Advertisement

Expression of Virulence Genes in Candida Albicans

  • Peter Staib
  • Marianne Kretschmar
  • Thomas Nichterlein
  • Gerwald Köhler
  • Joachim Morschhäuser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 485)

Conclusion

The analysis of virulence gene expression patterns during infection gives insights into regulatory adaptation mechanisms of microbial pathogens in various host niches.The establishment of an in vivo expression technology for C. albicans allows us to investigate at which stage of an infection virulence genes might play a role in the host-pathogen interaction and will, therefore enhance our understanding of fungal pathogenicity.

Keywords

Candida Albicans Candida Species Reporter Strain Aspartyl Proteinase Buccal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sternberg, S., 1994, The emerging fungal threat. Science 266: 1632–1634.PubMedGoogle Scholar
  2. 2.
    Odds, F.C., 1988, Candida and candidosis: a review and bibliography. Bailliere Tindall, London.Google Scholar
  3. 3.
    Odds, F.C., 1994, Candida species and virulence. ASM News 60: 313–318.Google Scholar
  4. 4.
    Calderone, R.A., and Braun, P.C., 1991, Adherence and receptor relationships in Candida albicans. Microbiol. Rev. 55: 1–20.PubMedGoogle Scholar
  5. 5.
    Calderone, R.A., 1993, Recognition between Candida albicans and host cells. Trends Microbiol. 1: 55–58.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoyer, L.L., Payne, T.L., and Hecht, J.E., 1998, Identification of Candida albicans ALS2 and ALS4 and localization of A1S proteins to the fungal cell surface. J. Bacteriol. 180: 5334–5343.PubMedGoogle Scholar
  7. 7.
    Fu, Y., Rieg, G., Fonzi, W.A., Belanger, P.H., Edwards Jr, J.E., and Filler, S.G., 1998, Expression of the Candida albicans gene ALSl in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect. Immun. 66: 1783–1786.PubMedGoogle Scholar
  8. 8.
    Staab, J.F., Bradway, S.D., Fidel, P.L., and Sundstrom, P., 1999, Adhesive and mammalian transglutaminease substrate properties of Candida albicans Hwpl. Science 283: 1535–1538.CrossRefPubMedGoogle Scholar
  9. 9.
    Gale, C.A., Bendel, C.M., McClellan, M., Hauser, M., Becker, J.M., Berman, J., and Hostetter, M., 1998, Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science, 279: 1355–1358.Google Scholar
  10. 10.
    Sullivan, D.J., Westerneng, T J., Haynes, K.A., Bennett, D.E., and Coleman, D.C., 1995, Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141: 1507–1521.PubMedGoogle Scholar
  11. 11.
    Lo, H.-J., Köhler, J.R., DiDomenico, B., Loebenberg, B., Cacciapuoti, A., and Fink, G.R., 1997, Nonfilamentous C. albicans mutants are avirulent. Cell, 90: 939–949.CrossRefPubMedGoogle Scholar
  12. 12.
    Csank, C., Makris, C., Meloche, S., Schröppel, K., Röllinghoff, M., Dignard, D., Thomay, D.Y., and Whiteway, M., 1997, Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol. Cell. Biol. 8: 2539–2551.Google Scholar
  13. 13.
    Soll, D.R., Morrow, B., and Srikantha, T., 1993, High-frequency phenotypic switching in Candida albicans. Trends Genet. 9: 61–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Soll, D.R., 1997, Gene regulation during high-frequency switching in Candida albicans. Microbiology 143: 279–288.PubMedGoogle Scholar
  15. 15.
    Staib, F., 1965, Serum-proteins as nitrogen source for yeast-like fungi. Sabouraudia, 4: 187–193.PubMedGoogle Scholar
  16. 16.
    Odds, F.C., 1985, Candida albicans proteinase as a virulence factor in the pathogenesis of Candida infections. Zbl. Bakt. Hyg. 260: 539–542.Google Scholar
  17. 17.
    Kondoh, Y, Shimizu, K., and Tanaka, J., 1987, Proteinase production and pathogenicity of Candida albicans II. Virulence for mice of C. albicans strains with different proteinase activity. Microbiol. Immunol. 31: 1061–1069.PubMedGoogle Scholar
  18. 18.
    Cassone, A., De Bernardis, F., Mondello, F., Ceddia, T., and Agatensi, L., 1987, Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J. Infect. Dis. 156: 777–783.PubMedGoogle Scholar
  19. 19.
    Colina, A.R., Aumont, F., Deslauriers, N., Belhumeur, P., and de Repentigny, L., 1996, Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun 64: 4514–4519.PubMedGoogle Scholar
  20. 20.
    Morschhäuser, J., Virkola, R., Korhonen, T.K., and Hacker, J., 1997, Degradation of human subendothelial extracellular matrix by proteinase-secreting Candida albicans. FEMS Microbiol Lett 153: 349–355.PubMedGoogle Scholar
  21. 21.
    Rüchel, R., 1986 Cleavage of immunoglobulins by pathogenic yeasts of the genus Candida. Microbiol Sci 36: 316–319.Google Scholar
  22. 22.
    Kaminishi, H., Miyaguchi, H., Tamaki, T., Suenaga, N., Hisamatsu, M., Mihashi, I., Matsumoto, H., Maeda, H., and Hagihara Y., 1995, Degradation of humoral host defense by Candida albicans proteinase. Infect Immun 63: 984–988.PubMedGoogle Scholar
  23. 23.
    Ray, T.L., and Payne, C.D., 1988, Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect. Immun. 56: 1942–1949.PubMedGoogle Scholar
  24. 24.
    Monod, M., Togni, G., Hube, B., and Sanglard, D., 1994, Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 13: 357–368.PubMedGoogle Scholar
  25. 25.
    Monod, M., Hube, B., Hess, D., and Sanglard, D., 1998, Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144: 2731–2737.PubMedCrossRefGoogle Scholar
  26. 26.
    Hube, B., Sanglard, D., Odds, F.C., Hess, D., Monod, M., Schäfer, W., Brown, A.J.P., and Gow, N.A.R., 1997, Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65: 3529–3538.PubMedGoogle Scholar
  27. 27.
    Sanglard, D., Hube, B., Monod, M., Odds, F.C., and Gow, N.A.R., 1997, A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect. Immun. 65: 3539–3546.PubMedGoogle Scholar
  28. 28.
    De Bernardis, F., Arancia, S., Morelli, L., Hube, B., Sanglard, D., Schäfer, W., and Cassone, A., 1999, Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J. Infect. Dis. 179: 201–208.PubMedGoogle Scholar
  29. 29.
    Hube, B., Monod, M., Schofield, D.A., Brown, A.J.P., and Gow, N.A.R., 1994, Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14: 87–99.PubMedGoogle Scholar
  30. 30.
    White, T., and Agabian, N., 1995, Candida albicans secreted aspartyl proteinases: Isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177: 5215–5221.PubMedGoogle Scholar
  31. 31.
    Schaller, M., Schäfer, W., Korting, H.C., and Hube, B., 1998, Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29: 605–615.CrossRefPubMedGoogle Scholar
  32. 32.
    Heithoff, D.M., Conner, C.P., and Mahan, M.J., 1997, Dissecting the biology of a pathogen during infection. Trends Microbiol. 5: 509–513.CrossRefPubMedGoogle Scholar
  33. 33.
    Camilli, A, Beattie, D.T., and Mekalanos, J.J., 1994, Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci USA 91: 2634–2638.PubMedGoogle Scholar
  34. 34.
    Santos, M.A., Ueda, T., Watanabe, K., and Tuite, M., 1997, The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? Mol Microbiol 26: 423–431.CrossRefPubMedGoogle Scholar
  35. 35.
    Köhler, G.A., White, T.C., and Agabian, N., 1997, Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179: 2331–2338.PubMedGoogle Scholar
  36. 36.
    Staib, P., Kretschmar, M., Nichterlein, T., Köhler, G., Michel, S., Hof, H., Hacker, J., and Morschhäuser, J., 1999, Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol. Microbiol. 32: 533–546.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Peter Staib
    • 1
  • Marianne Kretschmar
    • 2
  • Thomas Nichterlein
    • 2
  • Gerwald Köhler
    • 1
  • Joachim Morschhäuser
    • 1
  1. 1.ZentrumfürInfektionsforschungUniversität WürzburgWürzburgGermany
  2. 2.Klinikum der Stadt MannheimInstitut für Medizinische Mikrobiologie und HygieneMannheimGermany

Personalised recommendations