    Article  PubMed  CAS  Google Scholar 

  18. M.W. Kies and S. Schwimmer, Observations on proteinase in brain, J. Biol. Chem. 145:645 (1942).

    Google Scholar 

  19. G.B. Ansell and D. Richter, Evidence for neutral proteinase in brain tissue, Biochim. Biophys. Acta, 13:92 (1954).

    PubMed  CAS  Google Scholar 

  20. N. Marks and A. Lajtha, Proteinase breakdown in the brain: Subcellular distribution and properties of neutral and acid proteinases, Biochem. J. 89:438 (1963).

    PubMed  CAS  Google Scholar 

  21. H. Hirsch and M. Parks, Acid proteinase and other acid hydrolases in experimental allergic encephalomyelitis: Pinpointing the source, J. Neurochem. 24:853 (1975).

    PubMed  CAS  Google Scholar 

  22. N.L. Banik, A.K. Chakrabarti, and E.L. Hogan, Calcium-activated neutral proteinase in myelin: its role and function, in: Myelin, Biology and Chemistry, R. Martenson, ed., CRC Press, Boca Raton (1992).

    Google Scholar 

  23. A. Chantry, N.A. Gregson, and P. Glynn, A novel metalloproteinase associated with brain myelin membranes: Isolation and characterization, J. Biol. Chem. 264:2 1603 (1990).

    Google Scholar 

  24. P.A. Forsyth, D.R. Edwards, M.A. LaFleur, and V.W. Yong, Proteases and their inhibitors in gliomas, in: Role of Proteases in the Pathophysiology of Neurodegenerative Disease, N.L. Banik and A. Lajtha, eds, Plenum Press, New York (2001).

    Google Scholar 

  25. M.L. Cuzner and G. Opdenakker, Plasminogen activators and matrixmetalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system, J. Neuroimmunol. 94:1 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. S. Wilk and M. Orlowski, Cation-sensitive neutral endopeptidase: Isolation and specificity of the bovine pituitary enzyme, J. Neurochem. 35(5):1172 (1980).

    PubMed  CAS  Google Scholar 

  27. D.E. Croall and G.N. DeMartino, Regulation of calcium-dependent protease activity in vitro, in: Intracellular Calcium-Dependent Proteolysis, R.L. Mellgren and T. Murachi, eds., Boca Raton, CRC Press, (1990).

    Google Scholar 

  28. D.C. Shields and N.L. Banik, A putative role for calpain in the mechanisms of myelin breakdown in autoimmune experimental demyelinating disease, J. Neurosci. Res. 55533 (1999).

    Google Scholar 

  29. M.L. Cuzner, W.I. McDonald, P. Rudge, M. Smith, N. Borshell, and A.N. Davison, Leukocyte proteinase activity and acute multiple sclerosis, J. Neurol. Sci. 26: 107 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. M.E. Smith, The role of proteolytic enzymes in experimental allergic encephalomyelitis, Neurochem. Res. 2:223 (1976).

    Google Scholar 

  31. J.D. Balentine, Pathology of experimental spinal cord trauma. II. Ultrastructure of mons and myelin. Lab. Invest.39:254 (1978).

    PubMed  CAS  Google Scholar 

  32. J.C. Bresnahan, An electron microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the Rhesus monkey (Macaca mulata), J. Neurol. Sci. 37:92 (1978).

    Article  Google Scholar 

  33. R.D. Happel, K.P. Smith, N.L. Banik, J.M. Powers, E.L. Hogan and J.D. Balentine, Ca++-accumulation in experimental spinal cord trauma, Brain Res. 211:476 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. J.A. Jane, R.W. Rimel, W.M. Alves, R.G. Dacey Jr, H.R. Winn and A.R. Colohan, Minor and moderate head injury model system, in: Trauma of Central Nervous System, R.G. Dacey Jr., H.R. Winn, R.W. Rimel and J.A. Jane, eds., New York, Raven Press (1985).

    Google Scholar 

  35. B.T. Stokes, P. Fox and G. Hollinden, Extracellular calcium activity in the injured spinal cord, Exp. Neurol. 80:561 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. W. Young and F.S. Flam, Effect of high-dose corticosteroid therapy of blood flow, evoked potentials, and extracellular calcium in experimental spinal cord injury, J. Neurosurg. 57:667 (1982).

    PubMed  CAS  Google Scholar 

  37. D.C. Shields, K.E. Schaecher, E.L. Hogan, and N.L. Banik, Calpain expression is increased in activated glial and inflammatory cells in the penumbra of spinal cord injury lesion, J. Neurosci. Res. 61:146 (2000).

    Google Scholar 

  38. J.D. Balentine, Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury, Lab. Invest. 39:236 (1978).

    PubMed  CAS  Google Scholar 

  39. N.L. Banik, E.L. Hogan, J.M. Powers and L.J. Whetstine, Degradation of neurofilament proteins in spinal cord injury, Neurochem. Res. 7:1465 (1982).

    Article  PubMed  CAS  Google Scholar 

  40. L.A. Horrocks, A. Towes, D. Yashon and G.E. Locke, Changes in myelin following trauma of the spinal cord in monkeys. Neurobiol. 3:256 (1973).

    CAS  Google Scholar 

  41. N.R. Clendenon, N. Allen, and W.A. Gordon, Effect of trauma on Na+–K+-activated ATPase activities in dog spinal cord, Trans. Amer. Soc. Neurochem. 9:88 (1978).

    Google Scholar 

  42. J. Greenberg, P.E. McKeever and J.D. Balentine, Lysosomal activity in experimental spinal cord trauma: an ultrastructural cytochemical evaluation, Surg. Neurol. 9:361 (1978).

    PubMed  CAS  Google Scholar 

  43. N.L. Banik, K.P. Smith, J.M. Powers and E.L. Hogan, Proteolytic enzymes in spinal cord trauma, J. Neurol. Sci. 73:245 (1986).

    Article  PubMed  CAS  Google Scholar 

  44. E.L. Hogan and N.L. Banik, Biochemistry of the Spinal Cord, in: Handbook of Neurochemistry, 2nd edition, Vol. 10, A. Lajtha, ed., Plenum Press, New York (1985).

    Google Scholar 

  45. J.R. Wrathal, D. Choiniere, and Y.D. Teng, Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMP/kainate antagonist NBQX, J. Neurosci. 14:6598 (1994).

    Google Scholar 

  46. I. Fischer, G. Romano-Clarke and F. Grynspan, Calpain-mediated proteolysis of microtubule-associated proteins MAP1 and MAP2 in developing brain, Neurochem. Res. 16:891 (1991).

    Article  PubMed  CAS  Google Scholar 

  47. J.E. Springer, R.D. Azbill, S.E. Kennedy, J. George, and J.W. Geddes, Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: Attenuation with Riluzole pretreatment, J. Neurochem. 69: 1592 (1997).

    PubMed  CAS  Google Scholar 

  48. N.L. Banik, E.L. Hogan, and C.Y. Hsu, The multimolecular cascade of spinal cord injury. Studies on prostanoids, calcium, and proteinases, Neurochem. Pathol. 757 (1987).

    Google Scholar 

  49. W.L. Maxwell, C. Wan, D.I. Graham, and T.A. Gennarelli, Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates, Acta Neuropathol. 86:136 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. D.E. Erb and J.T. Povlishock, Axonal damage in severe traumatic brain injury: an experimental study in the cat, Acta Neuropathol. (Berlin ) 76:347 (1998).

    Google Scholar 

  51. T.A. Gennarelli, L.E. Thibault, D.I.. Graham, et al., Diffuse axonal injury: an important form of traumatic brain injury, The Neuroscientist 4:202 (1998).

    Google Scholar 

  52. D.I. Graham, J.H Adams, J.A. Nicoll, W.L. Maxwell, and T.A. Gennarelli, The nature, distribution and causes of traumatic brain injury, Brain Pathol. 5:397 (1995).

    PubMed  CAS  Google Scholar 

  53. J.T. Povlishock, D.P. Becker, C.L.Y. Cheng, and G.W. Vaughan, Axonal change in minor head injury, J. Neuropathol. Exp. Neurol. 42:225 (1983).

    PubMed  CAS  Google Scholar 

  54. D.H. Smith and D.F. Meaney, Axonal damage in traumatic brain injury, The Neuroscientist (2000) (In press).

    Google Scholar 

  55. P.K. Stys, Anoxic and ischemic injury of myelinated axons in CNS white matter from mechanistic concepts to therapeutics, J. Cereb. Blood Flow Metab. 18(1):2 (1998).

    PubMed  CAS  Google Scholar 

  56. J. Balentine, E. Hogan, N. Banik, and P. Perot, Calcium and the pathogenesis of spinal cord injury, in: Trauma of the Central Nervous System, R.G. Dacey Jr, H.R. Winn, R. Rimel, and J.A. Jane, eds., Raven Press, New York, (1985).

    Google Scholar 

  57. P. Seubert, K. Lee and G. Lynch, Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus, Brain Res. 492:366 (1989).

    Article  PubMed  CAS  Google Scholar 

  58. H.J. Kim, H.L. Fillmore, W.C. Broaddus, J.T. Povlishock, and L.L. Phillips, Increased expression of MMP-3 and MMP-9 in the rat hippocampus following traumatic brain injury, in: International Conference on Metalloproteinases and their Inhibitors in the Nervous System: Physiology and Disease, V.W. Yong, P. Forsyth, and D. Edwards, eds., University of Calgary, Canada (1999).

    Google Scholar 

  59. H.J. Kim, H.L. Fillmore, K. Hasty, W.C. Broaddus, J. Zhu, T.M. Reeves, J.T. Povlishock, and L.L. Phillips, Traumatic brain injury differentially affects the expression of TIMP-I protein, in: International Conference on Metalloproteinases and their Inhibitors in the Nervous System: Physiology and Disease, V.W. Yong, P. Forsyth, and D. Edwards, eds., University of Calgary, Canada (1999).

    Google Scholar 

  60. M.L. Cuzner, Proteases in demyelination, in: Role of Proteases in the Pathophysiology of Neurodegenerative Disease, N.L. Banik and A. Lajtha, eds, Plenum Press, New York (2001).

    Google Scholar 

  61. M.E. Periera and P. Rockwell, The ubiquitin/proteasome pathway in neurological disorders, in: Role of Proteases in the Pathophysiology of Neurodegenerative Disease, N.L. Banik and A. Lajtha, eds, Plenum Press, New York (2001).

    Google Scholar 

  62. F.M. Donovan, L.J. Noble, and Z. Werb, The role of gelatinase B (MMP-9) in spinal cord injury, in: International Conference on Metalloproteinases and their Inhibitors in the Nervous System: Physiology and Disease, V.W. Yong, P. Forsyth, and D. Edwards, eds., University of Calgary, Canada (1999).

    Google Scholar 

  63. S. Mun-Bryce and G.A. Rosenberg, Matrix metalloproteinases in cerebrovascular disease. J. Cereb. Blood Flow Metab. 18(11):1163 (1998).

    PubMed  CAS  Google Scholar 

  64. D.C. Anthony, B. Ferguson, M.K. Matyzak, K.M. Miller, M.M. Esiri, and V.H. Perry, Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke, Neuropath. App. Neurobiol. 23(5):406 (1997).

    Google Scholar 

  65. V.W. Yong, C.A. Krekoshi, P.A. Forsyth, R. Bell, and D.R. Edwards, Matrix metalloproteinases and diseases of the CNS, TINS21(2):75 (1998).

    PubMed  CAS  Google Scholar 

  66. J.D. Balentine and W.B. Greene, Ultrastructural pathology of nerve fibers in calcium-induced myelopathy. Lab. Invest. 47:286 (1984).

    Google Scholar 

  67. R.D. Happel, N.L. Banik, J.D. Balentine and E.L. Hogan, Tissue calcium levels in CaCl2-induced myelopathy. Neurosci. Let. 49:279 (1984).

    Article  CAS  Google Scholar 

  68. Z. Li, E.L. Hogan, and N.L. Banik, Role of calpain in spinal cord injury: Increased calpain immunoreactivity in compression injury in the rat, Neurochem. Int. 27:425 (1995).

    Article  PubMed  CAS  Google Scholar 

  69. Z. Li, E.L. Hogan and N.L. Banik, Role of calpain in spinal cord injury: Increased calpain immunoreactivity in rat spinal cord after impact trauma, Neurochem. Res. 21:441 (1996).

    PubMed  CAS  Google Scholar 

  70. N.L. Banik, D. Matzelle, G. Gantt-Wilford, A. Osborne and E.L. Hogan, Increased calpain content andprogressive degradation of neurofilament protein in spinal cord injury, Brain Res. 752:301 (1997).

    Article  PubMed  CAS  Google Scholar 

  71. S. Ray, D.C. Shields, T.C. Saido, D. Matzelle, G.G. Wilford, E.L. Hogan, and N.L. Banik, Calpain activity and translational expression increased in spinal cord injury, Brain Res. 816:375 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. S.K. Ray, D. Matzelle, G. Wilford, E.L. Hogan, and N.L. Banik, E64-d prevents both calpain upregulation and apoptosis in the lesion and penumbra following spinal cord injury in rats, Brain Res. 867:80 (2000).

    PubMed  CAS  Google Scholar 

  73. V. Nadler, A. Biegon, E. Beti-Yannai, J. Adamchik, and E. Shohami, Ca2+ accumulation in rat brain after closed head injury: attenuation by the novel neuroprotective agent HU-211, Brain Res. 685: 1 (1995).

    Article  PubMed  CAS  Google Scholar 

  74. P. Nilsson, L. Hillered, Y. Olsson, M.J. Sheardown, and A.J. Hansen, Regional changes of interstitial K+ and Ca2+ levels following cortical compression trauma in rats, J. Cereb. Blood FIow Metab. 13:183 (1993).

    CAS  Google Scholar 

  75. T. Imaizumi, J.D. Kocsis, and S.G. Waxman, Anoxic injury in the rat spinal cord; pharmacological evidence for multiple steps in Ca2+-dependent injury of the dorsal columns, J. Neurotruuma 14:299 (1997).

    CAS  Google Scholar 

  76. R. Posmantur, R.L. Hayes, C.D. Dixon and W.C. Taft, Neurofilament 68 and neurofilament 200 protein decrease after traumatic brain injury, J. Neurotrauma 11:533 (1994).

    PubMed  CAS  Google Scholar 

  77. K.E. Saatman, D. Bozyczko-Coyne, V. Marcy, R. Siman and T.K. McIntosh, Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat, J. Neuropath. Exp. Neurol. 55:850 (1996).

    Article  PubMed  CAS  Google Scholar 

  78. T. Hamakubo, R. Kannagi, T. Murachi and A. Matus, Distribution of calpains I and II in rat brain, J. Neurosci. 6:3103 (1986).

    PubMed  CAS  Google Scholar 

  79. R. Siman, C. Gall, L.S. Perlmutter, C. Christian, M. Baudry, and G. Lynch, Distribution of calpain I, an enzyme associated with degenerative activity, in rat brain, Brain Res. 347:399 (1985).

    Article  PubMed  CAS  Google Scholar 

  80. S. Sato and T. Miyatake, Degradation of myelin basic protein by calcium-activated neutral protease (CANP)-like enzyme in myelin and inhibition by E-64 analogue, Biomed. Res. 3:461 (1982).

    CAS  Google Scholar 

  81. N.L. Banik, W.W. McAlhaney, and E.L. Hogan, Calcium-stimulated proteolysis in myelin: Evidence for a Ca2+-activated neutral proteinase associated with purified myelin of rat CNS, J. Neurochem. 45:581(1985).

    Google Scholar 

  82. S.K. Ray, T. Neuberger, G. Deadwyler, G. DeVries, and N.L. Banik, Calpain and calpastatin expression in oligodendrocyte culture: A preferential localization of membrane calpai in cell processes, Glia 2000. Submitted.

    Google Scholar 

  83. K.I. Saito, J.S. Elce, J.E. Hamos, and R.A. Nixon, Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration, Proc. Natl. Acad. Sci. U.S.A. 90:2628 (1993).

    PubMed  CAS  Google Scholar 

  84. S.A. Coolican and D.R. Hathaway, Effect of L-α-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease: Reduction of the Ca2+ requirement for autolysis. J. Biol. Chem. 259:11627 (1984).

    PubMed  CAS  Google Scholar 

  85. J. Cong, D.E. Goll, A.M. Peterson, and H.P. Kapprell, The role of autolysis in activity of the Ca2+-dependent proteinases (μ-calpain and m-calpain), J. Biol. Chem. 264:10096 (1989).

    PubMed  CAS  Google Scholar 

  86. K. Suzuki, S. Tsuji, S. Kubota, T. Kimura, and K. Imahori, Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions, J. Biochem. 90:275 (1981).

    PubMed  CAS  Google Scholar 

  87. A.K. Chakrabarti, S. Dasgupta, N.L. Banik, and E.L. Hogan, Regulation of the Ca2+-activated neutral proteinase (CANP) of bovine brain by myelin lipids, Biochim. Biophys. Acta 1038:195 (1990).

    PubMed  CAS  Google Scholar 

  88. A.K. Chakrabarti, S. Dasgupta, N.L. Banik, and E.L. Hogan, Ganglioside modulated proteolysis by Ca2+-activated neutral proteinase (CANP): A role of glycoconjugates in CANP regulation, J. Neurochem. 54:1816 (1990).

    PubMed  CAS  Google Scholar 

  89. T.C. Saido, M. Shibata, T. Takenawa, H. Murofushi, and K. Suzuki, Positive regulation of mucalpain action by polyphosphoinositides, J. Biol. Chem. 267:24585 (1992).

    PubMed  CAS  Google Scholar 

  90. M. Azuma, E. Inoue, T. Oka, and T.R. Shearer, Proteolysis by calpain is an underlying mechanism for formation of sugar cataract in rat lens, Cur. Eye Res. 14:27 (1995).

    CAS  Google Scholar 

  91. R.T. Bartus, N.J. Heyward, P.J. Elliott, S.D. Sawyer, R.L. Dean, A. Akiyuama, J.A. Straub, S.L. Harbeson, and Z. Li, Calpain inhibitor AK295 protects neurons from focal brain ischemia: Effects of post-occlusion intra-arterial administration, Stroke 25:2265 (1995).

    Google Scholar 

  92. A. Mouatt-Prigent, J.O. Karlsson, Y. Agid, and E.C. Hirsch, Increased m-calpain expression in the mesencephalonof patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neurosci. 73:979 (1996).

    Article  CAS  Google Scholar 

  93. D.C. Shields, K.E. Schaecher, T.C. Saido, and N.L. Banik, A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain Proc. Natl. Acad. Sci. U.S.A. 96:11486 (1999).

    Article  PubMed  CAS  Google Scholar 

  94. T. Tsuji, S. Shimohama, J. Kimura, and K. Shimizu, m-Calpain (calcium-activated neutral proteinase) in Alzheimer’s disease brains, Neurosci. Lett. 248:109 (1998).

    Article  PubMed  CAS  Google Scholar 

  95. C.M. Hosfield, J.S. Elce, P.L. Davies, and Z. Jia, Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation, EMBO J. 18(24):6880 (1999)

    Article  PubMed  CAS  Google Scholar 

  96. C.M. Hosfield, Q. Ye, J.S., Arthur, C. Hegadorn, D.E. Croall, J.S. Elce, and Z. Jia, Crystallization and X-ray crystallographic analysis of m-calpain, a Ca2+-dependent protease, Acta Crystallographica Section D-Biological Crystallography 55(8):1484 (1999).

    Article  CAS  Google Scholar 

  97. K. Suzuki, H. Sorimachi, T. Yoshizawa, K. Kinbara, and S. Ishiura, Calpain: novel family members, activation, and physiological function, Biol. Chem. 376:523 (1995).

    CAS  Google Scholar 

  98. K.K.W. Wang and P.W. Yuen, eds. Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, Francis and Taylor, Ann Arbor (1999).

    Google Scholar 

  99. J.D. Balentine and M. Spector, Calcification of axons in experimental spinal cord trauma. Ann. Neurol. 2:520 (1977).

    Article  PubMed  CAS  Google Scholar 

  100. S.K. Agrawal and M.G. Fehlings, Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)−K(+)-ATPase, the Na(+)−H+ exchanger, and the Na(+)−Ca2+ exchanger, J. Neurosci. 16(2):545 (1996)

    PubMed  CAS  Google Scholar 

  101. E.B. George, J.S. Glass, and J.W. Griffin, Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels, J. Neurosci. 15:6445 (1995)

    PubMed  CAS  Google Scholar 

  102. R.M. LoPachin and E.J. Lehning, Mechanism of calcium entry during axon injury and degeneration, Toxicol. Appl. Pharmacol. 143(2):233 (1997).

    Article  PubMed  CAS  Google Scholar 

  103. S.G. Waxman, J.A. Black, B.R. Ransom, and P.K. Stys, Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons, Brain Res. 253:105 (1994).

    Google Scholar 

  104. W. Young, Role of calcium in central nervous system injuries, J. Neurotrauma 9:S9 (1992).

    Google Scholar 

  105. N.E. Ziv and M.E. Spira, Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range, J. Neurophys. 74:2625 (1995).

    CAS  Google Scholar 

  106. N.L. Banik, J.M. Powers, E.L. Hogan, unpublished.

    Google Scholar 

  107. R.T. Bartus, K.L. Baker, A.D. Heiser, S.D. Sawyer, R.L. Dean, P.J. Elliott, and J.A. Straub,. Post-ischemic administration of AK-295, a calpain inhibitor provides substantial protection against focal ischemic brain damage, J. Cereb. Blood Flow Metab. 14:537 (1994).

    PubMed  CAS  Google Scholar 

  108. P. Libby and A.L. Goldberg, Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles, Science 199:534 (1978).

    PubMed  CAS  Google Scholar 

  109. A. Stracher, E.B. McGowan, and S.A. Shafiq, Muscular dystrophy: Inhibition of degradation in vivo with protease inhibitors, Science 200:50 (1978).

    PubMed  CAS  Google Scholar 

  110. J.L. Farber, The role of calcium in cell injury, Life Sci. 29: 1289 (1981).

    Article  PubMed  CAS  Google Scholar 

  111. C. Fukiage, M. Azuma, Y. Nakamura, Y. Tamada, M. Nakamura, and T.R. Shearer, SJA6017, a newly synthesized peptide aldehyde inhibitor of calpain: amelioration of cataract in cultured rat lenses, Biochem. Biophys. Acta 1361:304 (1997).

    PubMed  CAS  Google Scholar 

  112. T.R. Shearer and L.L. David, Calpain in lens and cataract, in: Intracellular Calcium-Dependent Proteolysis, R.L. Mellgren and T. Murachi, eds., CRC Press, Boca Raton (1990).

    Google Scholar 

  113. D.C. Shields, W.R. Tyor, G.E. Deibler, and N.L. Banik, Increased calpain expression in experimental demyelinating optic neuritis: An immunocytochemical study, Brain Res. 784:299 (1998).

    Article  PubMed  CAS  Google Scholar 

  114. W. Nayler and P. Grinwald, Calcium entry blockers and myocardial function, Fed. Proc. 40:2855 (1981).

    PubMed  CAS  Google Scholar 

  115. K.A. Reimer, F.E. Lowe, and R.E. Jennings, Effects of the calcium antagonist verapamil on necrosis following temporary coronary artery occlusion in dogs, Circulation 55:581 (1977).

    PubMed  CAS  Google Scholar 

  116. S.K. Ray, G.G. Wilford, C.V. Crosby, E.L. Hogan, and N.L. Banik, Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells, Brain Res. 829: 18 (1999).

    Article  PubMed  CAS  Google Scholar 

  117. S.K. Ray, M. Fedan, M. Nowak, G.G. Wilford, E.L. Hogan, and N.L. Banik, Oxidative stress and C2+ influx upregulate calpain and induce apoptosis in PC 12 cells, Brain Res. 852:326 (2000).

    Article  PubMed  CAS  Google Scholar 

  118. K. Takahashi, Calpain substrate specificity, in: Intracellular Calcium-Dependent Proteolysis, R.L. Mellgren and T. Murachi, eds., CRC Press, Boca Raton (1990).

    Google Scholar 

  119. Y. Katayama, D.P. Becker, T. Tamura, and D.A. Hovda, Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury, J. Neurosurg. 73:889 (1990).

    PubMed  CAS  Google Scholar 

  120. H. Kimelberg, C. Bowman, S. Biddlecome, and R.S. Bourke, Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains, Brain Res. 177(3):533 (1979).

    Article  PubMed  CAS  Google Scholar 

  121. P.K. Stys, S.G. Waxman, and B.R. Ransom, Na+−Ca+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter, Ann. Neurol. 30(3):375 (1991).

    Article  PubMed  CAS  Google Scholar 

  122. B.K. Siesjoe, K. Katsura, Q. Zhao, J. Folbergrova, K. Pahlmark, P. Siesjo, and M.L. Smith, Mechanisms of secondary brain damage in global and focal ischemia: a speculative synthesis, J. Neurotrauma 12(5):943 (1995).

    Google Scholar 

  123. R. Vink, T.K. McIntosh, and A.I. Faden, Magnesium in CNS trauma, in: Neuroscience Year: The Yearbook of the Encyclopedia of Neuroscience, G. Adelman, ed., Birkhauser Boston, Inc., Cambridge, MA (1989).

    Google Scholar 

  124. Y. Shapira, G. Yadid, S. Cotex, and E. Shahoami, Accumulation of calcium in the brain following head trauma, Neurol. Res. 11:169 (1989).

    PubMed  CAS  Google Scholar 

  125. B.K. Siesjoe and F. Benstsson, Calcium fluxes, calcium antagonists, and calcium related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis, J. Cereb. Blood Flow Metab. 9:127 (1989).

    CAS  Google Scholar 

  126. I. Fineman, D.A. Hovda, M. Smith, A. Yoshino, and D.P. Becker, Concussive brain injury is associated with a prolonged accumulation of calcium: 45Ca autoradiographic study, Brain Res. 624:94 (1993).

    Article  PubMed  CAS  Google Scholar 

  127. P. Nilsson, H. Laursen, L. Hillered, A.J. Hansen, Calcium movements in traumatic brain injury: the role of glutamate receptor-operated ion channels, J. Cereb. Blood Flow Met. 16(2):262 (1996).

    CAS  Google Scholar 

  128. Y. Xiong, P.L. Peterson, J.P. Muizelaar, and C.P. Lee, Amelioration of mitochondrial function by a novel antioxidant U-101033 following traumatic brain injury in rats, J. Neurotrauma 14:907 (1997).

    PubMed  CAS  Google Scholar 

  129. D.C. Shields, E.L. Hogan, and N.L. Banik, Secondary Pathophysiological Responses Following Spinal Cord Injury: A Putative Role for Calcium Activated Neutral Proteinase, in: Recent Advances in CNS Trauma Research, N.L. Banik, J. Marwah, and E. Dixon, eds., (2000) (In press).

    Google Scholar 

  130. R. Siman, J.C. Noszek, and C. Kegerise, Calpain 1 activation is specifically related to excitatory amino acid induction of hippocampal damage, J. Neurosci. 9:1579 (1989).

    PubMed  CAS  Google Scholar 

  131. E. McCracken, A.J. Hunter, S. Patel, D.I. Graham, and D. Dewar, Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients, J. Neurotrauma 16(9):749 (1999).

    PubMed  CAS  Google Scholar 

  132. J.T. Povlishock and H.A. Kontos, The role of oxygen radicals in the pathobiology of traumatic brain injury, Human Cell 5(4):345 (1992).

    PubMed  CAS  Google Scholar 

  133. T.A. Gennarelli, L.E. Thibault, R. Tipperman, G. Tomei, R. Sergot, M. Brown, W.L. Maxwell, D.I. Graham, J.H. Adams, and A. Irvine, Axonal injury in the optic nerve: a model that simulates diffuse axonal injury in the brain, J. Neurosurg. 71:244 (1989).

    PubMed  CAS  Google Scholar 

  134. D.F. Meaney, D.H. Smith, D.I. Shreiber, A.C. Bain, R.T. Miller, D.T. Ross, and T.A. Gennarelli, Biomechanical analysis of experimental diffise axonal injury, J. Neurotrauma 12(4):689 (1995).

    PubMed  CAS  Google Scholar 

  135. E. Melloni and S. Pontremoli, The calpains, Trends in Neurosci. 12:438 (1989).

    CAS  Google Scholar 

  136. P.W. Yuen and K.K.W. Wang, Therapeutic potential of calpain inhibitors in neurodegenerative disorders, Exp. Opin. Invest. Drugs 5:1291 (1996).

    Article  CAS  Google Scholar 

  137. A. Kampfl, R. Posmantur, X. Zhao, E. Schmutzhard, G.L. Clifton and R. Hayes, Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: a review and update, J. Neurotrauma 14:121 (1997).

    PubMed  CAS  Google Scholar 

  138. D.C. Shields and N.L. Banik, Pathophysiological role of calpain in experimental demyelination, J. Neurosci. Res. 55:533 (1999).

    Article  PubMed  CAS  Google Scholar 

  139. D.C. Shields and N.L. Banik, The pathophysiological role of calpain associated with demyelinating optic neuritis, Histol. Histopathol. 14:649 (1999).

    PubMed  Google Scholar 

  140. X.J. Mu, R.D. Azbill, and J.E. Springer, Riluzole improves measures of oxidative stress following traumatic spinal cord injury, Brain Res. 870:66 (2000).

    Article  PubMed  CAS  Google Scholar 

  141. G.V.W. Johnson, J.M. Litersky and R.S. Jope, Degradation of microtubule-associated protein 2 and brain spectrin by calpain: a comparative study, J. Neurochem. 56:1630 (1991).

    PubMed  CAS  Google Scholar 

  142. W.W. Schlaepfer and U.P.J. Zimmerman, Calcium mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord, Neurochem. Res. 6:243 (1981).

    Article  PubMed  CAS  Google Scholar 

  143. R. Siman, M. Baudry, and G. Lynch, Brain fodrin: Substrate for calpain I, and endogenous calcium-activated protease, Proc. Natl. Acad. Sci. U.S.A. 81:3572 (1984).

    PubMed  CAS  Google Scholar 

  144. P. Traub and W.J. Nelson, Occurrence in various mammalian cells and tissues of the Ca2+-activated neutral proteinase specific for the intermediate proteins vimentin and desmin, Eur. J. Cell Biol. 26:61 (1982).

    Google Scholar 

  145. M. Banay-Schwartz, D. Dahl, K.-S. Hui, A. Lajtha, The breakdown of individual neurofilament proteins by cathepsin D, Neurochem. Res. 12:361 (1987).

    Article  PubMed  CAS  Google Scholar 

  146. R.A. Nixon and C.A. Marotta, Degradation of neurofilament proteins by purified human brain cathepsin D, J. Neurochem. 43:507 (1984).

    PubMed  CAS  Google Scholar 

  147. T. James, D. Matzelle, R. Bartus, E.L. Hogan, and N.L. Banik, New inhibitors of calpain prevent degradation of cytoskeletal and myelin proteins in spinal cord, J. Neurosci. Res. 51(2):218 (1997).

    Google Scholar 

  148. R. Posmantur, A. Kampfl, R. Siman, S.J. Liu, X. Zhao, G.L. Clifton, and R.L. Hayes, A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental brain injury in the rat, Neurosciences 77:875 (1997).

    CAS  Google Scholar 

  149. C.Y. Hsu, S.T. Chen, Y.O. Luk, T.H. Liu, N.L. Banik, R.H. Gadsden, and E.L. Hogan, Pathophysiology of focal cerebral ischemia: Studies in a rat model, Cereb. Vasc. Dis. 6:247 (1987).

    Google Scholar 

  150. K.S. Lee, S. Frank, P. Vanderlisk, A. Arai and G. Lynch, Inhibition of proteolysis protects hippocampal neurons from ischemia, Proc. Nutl. Acad. Sci. U.S.A. 88:7233 (1990).

    Google Scholar 

  151. M. Yokota, T.C. Saido, E. Tani, S. Kawashima, and K. Suzuki, Three distinct phases of fodrin proteolysis induced in post-ischemic hippocampus: Involvement of calpain an unidentified protease, Stroke 26: 1901 (1995).

    PubMed  CAS  Google Scholar 

  152. J.K. Newcomb, S.J. Liu, A. Kampfl, X. Zhao, R. Posmantur, G.L. Clifton and R.L. Hayes, Examination of calpain I specific breakdown products to α-spectrin in a controlled cortical impact model at both early and late time points, J. Neurotrauma 6:39–383 (1997).

    Google Scholar 

  153. J.M. Roberts-Lewis, M.J. Savage, V.R. Marcy, L.R. Pinsker, and R. Siman, Immunolocalization of calpain 1 mediated spectrin degradation to vulnerable neurons in ischemic gerbil brain. J. Neurosci. 14:3934 (1994).

    PubMed  CAS  Google Scholar 

  154. N.L. Banik, D. Matzelle, G. Wilford, and E.L. Hogan, Progressive degradation of MAG in spinal cord injury, Soc. Neurosci. (Washington, DC) 22:230 (1996).

    Google Scholar 

  155. A. Kampfl, R. Posmantur, R. Nixon, F. Grynspan, X. Zhao, S.J. Liu, J.R. Newcomb, G.L. Clifton, and R.L. Hayes, μCalpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury, J. Neurochem. 67:1575 (1996).

    PubMed  CAS  Google Scholar 

  156. R.V. Deshpande, J.M. Goust, E.L. Hogan, and N.L. Banik, Calpain secreted from activated lymphoid cells degrades myelin. J. Neurosci. Res. 42:259 (1995).

    Article  PubMed  CAS  Google Scholar 

  157. K. Kitagowa, M. Mastumoto, M. Ninobe, K. Mikoshiba, R. Hata, H. Ueda, N. Handa, R. Fukunaga, Y. Isaka, and K. Kimura, Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage, Neuroscience 31:401 (1989).

    Google Scholar 

  158. D.F. Matesic and R.C.S. Lin, Microtubule associated protein 2 as an early indicator of ischemia induced neurodegeneration in the gerbil forebrain, J. Neurochem. 63:1012 (1994).

    PubMed  CAS  Google Scholar 

  159. K. Blomgren, A. McRae, L. Bona, T.C. Saido, J.-L. Karlson, and H. Hagsberg, Degradation of fodrin and MAP2 after neonatal hypoxic-ischemia, Brain Res. 684:136 (1995).

    Article  PubMed  CAS  Google Scholar 

  160. Y. Kaku, Y. Yonekawa, T. Tsukahara, N. Ogata, T. Kimura, and T. Taniguchi, Alterations of a 200 kDa neurofilament in the rat hippocampus after forebrain ischemia, J. Cereb. Blood Flow Metab. 13:402 (1993).

    PubMed  CAS  Google Scholar 

  161. M. Nakamura, M. Araki, K. Oguro, and T. Masuzawa, Differential distribution of 68 kD and 200 kD neurofilament proteins in gerbil hippocampus and their early distributional changes following transient forebrain ischemia, Exp. Brain Res. 89:31 (1992).

    Article  PubMed  CAS  Google Scholar 

  162. S.C. Hong, Y. Goto, G. Lanzino, S. Soleau, N.F. Kassell, and K.S. Lee, Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia, Stroke 25:663 (1994).

    PubMed  CAS  Google Scholar 

  163. T. Inuzuka, A. Tamura, S. Shuzo, T. Korino, I. Toyoshima and Y. Miyatake, Suppressive effect of E-64 on ischemic degradation of cerebral proteins following occlusion of the middle cerebral artery in rats, Brain Res. 526:177 (1990).

    Article  PubMed  CAS  Google Scholar 

  164. A. Rami and J. Kreiglstein, Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo, Brain Res. 609:67 (1993).

    Article  PubMed  CAS  Google Scholar 

  165. A. Rami, R. Agarwal, G. Botez, and J. Winckler, μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage, Brain Res. 866:299 (2000).

    Article  PubMed  CAS  Google Scholar 

  166. K.S. Lee, P.L. Foldy, P. Vanderklish, G. Lynch, Y. Goto, and N.F. Kassell, The role of calcium-activated proteolysis in vasospasm after subarachnoid hemorrhage, in: Developments in Neurology 8: Cerebral Vasospasm, J.M. Findlay, ed., Elsevier, Amsterdam (1993).

    Google Scholar 

  167. W.C. Taft, K. Wang, C.E. Dixon, and R.L. Hayes, Microtubule-associated protein 2 levels decrease in hippocampus following traumatic brain injury, J. Neurotrauma 9:281 (1992).

    PubMed  CAS  Google Scholar 

  168. R.R. Hicks, D.H. Smith, and T.K. McIntosh, Temporal response and effects of excitatory amino acid antagonism on microtubule associated protein 2 immunoreactivity following experimental brain injury in rats. Brain Res. 678: 151 (1995).

    Article  PubMed  CAS  Google Scholar 

  169. R.M. Posmantur, A. Kampfl, S.J. Liu, K. Heck, W.C. Taft, G.L. Clifton, and R.L. Hayes, Cytoskeletal derangements of cortical neuronal processes three hours after traumatic brain injury in rats: an immunofluorescence study, J. Neuropathol. Exp. Neurol. 55(1):68 (1996).

    PubMed  CAS  Google Scholar 

  170. X.H. Chen, D.F. Meaney, B.N. Xu, M. Nonaka, T.K. McIntosh, J.A. Wolf, K.E. Saatman, D.H. Smith, Evolution of neurofilament subtype accumulation in axons following diffise brain injury in the pig, J. Neuropath. Exp. Neurol. 58(6):588 (1999).

    Article  PubMed  CAS  Google Scholar 

  171. R.M. Posmantur, X. Zhao, A. Kampfl, G.L. Clifton, and R.L. Hayes, Immunoblot analyses of the relative contributions of cysteine and aspartic proteases to neurofilament breakdown products following experimental brain injury in rats, Neurochem. Res. 23(10):1265 (1998).

    Article  PubMed  CAS  Google Scholar 

  172. E.H. Pettus, C.W. Christman, M.L. Giebel, and J.T. Povlishock, Traumatically induced altered membrane permeability: Its relationship to traumatically induced reactive axonal change, J. Neurotrauma 11:507 (1994).

    Article  PubMed  CAS  Google Scholar 

  173. X. Zhao, R. Posmantur, A. Kampfl, S.J. Liu, K.K. Wang, J.K. Newcomb, B.R. Pike, G.L. Clifton, and R.L. Hayes, Subcellular localization and duration of μ-calpain and m-calpain activity after traumatic brain injury in the rat: a casein zymography study, J. Cereb. Blood Flow Metab. 18(2):161 (1998).

    PubMed  CAS  Google Scholar 

  174. R.W. Neumar, S.M. Hagle, D.J. DeGarcia, G.S. Krause, and B.C. White, Brain μ-calpain autolysis during global cerebral ischemia, J. Neurochem. 66:421 (1996).

    PubMed  CAS  Google Scholar 

  175. S. Homma, H. Yaginuma, and R.W. Oppenheim, Programmed cell death during the earliest stages of spinal cord development in the chick embryo: A possible means of early phenotypic selection, J. Comp. Neuro. 34:5377 (1994).

    Google Scholar 

  176. S. Zamenhof and D. Guthrie, Programmed cell death enhances uniformity in rat cerebral hemispheres, Dev. Neurosci. 17(4):264 (1995).

    PubMed  CAS  Google Scholar 

  177. H. Yaginuma, M. Tomita, N. Takashita, S.E. McKay, C. Cardwell, Q.W. Yin, and R.W. Oppenheim, A novel type of programmed neuronal death in the cervical spinal cord of the chick embryo. J. Neurosci. 16(11):3685 (1996).

    PubMed  CAS  Google Scholar 

  178. Y. Yamatsuzi, H. Onodera, K. Adachi, H. Shozuhara, and K. Kogure, Alteration in the immunoreactivity of the calcineurin subunits after ischemia hippocampal damage, Neuroscience 49:545 (1996).

    Google Scholar 

  179. J. Marx, Mutant enzyme provides new insights into the cause of ALS, Science 5248:446 (1996).

    Google Scholar 

  180. M. Li, V.O. Ona, C. Guegan, M. Chen, V. Jackson-Lewis, L.J. Andrews, A.J. Olszewski, P.E. Stieg, J.P. Lee, S. Przedborski, and R.M. Friedlander, Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model, Science 288(5464):335 (2000).

    Article  PubMed  CAS  Google Scholar 

  181. Y.P. Goldberg, D.W. Nicholson, D.M. Rasper, M.A. Kalchman, H.B. Koide, R.K. Graham, M. Bromm, P. Kazemi-Esfarjani, N.A. Thornberry, J.P. Vaillancourt, and M.R. Hayden, Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract, Nature Genet. 13:442 (1996).

    Article  PubMed  CAS  Google Scholar 

  182. M.D. Linnek, R.H. Zobrist, and M.D. Hatfield, Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats, Stroke 24:2002 (1993).

    Google Scholar 

  183. E.M. Johnson, L.J.S. Greenlund, P.T. Akins, and C.Y. Hsu, Neuronal apoptosis; Current understanding of molecular mechanisms and potential role in ischemic brain injury, J. Neurotrauma 12:843 (1995).

    PubMed  Google Scholar 

  184. M.J. Crowe, J.C. Bresnahan, S.L. Shuman, J.N. Masters, and M.S. Beattie, Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys, Nature Med. 3:73 (1997).

    PubMed  CAS  Google Scholar 

  185. J.E. Springer, R.D. Azbill, and P.E. Knapp, Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury, Nature Med. 5(8):943 (1999).

    PubMed  CAS  Google Scholar 

  186. S. Ray, B. Davis, D. Shields, D. Matzelle, G. Wilford, E. Hogan, and N. Banik, Increased calpain expression in association with apoptosis in rat spinal cord injury: Calpain inhibitor provides neuroprotection, Neurochem. Res. 25:1191 (2000).

    Article  PubMed  CAS  Google Scholar 

  187. R.L. Sutton, L. Lescaudron, and D.G. Stein, Unilateral cortical contusion injury in the rat: vascular disruption and temporal development of cortical necrosis, J. Neurotrauma 10:135 (1993).

    PubMed  CAS  Google Scholar 

  188. A. Rink, K.M. Fung, J.Q. Trojanowski, V.M. Lee, E. Meugebauer, and T.K. McIntosh, Evidence of apoptotic cell death after experimental traumatic brain injury in the rat, Am. J. Pathol. 147:1575 (1995).

    PubMed  CAS  Google Scholar 

  189. M.A. Colicos and P.K. Dash, Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: Possible role in spatial memory deficits, Brain Res. 739: 120 (1996).

    PubMed  CAS  Google Scholar 

  190. S.V. Pravdenkova, A.G. Basnakian, S.J. James, and B.J. Andersen, DNA fragmentation and nuclear endonuclease activity in rat brain after severe closed head injury, Brain Res. 729(2):151 (1996).

    Article  PubMed  CAS  Google Scholar 

  191. A.G. Yakovlev, S.M. Knoblach, L. Fan, G.B. Fox, R. Goodnight, and A.I. Faden, Activation of CCP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury, J. Neurosci. 17:7415 (1997).

    PubMed  CAS  Google Scholar 

  192. M.K.T. Squier, A.C.K. Miller, A.M. Malkinson, and J.J. Cohen, Calpain activation in apoptosis, J. Cell. Physiol. 159:229 (1994).

    Article  PubMed  CAS  Google Scholar 

  193. A. Sarin, M. Clerici, S.P. Blatt, C.W. Hendrix, G.M. Shearer, and P.A. Henkart, Inhibition of activation-induced programmed cell death and restoration of defective responses of HIV+ donors by cysteine protease inhibitors, J. Immunol. 153:862 (1994).

    PubMed  CAS  Google Scholar 

  194. M.K. Squier and J.J. Cohen, Calpain, an upstream regulator of thymocyte apoptosis, J. Immunol. 158:3690 (1997).

    PubMed  CAS  Google Scholar 

  195. S.J. Martin and D.R. Green, Protease activation during apoptosis: Death by a thousand cuts? Cell 82:349 (1995).

    Article  PubMed  CAS  Google Scholar 

  196. Y.A. Lazebnik, S.H. Kaufman, S. Desnoyers, G.G. Poirier, and W.C. Eamshaw, Cleavage of poly (ADP-ribosome) polymerase by a proteinase with properties like ICE, Nature 371:346 (1994).

    Article  PubMed  CAS  Google Scholar 

  197. B.A. Eldadah, A.G. Yakovlev, and A.I. Faden, The role of CED-3-related cysteine proteases in apoptosis of cerebellar granule cells, J. Neurosci. 17:6105 (1997).

    PubMed  CAS  Google Scholar 

  198. A. Buki, D.O. Okonkwo, K.K. Wang, and J.T. Povlishock, Cytochrome c release and caspase activation in traumatic axonal injury, J. Neurosci. 20:2825 (2000).

    PubMed  CAS  Google Scholar 

  199. S.K. Ray, G.G. Wilford, D.D. Matzelle, E.L. Hogan, and N.L. Banik, Calpeptin and methylprednisolone inhibit apoptosis in rat spinal cord injury, in: “Neuroprotective Agents, Fourth International Conference”, Annals of the New York Academy of Sciences, W. Slikker and B. Trembly, eds., Plenum Press, New York (1999).

    Google Scholar 

  200. J.F.R. Kerr and B.V. Harmon, Definition and incidence of apoptosis: An historical perspective of apoptosis, in: The Molecular Basis of Cell Death, L.D. Tomei and F.O. Capo, eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1991).

    Google Scholar 

  201. A.C. Conti, R. Raghupahti, J.Q. Trojanowski, T.K. McIntosh, Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period, J. Neurosci. 18(15):5663 (1998).

    PubMed  CAS  Google Scholar 

  202. K.E. Saatman, C. Zhang, R.T. Bartus, and T.K. McIntosh, Behavioral efficacy of posttraumatic calpain inhibition is not accompanied by reduced spectrin proteolysis, cortical lesion, or apoptosis, J. Cereb. Blood Flow Metab. 20:66 (2000).

    PubMed  CAS  Google Scholar 

  203. A. Buki, H. Koizumi, and J.T. Povlishock, Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury, Exp. Neurol. 159:319 (1999).

    PubMed  CAS  Google Scholar 

  204. B.R. Pike, X. Zhao, J.K. Newcomb, K.K. Wang, R.M. Posmantur, and R.L. Hayes, Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures, J. Neurosci. Res. 52:505 (1998).

    Article  PubMed  CAS  Google Scholar 

  205. G. Rosenberg, Matrix metalloproteinases in brain injury. J. Neurotrauma 12:833 (1995).

    PubMed  CAS  Google Scholar 

  206. J.M. Argiles and F.J. Lopez-Soriano, The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states, Trends Pharmacol. Sci. 17:223 (1996).

    Article  PubMed  CAS  Google Scholar 

  207. C. Crawford, Protein and peptide inhibitors of calpains, in: Intracellular Calcium-Dependent Proteolysis, R.L. Mellgren and T. Murachi, eds., CRC Press, Boca Raton (1990).

    Google Scholar 

  208. E. Takano and M. Maki, Structure of calpastatin and its inhibitory control of calpain, in: Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, K.K.W. Wang and P.-W. Yuen, eds, Francis and Taylor, Philadelphia, PA (1999).

    Google Scholar 

  209. M. Nakamura, S. Imajoh-Ohmi, K. Suzuki, and S. Kawashima, An endogenous inhibitor of calcium activated neutral protease in UMX 7.1 hamster dystrophy, Muscle and Nerve 14:701 (1991).

    PubMed  CAS  Google Scholar 

  210. J.K. Newcomb, B.R. Pike, X. Zhao, N.L. Banik, and R.L. Hayes, Altered calpastatin protein levels following traumatic brain injury in rat. J. Neurotrauma 16(1):1(1999).

    Article  PubMed  CAS  Google Scholar 

  211. K. Blomgren, U. Hallin, A.L. Andersson, M. Puka-Sundvall, B.A. Bahr, A. McRae, T.C. Saido, S. Kawashima, H. Hagberg, Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia, J. Biol. Chem. 274: 14046 (1999).

    Article  PubMed  CAS  Google Scholar 

  212. X. Zhao, B.R. Pike, J.K. Newcomb, K.K. Wang, R.M. Posmantur, and R.L. Hayes, Maitotoxin induces calpain but not caspase-3 activation and necrotic cell death in primary septo-hippocampal cultures, Neurochem. Res. 24(3):371 (1999).

    Article  PubMed  CAS  Google Scholar 

  213. A.I. Faden, Pharmacologic therapy in acute spinal cord injury: Experimental strategies and future directions, in: Central Nervous System Trauma, D.P. Becker and J.T. Povlishock, ed., National Institutes of Health, Bethesda (1985).

    Google Scholar 

  214. J.M. Braughler and E.D. Hall, Effects of multidose methylprednisolone sodium succinate-administration on injured cat spinal cord neurofilament degradation and energy metabolism, J. Neurosurg. 61:290 (1984).

    PubMed  CAS  Google Scholar 

  215. M.B. Bracken, M.J. Shepard, T.R. Holford, L. Leo-Summers, E.F. Aldrich, M. Fazl, M. Fehlings, D.L. Herr, P.W. Hitchon, L.F. Marshall, R.P. Nockels, V. Pascale, P.L. Perot Jr, J. Piepmeier, V.K. Sonntag, F. Wagner, J.E. Wilberger, H.R. Winn, and W. Young, Administration of methylprednisolone for 48 hours in the treatment of acute spinal cord injury: Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial, JAMA 277:1597 (1997).

    Article  PubMed  CAS  Google Scholar 

  216. Y.D. Teng and J.R. Wrathall, Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury, J. Neurosci. 17(11):4359 (1997).

    PubMed  CAS  Google Scholar 

  217. L.J. Rosenberg, Y.D. Teng, and J.R. Wrathall, Effects of the sodium channel blocker tetrodotoxin on acute white matter pathology after experimental contusive spinal cord injury, J. Neurosci. 19:6122 (1999).

    PubMed  CAS  Google Scholar 

  218. G. Schwartz and M.G. Fehlings, Functional neurological recovery, preserved spinal cord tissue and integrity of descending axons following compressive spinal cord trauma, J. Neurotrauma 16:984 (1999).

    Google Scholar 

  219. K.W. Wang and P.W. Yuen, Calpain inhibition: an overview of its therapeutic potential, Trends in Phamacol. Sci. 15:412 (1994).

    CAS  Google Scholar 

  220. N.L. Banik, D.C. Shields, S. Ray, B. Davis, D. Matzelle, G. Wilford, and E.L. Hogan, Role of Calpain in Spinal Cord Injury: Effects of calpain and free radical inhibitors, in: “Cellular and Molecular Mechanisms of Drugs of Abuse: Cocaine, Ibogaine and Substituted Amphetamines”, Annals of the New York Academy of Sciences, Plenum Press, New York (1998).

    Google Scholar 

  221. N.L. Banik, D. Lobo, R.D. Cox, I. Fisher, and E.L. Hogan, Effects of calpain inhibitors in spinal cord injury, Trans. Amer. Soc. Neurochem. 24:149(Abstract 114) (1994).

    Google Scholar 

  222. J.R. Brorson, C.J. Marcuccilli and R.J. Miller, Delayed antagonism of calpain reduces excitotoxicity in cultured neurons, Stroke 26(7): 1259 (1995).

    PubMed  CAS  Google Scholar 

  223. X.Z. Liu, X.M. Xu, R. Hu, C. Du, S.X. Zhang, J.W. McDonald, H.X. Dong, Y.J. Wu, G.S. Fan, M.F. Jacquin, C.Y. Hsu, and D.W. Choi, Neuronal and glial apoptosis after traumatic spinal cord injury, J. Neurosci. 17(14):5395(1997).

    PubMed  CAS  Google Scholar 

  224. E. Hall, The neuroprotective pharmacology of methylprednisolone, J. Neurosurg. 76:13(1991).

    Google Scholar 

  225. K.E. Saatman, H. Murai, R.T. Bartus, D.H. Smith, N.J. Hayward, B.R. Perri, and T.K. McIntosh, Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat, Proc. Natl. Acad. Sci. U.S.A. 93:3428 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ray, S.K., Matzelle, D.C., Wilford, G.G., Eng, L.F., Hogan, E.L., Banik, N.L. (2002). Pathophysiology of Central Nervpis System Trauma: Proteolytic Mechanisms and Related Therapeutic Approaches. In: Lajtha, A., Banik, N.L. (eds) Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-306-46847-6_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46847-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46579-6

  • Online ISBN: 978-0-306-46847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics