Advertisement

A Role for the σs Subunit of RNA Polymerase in the Regulation of Bacterial Virulence

  • Regine Hengge-Aronis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 485)

Keywords

Sigma Factor High Osmolarity Yersinia Enterocolitica Acanthamoeba Castellanii Promoter Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gross, C. A., Chan, C. L. & Lonetto, M. A. A structure/function analysis of Escherichia coli RNA polymerase. Phil. Trans. R. Soc. Lond. B 351, 475–482 (1996).Google Scholar
  2. 2.
    Storz, G. & Hengge-Aronis, R. (eds.) Bacterial Stress Responses (ASM Press, Wahsington, D.C., 2000) (in press).Google Scholar
  3. 3.
    Hengge-Aronis, R. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1497–1512 (American Society for Microbiology, Washington D.C., 1996).Google Scholar
  4. 4.
    Hengge-Aronis, R. in Bacterial Stress Responses (eds. Storz, G. & Hengge-Aronis, R.) (in press) (ASM Press, Washington, D.C., 2000) (in press).Google Scholar
  5. 5.
    Loewen, P. C. & Hengge-Aronis, R. The role of the sigma factor σs (KatF) in bacterial global regulation. Annu. Rev. Microbiol. 48, 53–80 (1994).CrossRefPubMedGoogle Scholar
  6. 6.
    Lange, R. & Hengge-Aronis, R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol., 5, 49–59 (1991).PubMedGoogle Scholar
  7. 7.
    Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B. & Cashel, M. Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. J. Bacteriol. 175, 7982–7989 (1993).PubMedGoogle Scholar
  8. 8.
    Lange, R. & Hengge-Aronis, R. The cellular concentration of the σs subunit of RNA-polymerase in Escherichia coli is controlled at the levels of transcription, translation and protein stability. GenesDev. 8, 1600–1612 (1994).Google Scholar
  9. 9.
    Lee, I. S., Lin, J., Hall, H. K., Bearson, B. & Foster, J. W. The stationary-phase sigma factor σs (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol. Microbiol. 17, 155–167 (1995).PubMedGoogle Scholar
  10. 10.
    Muffler, A., Traulsen, D. D., Lange, R. & Hengge-Aronis, R. Posttranscriptional osmotic regulation of the σs subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 178, 1607–1613 (1996).PubMedGoogle Scholar
  11. 11.
    Muffler, A., Barth, M., Marschall, C. & Hengge-Aronis, R. Heat shock regulation of σs turnover: a role for DnaK and relationship between stress responses mediated by σs and σ32 in Escherichia coli. J. Bacteriol. 179, 445–452 (1997).PubMedGoogle Scholar
  12. 12.
    Hengge-Aronis, R. in Prokaryotic gene expression (ed. Baumberg, S.) 169–193 (Oxford University Press, Oxford, 1999).Google Scholar
  13. 13.
    Colland, F., Barth, M., Hengge-Aronis, R. & Kolb, A. Sigma factor selectivity of Escherichia coli RNA polymerase at the osmY promoter: role for CRP, IHF and Lrp transcription factors (1999) (submitted).Google Scholar
  14. 14.
    Marschall, C. et al. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on σs and requires activation by cAMP-CRP. J. Mol. Biol. 276, 339–353 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    Hengge-Aronis, R. Interplay of global regulators in the general stress response of Escherichia coli. Curr. Op. Microbiol. 2, 148–152 (1999).Google Scholar
  16. 16.
    Brown, L. & Elliott, T. Mutations that increase expression ofthe rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium. J. Bacteriol. 179, 656–662 (1997).PubMedGoogle Scholar
  17. 17.
    Muffler, A., Fischer, D. & Hengge-Aronis, R. The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for the translational regulation of rpoS in Escherichia coli. Genes Dev. 10, 1143–1151 (1996).PubMedGoogle Scholar
  18. 18.
    Barth, M., Marschall, C., Muffler, A., Fischer, D. & Hengge-Aronis, R. A role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σs and many σs-dependentgenes in Escherichia coli. J. Bacteriol. 177, 3455–3464 (1995).PubMedGoogle Scholar
  19. 19.
    Yamashino, T., Ueguchi, C. & Mizuno, T. Quantitative control of the stationary phase-specific sigma factor, σs, in Escherichia coli: involvement of the nucleoid protein H-NS. EMBO J. 14, 594–602 (1995).PubMedGoogle Scholar
  20. 20.
    Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. & Gottesman, S. DsrA RNA regulates translation of RpoS message by an anti-antisensemechanims, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. USA 95, 12462–12467 (1998).CrossRefPubMedGoogle Scholar
  21. 21.
    Lease, R. A., Cusick, M. E. & Belfort, M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interaction at multiple loci. Proc. Natl. Acad. Sci. USA 95, 12456–12461 (1998).CrossRefPubMedGoogle Scholar
  22. 22.
    Schweder, T., Lee, K.-H., Lomovskaya, O. & Matin, A. Regulation of Escherichia coli starvation sigmafactor (σs) by ClpXP protease. J. Bacteriol. 178, 470–476 (1996).PubMedGoogle Scholar
  23. 23.
    Muffler, A., Fischer, D., Altuvia, S., Storz, G. & Hengge-Aronis, R. The response regulator RssB controls stability ofthe σs subunit of RNA polymerase in Escherichia coli. EMBO J. 15, 1333–1339 (1996).PubMedGoogle Scholar
  24. 24.
    Pratt, L. A. & Silhavy, T. J. The response regulator, SprE, controls the stability of RpoS. Proc. Natl. Acad. Sci. USA 93, 2488–2492 (1996).CrossRefPubMedGoogle Scholar
  25. 25.
    Becker, G., Klauck, E. & Hengge-Aronis, R. Regulation of RpoS proteolysis in Escherichia coli: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl. Acad. Sci. USA 96, 6439–6444 (1999).CrossRefPubMedGoogle Scholar
  26. 26.
    Becker, G., Klauck, E. & Hengge-Aronis, R. The response regulator RssB, a recognition factor for σs proteolysis in Escherichia coli, can act like an anti-σs factor. Mol. Microbiol., (being revised forpublication) (1999).Google Scholar
  27. 27.
    Foley, I., Marsch, P., Wellington, E. M. H., Smith, A. W. & Brown, M. R. W. General stress response master regulator rpoS is expressed in human infection: a possible role in chronicity. J. Antimicrob. Chemother. 43, 164–165 (1999).CrossRefPubMedGoogle Scholar
  28. 28.
    Suh, S.-J. et al. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181, 3890–3897 (1999).PubMedGoogle Scholar
  29. 29.
    Fang, F. C., Vazquez-Torres, A. & Xu, Y. The transcriptional regulator SoxS is required for resistance of Salmonella typhimurium to paraquat but not for virulence in mice. Infect. Immun. 65, 5371–5375 (1997).PubMedGoogle Scholar
  30. 30.
    Martinez, A. & Kolter, R. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179, 5188–5194 (1997).PubMedGoogle Scholar
  31. 31.
    Sak, B. D., Eisenstark, A. & Touati, D. Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF product. Proc. Natl. Acad. Sci. USA 86, 3271–3275 (1989).PubMedGoogle Scholar
  32. 32.
    Membrillo-Hernandez, J., Cook, G. M. & Poole, R. K. Roles of RpoS (σs), IHF and ppGpp in the expression of the hmp gene encoding the flavohemoglobin (Hmp) of Escherichia coli K-12. Mol. Gen. Genet. 254, 599–603 (1997).PubMedGoogle Scholar
  33. 33.
    Gardner, P. R., Gardner, A. M., Martin, L. A. & Salzman, A. L. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95, 10378–10383 (1998).PubMedGoogle Scholar
  34. 34.
    Finch, J. E. & Brown, M. R.W. Effect of growth environment on Pseudomonas aeruginosa killing by rabbit polymorphonuclear leukocytes and cationic proteins. Infect. Immun. 20, 340–346 (1978).PubMedGoogle Scholar
  35. 35.
    Brown, M. R.W. Nutrient depletion and antibiotic susceptibility. J. Antimicrob. Chemother. 3, 198–201 (1977).PubMedGoogle Scholar
  36. 36.
    Anwar, H. & Brown, M. R. W. Effect of nutrient depletion on sensitivity of Pseudomonas cepacia to phagocytosis and serum bactericidal activity at different temperatures. J. Gen. Microbiol. 129, 2021–2027 (1983).PubMedGoogle Scholar
  37. 37.
    Fang, R. C. et al. The alternative σs factor KatF (RpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. USA 89, 11978–11982 (1992).PubMedGoogle Scholar
  38. 38.
    Bearson, S. M. D., Benjamin Jr., W. H., Swords, W. E. & Foster, J. W.Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J. Bacteriol. 178, 2572–2579 (1996).PubMedGoogle Scholar
  39. 39.
    Wilmes-Riesenberg, M.R., Foster, J.W. & Curtiss III, R. An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect. Immun. 65, 203–210 (1997).PubMedGoogle Scholar
  40. 40.
    Coynault, C., Robbe-Saule, V. & Norel, F. Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (σs) regulon. Mol. Microbiol. 22, 149–160 (1996).PubMedGoogle Scholar
  41. 41.
    Badger, J. L. & Miller, V. L. Role of RpoS in survival of Yersinia enterocolitica to a variety ofenvironmental stresses. J. Bacteriol. 177, 5370–5373 (1995).PubMedGoogle Scholar
  42. 42.
    Lange, R. & Hengge-Aronis, R. The nlpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in cell wall formation. Mol. Microbiol. 13, 733–743 (1994).PubMedGoogle Scholar
  43. 43.
    Darwin, A.J. & Miller, V. L. Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol. Microbiol. 32, 51–62 (1999).CrossRefPubMedGoogle Scholar
  44. 44.
    Hales, L. M. & Shuman, H. A. Legionella pneumophila rpoS is required for growth within Acanthamoeba castellanii. J. Bacteriol. 181, 4879–4889 (1999).PubMedGoogle Scholar
  45. 45.
    Barker, J., Scaife, H. & Brown, M. Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Antimicrob. Agents Chemother. 39, 2684–2688 (1995).PubMedGoogle Scholar
  46. 46.
    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).CrossRefPubMedGoogle Scholar
  47. 47.
    Adams, J. L. & MacLean, R. J. C. Impact of rpoS deletion on Escherichia coli biofilms. Appl. Environ. Microbiol. 65, 4285–4287 (1999).PubMedGoogle Scholar
  48. 48.
    Heiskanen, P., Taira, S. & Rhen, M. Role of rpoS in the regulation of Salmonella plasmid virulence (spv) genes. FEMS Microbiol. Lett. 123, 125–130 (1994).CrossRefPubMedGoogle Scholar
  49. 49.
    Norel, F., Robbe-Saule, V., Popoff, M. Y. & Coynault, C. The putative sigma factor KatF (RpoS) is required for the transcription of the Salmonella typhimurium virulence gene spvB in Escherichia coli. FEMS Microbiol. Lett. 99, 271–276 (1992).CrossRefGoogle Scholar
  50. 50.
    RobbeSaule, V., Schaeffer, F., Kowarz, L. & Norel, F. Relationships between H-NS, σs, SpvR and growth phase in the control of spvR, the regulatory gene of the Salmonella plasmid virulence operon. Mol. Gen. Genet. 256, 333–347 (1997).Google Scholar
  51. 51.
    Beltrametti, F., Kresse, A. U. & Guzmán, C. A. Transcriptional regulation ofthe esp genes ofenterohemorrhagic Escherichia coli. J. Bacteriol. 181, 3409–3418 (1999).PubMedGoogle Scholar
  52. 52.
    Ro//mling, U., Bian, Z., Hammar, M., Sierralta, W. D. & Normark, S. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722–731 (1998).Google Scholar
  53. 53.
    Olsén, A., Arnqvist, A., Hammar, M., Sukupolvi, S. & Normark, S. The RpoS sigma factor relievesH-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin binding curli in Escherichia coli. Mol. Microbiol. 7, 523–536 (1993).PubMedGoogle Scholar
  54. 54.
    Dove, S. L., Smith, S. G. & Dorman, C. J. Control of Escherichia coli type 1 fimbrial gene expression in stationary phase: a negative role for RpoS. . Mol. Gen. Genet. 254, 13–20 (1997).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Regine Hengge-Aronis
    • 1
  1. 1.Department. of Biology - MicrobiologyFreie Universität BerlinBerlinGermany

Personalised recommendations