Skip to main content

The Permeability Transition Pore in Myocardial Ischemia and Reperfusion

  • Chapter
Mitochondria in Pathogenesis

Conclusions

Opening of the permeability transition pore converts mitochondria from organelles whose supply of ATP sustains then in their normal function into organells of death. Conditions during reperfusion after ischemia are optimal for inducing this transition and thus may play a critical role in determining whether the cell recovers. From an understanding of the properties and mechanism of the MPTP, one can devise perfusion protocols that minimize pore opening and improve heart recovery following ischemia. This should lead to better cardioplegia during open-heart surgery. It remains to be established whether the short-term protection of isolated perfused heart, where damage is primarily necrotic, will also be reflected in longer-term recovery, where apoptosis may also play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alien, S. P., Stone, D., and McCormack, J. G., 1992, The loading of Fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions, J.Mol. Cell. Cardiol. 24: 765–773.

    Google Scholar 

  • Bartling, B., Holtz, J., and Darmer, D., 1998, Contribution of myocyte apoptosis to myocardial infarction? Basic Res. Cardiol. 93: 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Behling, R.W., and Malone, H.J., 1995, K-ATP-channel openers protect against increased cytosolic calcium during ischaemia and reperfusion, J.Mol. Cell. Cardiol. 27: 1809–1817.

    Article  CAS  PubMed  Google Scholar 

  • Benzi, R.H., and Lerch, R., 1992, Dissociation betweencontractile function and oxidative metabolism in postischemic myocardium: Attenuation by ruthenium red administered during reperfusion, Circ. Res. 71: 567–576.

    CAS  PubMed  Google Scholar 

  • Bernardi, P., 1992, Modulation of the mitochondrial Cyclosporin-A-sensitive permeability transition pore by the proton electrochemical gradient: Evidence that the pore can be opened by membrane depolarization, J. Biol. Chem. 267: 8834–8839.

    CAS  PubMed  Google Scholar 

  • Bernardi, P., Broekemeier, K..M., and Pfeiffer, D.R., 1994, Recent progress on regulation of the mitochondrial permeability transition pore: A cyclosporin-sensitive pore in the inner mitochondrial membrane, J. Bioenerg. Biomemhr. 26: 509–517.

    CAS  Google Scholar 

  • Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabo, I., and Zoratti, M., 1992, Modulation of the mitochondrial permeability transition pore: Effect of protons and divalent cations, J. Biol. Chem. 267: 2934–2939.

    CAS  PubMed  Google Scholar 

  • Black, S. C., Huang, J. Q., Rezaiefar, P., Radinovic, S., Eberhart, A., Nicholson, D. W., and Rodger, I. W., 1998, Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat, J. Mol. Cell. Cardiol. 30: 733–742.

    Article  CAS  PubMed  Google Scholar 

  • Bond, J. M., Chacon, E., Herman, B., and Lemasters, J. J., 1993, Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes, Am. J. Physiol. 265: C129–C137.

    CAS  PubMed  Google Scholar 

  • Borle, A. B., and Stanko, R. T., 1996, Pyruvate reduces anoxic injury and free radical formation in perfused rat hepatocytes, Am. J. Physiol. 270: G535–G540.

    CAS  PubMed  Google Scholar 

  • Boveris, A., Cadenas, E., and Stoppani, A.O.M., 1976, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide, Biochem. J. 156: 435–444.

    CAS  PubMed  Google Scholar 

  • Branca, D., Vincenti, E., and Scutari, G., 1995, Influence of the anesthetic 2,6-diisopropylphenol (propofol) on isolated rat heart mitochondria, Comp. Biochem. Physiol. 110: 41–45.

    CAS  Google Scholar 

  • Bromme, H. J., and Holtz, J., 1996, Apoptosis in the heart: When and why? Mol. Cell. Biochem. 164: 261–275.

    Google Scholar 

  • Bryson, H. M., Fulton, B. R., and Faulds, D., 1995, Propofol: an update of its use in anesthesia and conscious sedation, Drugs 50: 513–559.

    CAS  PubMed  Google Scholar 

  • Buljubasic, N., Marijic, J., Berczi, V, Supan, D.F., Kampine, J. P., and Bosnjak, Z. J., 1996, Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells, Anesthesiology 85: 1092–1099.

    CAS  PubMed  Google Scholar 

  • Bunger, R., Mallet, R. T., and Hartman, D. A., 1989, Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and post-ischemic isolated working heart, Eur. J. Biochem. 180: 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Chernyak, B. V, and Bernardi, P., 1996, The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Eur. J. Biochem. 238: 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Cicalese, L., Lee, K., Schraut, W., Watkins, S., Borle, A., and Stanko, R., 1996a, Pyruvate prevents ischemia reperfusion mucosal injury of rat small intestine, Am. J. Surg. 171: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Cicalese, L., Rastellini, C., Rao, A.S., and Stanko, R.T., 1996b, Pyruvate prevents mucosal reperfusion injury, oxygen free-radical production, and neutrophil infiltration after rat small bowel preservation and transplantation, Transplant. Proc. 28: 2611–2611.

    CAS  PubMed  Google Scholar 

  • Cleveland, J.C., Meldrum, D.R., Cain, B.S., Banerjee, A., and Harken, A. H., 1997, Oralsulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium: Two paradoxes revisited, Circulation 96: 29–32.

    CAS  PubMed  Google Scholar 

  • Cockshott, I.D., 1985, Propofol (“Diprivan”) pharmacokinetics and metabolism: an overview, Postgrad. Med. J. 61(Suppl 3): 45–50.

    CAS  PubMed  Google Scholar 

  • Coetzee, A., 1996, Comparison of the effects of propofol and halothane on acute myocardial ischaemia and myocardial reperfusion injury, S. Afr. Med. J. 86(Suppl 2): C85–C90.

    PubMed  Google Scholar 

  • Connern, C. P., and Halestrap, A.P., 1994, Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive nonspecific channel, Biochem. J. 302: 321–324.

    CAS  PubMed  Google Scholar 

  • Connern, C. P., and Halestrap, A. P., 1996, Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to the inner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+]. Biochemistry 35: 8172–8180.

    Article  CAS  PubMed  Google Scholar 

  • Costantini, P., Chernyak, B. V, Petronilli, V., and Bernardi, P., 1996, Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem. 271: 6746–6751.

    CAS  PubMed  Google Scholar 

  • Crestanello, J. A., Lingle, D. M., Millili, J., and Whitman, G. J., 1998, Pyruvate improves myocardial tolerance to reperfusion injury by acting as an antioxidant: A chemiluminescence study, Surgery 124: 92–99.

    CAS  PubMed  Google Scholar 

  • Crompton, M., 1990, The role of Ca2+ in the function and dysfunction of heart mitochondria, in Calcium and the Heart (G. A. Langer, Ed.), Raven, New York. pp. 167–198.

    Google Scholar 

  • Crompton, M., and Costi, A., 1990, A heart mitochondrial Ca2+-dependent pore of possible relevance to reperfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states, Biochem. J. 266: 33–39.

    CAS  PubMed  Google Scholar 

  • Crompton, M., Costi, A., and Hayat, L., 1987, Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria, Biochem. J. 245: 915–918.

    CAS  PubMed  Google Scholar 

  • Cross, H. R., Clarke, K., Opie, L. H., and Radda, G. K., 1995, Is lactate-induced myocardial ischaemic injury mediated by decreased pH or increased intracellular lactate? J. Mol. Cell. Cardiol 27: 1369–1381.

    Article  CAS  PubMed  Google Scholar 

  • Deboer, L. W. V, Bekx, P. A., Han, L. H., and Steinke, L., 1993, Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am. J. Physiol. 265: H1571–H1576.

    CAS  PubMed  Google Scholar 

  • DeLaCruz, J. P., Villalobos, M. A., Sedeno, G., and DeLaCuesta, F. S., 1998, Effect of propofol on oxidative stress in an in vitro model of anoxia-reoxygenation in the rat brain, Brain Res. 800: 136–144.

    CAS  Google Scholar 

  • Delcamp, T. J., Dales, C., Ralenkotter, L., Cole, P. S., and Hadley, R. W., 1998, Intramitochondrial [Ca2+] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation, Am. J. Physiol. 275: H484–H494.

    CAS  PubMed  Google Scholar 

  • Dennis, S. C., Gevers, W., and Opie, L. H., 1991, Protons in ischemia:Where do they come from; where do they go to? J. Mol. Cell. Cardiol. 23: 1077–1086.

    Article  CAS  PubMed  Google Scholar 

  • DiLisa, F., Blank, P. S., Colonna, R., Gambassi, G., Silverman, H. S., Stern, M. D., and Hansford, R. G., 1995, Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition, J. Physiol. (London) 486: 1–13.

    CAS  Google Scholar 

  • Duan, J. M., and Karmazyn, M., 1992, Protective effects of amiloride on the ischemic reperfused rat heart: Relation to mitochondrial function, Eur. J. Pharmacol. 210: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Duchen, M. R., McGuinness, O., Brown, L. A., and Crompton, M., 1993, On the involvement of a Cyclosporin-A sensitive mitochondrial pore in myocardial reperfusion injury, Cardiovasc. Res. 27: 1790–1794.

    CAS  PubMed  Google Scholar 

  • Dutoit, E.F., and Opie, L. H., 1992, Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion, Circ. Res. 70: 960–967.

    CAS  Google Scholar 

  • Eriksson, O., 1991, Effects of the general anaesthetic Propofol on the Ca2+-induced permeabilization of rat liver mitochondria, FEBS Lett. 279: 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, O., Pollesello, P., and Saris, N. E., 1992, Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol, Biochem. Pharmacol. 44: 391–393.

    Article  CAS  PubMed  Google Scholar 

  • Figueredo, V. M., Dresdner, K. P. Jr., Wolney, A. C., and Keller, A. M., 1991, Postischaemic reperfusion injury in the isolated rat heart: Effect of ruthenium red, Cardiovasc. Res. 25: 337–342.

    CAS  PubMed  Google Scholar 

  • Fliss, H., and Gattinger, D., 1996, Apoptosis in ischemic and reperfused rat myocardium, Circ. Res. 79: 949–956.

    CAS  PubMed  Google Scholar 

  • Folbergrova, J., Li, P. A., Uchino, H., Smith, M. L., and Siesjo, B.K., 1997, Changes in the bioenergetic state of rat hippocampus during 2.5min of ischemia, and prevention of cell damage by cyclosporin A in hyperglycemic subjects, Exp. Brain Res. 114: 44–50.

    CAS  PubMed  Google Scholar 

  • Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P., and Wieloch, T., 1998, Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death, J. Neurosci. 18: 5151–5159.

    CAS  PubMed  Google Scholar 

  • Galat, A., and Metcalfe, S. M., 1995, Peptidylproline cis trans isomerases, Prog. Biophys. Mol. Biol. 63: 67–118.

    CAS  PubMed  Google Scholar 

  • Garlid, K. D., Paucek, P., YarovYarovoy, V, Murray, H. N., Darbenzio, R. B., D’Alonzo, A. J., Lodge, N. J., Smith, M. A., and Grover, G. J., 1997, Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: Possible mechanism of cardioprotection, Circ. Res. 81: 1072–1082.

    CAS  PubMed  Google Scholar 

  • Gatewood, L. B., Larson, D. F, Bowers, M. C., Bond, S., Cardy, A., Sethi, G. K., and Copeland, J. G., 1996, A novel mechanism for cyclosporine: Inhibition of myocardial ischemia and reperfusion injury in a heterotopic rabbit heart transplant model, J. Heart Lung Transplant 15: 936–947.

    CAS  PubMed  Google Scholar 

  • Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., and Engler, R. L., 1994, Reperfusion injury induces apoptosis in rabbit cardiomyocytes, J. Clin. Invest. 94: 1621–1628.

    CAS  PubMed  Google Scholar 

  • Green, D. and Kroemer, G., 1998, The Central executioners of apoptosis: Caspases or mitochondria? Trends Cell Biol. 8: 267–271.

    CAS  PubMed  Google Scholar 

  • Green, D. R., and Reed, J. C., 1998, Mitochondria and apoptosis, Science 281: 1309–1312.

    CAS  PubMed  Google Scholar 

  • Green, T. R., Bennett, S. R., and Nelson, V. M., 1994, Specificity and properties of propofol as an antioxidant free radical scavenger, Toxicol. Appl. Pharmacol. 129: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, E. J., and Halestrap, A. P., 1993, Protection by Cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts, J. Mol. Cell. Cardiol. 25: 1461–1469.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, E. J., and Halestrap, A. P., 1995, Mitochondrial nonspecific pores remain closed during cardiac ischaemia, but open upon reperfusion, Biochem. J. 307: 93–98.

    CAS  PubMed  Google Scholar 

  • Griffiths, E. J., Stern, M. D., and Silverman, H. S., 1997, Measurement of mitochondrial calcium in single living cardiomyocytes by selective removal of cytosolic Indo 1, Am. J. Physiol. 273: C37–C44.

    CAS  PubMed  Google Scholar 

  • Griffiths, E. J., Ocampo, C. J., Savage, J. S., Rutter, G. A., Hansford, R. G., Stern, M. D., and Silverman, H. S., 1998, Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes, Cardiovasc. Res. 39: 423–433.

    Article  CAS  PubMed  Google Scholar 

  • Grover, G. J., Dzwonczyk, S., and Sleph, P. G., 1990, Ruthenium red improves postischemic contractile function in isolated rat hearts, J. Cardiovasc. Pharmacol. 16: 783–789.

    CAS  PubMed  Google Scholar 

  • Gutteridge, J. M. C., and Halliwell, B., 1990, Reoxygenation injury and antioxidant protection: A tale of two paradoxes, Arch. Biochem. Biophys. 283: 223–226.

    Article  CAS  PubMed  Google Scholar 

  • Haigney, M. C., Miyata, H., Lakatta, E. G., Stern, M. D., and Silverman, H. S., 1992, Dependence of hypoxic cellular calcium loading on Na+-Ca2+ exchange, Circ. Res. 71: 547–557.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., 1982, The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals, Biochem. J.204: 37–47.

    Google Scholar 

  • Halestrap, A. P., 1991, Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7: Implication for the protective effect of low pH against chemical and hypoxic cell damage, Biochem. J. 278: 715–719.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., 1994, Interactions between oxidative stress and calcium overload on mitochondrial function, in Mitochondria: DNA, Proteins, and Disease (V. Darley-Usmar, and A. H. V. Schapira, Eds.) Portland Press, London,pp.113–142.

    Google Scholar 

  • Halestrap, A. P., Griffiths, E. J., and Connern, C. P., 1993, Mitochondrial calcium handling and oxidative stress, Biochem. Soc. Trans. 21: 353–358.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M., 1997a, Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury, Mol. Cell. Biochem. 174: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Halestrap, A. P., Wang, X. M., Poole, R. C., Jackson, V. N., and Price, N. T., 1997b, Lactate transport in heart in relation to myocardial ischemia, Am. J. Cardiol. 80: A17–A25.

    Google Scholar 

  • Halestrap, A. P., Woodfield, K. Y, and Connern, C. P., 1997c, Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase, J. Biol. Chem. 272: 3346–3354.

    Article  CAS  PubMed  Google Scholar 

  • Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y., 1998, Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart, Biochim. Biophys. Acta 1366: 79–94.

    CAS  PubMed  Google Scholar 

  • Haworth, R. A., and Hunter, D. S., 1979, The Ca2+-induced membrane transition in mitochondria: II. Nature of the Ca2+ trigger site, Arch. Biochem. Biophys. 195: 460–467.

    Article  CAS  PubMed  Google Scholar 

  • Javadov, S. A., Lim, K. H. H., Kerr, P. M., Suleiman, M-S., Angelini, G. D. and Halestrap, A. P., 2000, Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovascular Research 45: 360–369.

    Article  CAS  PubMed  Google Scholar 

  • Karmazyn, M., Ray, M., and Haist, J. V., 1993, Comparative effects of Na+/H+ exchange inhibitors against cardiacinjury produced by ischemia/reperfusion, hypoxia/reoxygenation, and the calcium paradox, J. Cardiovasc. Pharmacol. 21: 172–178.

    CAS  PubMed  Google Scholar 

  • Kerr, P. M., Suleiman, M.-S., and Halestrap, A. P., 1999, Reversal of the mitochondrial permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate, Am. J. Physiol., In Press.

    Google Scholar 

  • Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D., 1997, The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis, Science 275: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  • Ko, S. H., Yu, C. W., Choe, H., Chung, M. J., Kwak, Y. G., Chae, S. W., and Song, H. S., 1997, Propofol attenuates ischaemic-reperfusion injury in the isolated rat heart, Anesth. Analg. 85: 719–724.

    CAS  PubMed  Google Scholar 

  • Kokita, N., and Hara, A., 1996, Propofol attenuates hydrogen-peroxide induced mechanical and metabolic derangements in the isolated rat heart, Anesthesiol. 84: 117–127.

    CAS  Google Scholar 

  • Kokita, N., Hara, A., Abiko, Y., Arakawa, J., Hashizume, H., and Namiki, A., 1998, Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts, Anesth. Analg. 86: 252–258.

    CAS  PubMed  Google Scholar 

  • Kroemer, G., Dallaporta, B., and Resche-rigon, M., 1998, The mitochondrial death/life regulator in apoptosis and necrosis, Annu. Rev. Physiol. 60: 619–642.

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa, T., Kobayashi, H., Nonami, T., Harada, A., Nakao, A., Sugiyama, S., Ozawa, T, and Takagi, H., 1992, Beneficial effects of cyclosporine on postischemic liver injury in rats, Transplantation 53: 308–311.

    CAS  PubMed  Google Scholar 

  • Ladilov, Y. V, Siegmund, B., and Piper, H. M., 1995, Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na+/H+ exchange, Am. J. Physiol. 268: H1531–H1539.

    CAS  PubMed  Google Scholar 

  • Lazdunski, M., Frelin, C., and Vigne, P., 1985, The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH, J. Mol Cell. Canliol. 17: 1029–1042.

    CAS  Google Scholar 

  • Leist, M., and Nicotera, P., 1997, The shape of cell death, Biochem. Biophys. Res.Commun. 236: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Lemasters, J. 1, and Thurman, R. G., 1995, The many facets of reperfusion injury, Gastroenterology 108: 1317–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lemasters, J. J., Chacon, E., Ohata, H., Harper, I. S., Nieminen, A.-L., Tesfai, S. A., and Herman, B., 1995, Measurement of electrical potential, pH, and free calcium ion concentration in mitochondria of living cells by laser scanning confocal microscopy, Methods Enzymol. 260: 428–444.

    CAS  PubMed  Google Scholar 

  • Lemasters, J. J., Nieminen, A.-L., Qian, T., Trost, L. C., and Herman, B., 1997, The mitochondrial permeability transition in toxic, hypoxic, and reperfusion injury, Mol. Cell. Biochem. 174: 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., 1998, The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy, Biochim. Biophys. Acta 1366: 177–196.

    CAS  PubMed  Google Scholar 

  • Li, P. A., Uchino, H., Elmer, E., and Siesjo, B. K., 1997a, Amelioration by cyclosporin A of brain damage following 5 or lOmin of ischemia in rats subjected to preischemic hyperglycemia. Brain Res. 753: 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. C., Ridefelt, P., Wiklund, L., and Bjerneroth, G., 1997b, Propofol induces a lowering of free cytosolic calcium in myocardial cells, Acta Anaesthesiol. Scand. 41: 633–638.

    CAS  PubMed  Google Scholar 

  • Liang, B. T., 1996, Direct preconditioning of cardiac ventricular myocytes via adenosine A(l) receptor and K-ATP channel, Am J. Physiol. 271: H1769–H1777.

    CAS  PubMed  Google Scholar 

  • Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157.

    CAS  PubMed  Google Scholar 

  • Liu, Y. G., Sato, T, O’Rourke, B., and Marban, E., 1998, Mitochondrial ATP-dependent potassium channels: Novel effectors of cardioprotection? Circulation 97: 2463–2469.

    CAS  PubMed  Google Scholar 

  • Martinou, J. C., Duboisdauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., Albertini, P., Talabot, D., Catsicas, S., Pietra, C., and Huarte, J., 1994, Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia, Neuron 13: 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  • Massoudy, P., Becker, B. K, Seligmann, C., and Gerlach, E., 1995, Preischaemic as well as postischaemic application of a calcium antagonist affords cardioprotection in the isolated guinea pig heart, Cardiovasc. Res. 29: 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Maulik, N., Watanabe, M., Zu, Y. L., Huang, C. K.., Cordis, G. A., Schley, J. A., and Das, D. K., 1996, Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts, FEBS Lett. 396: 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, N., Legat, K., Weinstabl, C., and Zimpfer, M., 1993, Effects of propofol on the function of normal, collateral-dependent, and ischemic myocardium, Anesth, Anatg. 76: 33–39.

    CAS  Google Scholar 

  • Meldrum, D. R., Cleveland, J. C., Mitchell, M. B., Sheridan, B. C., Gambon-Robertson, F., Harken, A. H., and Banerjee, A., 1996, Protein kinase C mediates Ca2+-induced cardioadaptation to ischemia-reperfusion injury, Am. J. Physiol. 271: R718–R726.

    CAS  PubMed  Google Scholar 

  • Metivier, D., Dallaporta, B., Zamzami, N., Larochette, N., Susin, S. A., Marzo, I., and Kroemer, G., 1998, Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-l-triggered apoptosis of Jurkat T lymphoma cells: Comparison of seven mitochondrion-specific fluorochromes, Immunol. Lett. 61: 157–163.

    CAS  PubMed  Google Scholar 

  • Millar, C. G., Baxter, G. F., and Thiemermann, C., 1996, Protection of the myocardium by ischaemic preconditioning: Mechanisms and therapeutic implications, Pharmacol.Ther. 69: 143–151.

    CAS  PubMed  Google Scholar 

  • Misao, J., Hayakawa, Y, Ohno, M., Kato, S., Fujiwara, T., and Fujiwara, H., 1996, Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction, Circulation 94: 1506–1512.

    CAS  PubMed  Google Scholar 

  • Miyata, H., Lakatta, E. G., Stern, M. D., and Silverman, H. S., 1992, Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia, Circ. Res. 71: 605–613.

    CAS  PubMed  Google Scholar 

  • Mizukami, Y., and Yoshida, K., 1997, Mitogen-activatedprotein kinasetranslocatestothenucleus during ischaemia and is activated during reperfusion, Biochem. J. 323: 785–790.

    CAS  PubMed  Google Scholar 

  • Murphy, P. G., Myers, D. S., Davies, W. J., and Webster, N. R. J. J. G., 1992, The antioxidant potential of propofol (2,6-diisopropylphenol), Br. J. Anaesth. 68: 616–618.

    Google Scholar 

  • Murphy, P. G., Bennett, J. R., Myers, D. S., Davies, M. J., and Jones, J. G., 1993, The effect of propofol anaesthesia on free radical-induced lipid peroxidation in rat liver microsomes, Eur. J. Anaesthes. 10: 261–266.

    CAS  Google Scholar 

  • Nazareth, W., Yafei, N., and Crompton, M., 1991, Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A, J. Mot. Cell. Cardiol. 23: 1351–1354.

    CAS  Google Scholar 

  • Nieminen, A.-L., Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J., 1995, Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide, Biochem. J. 307: 99–106.

    CAS  PubMed  Google Scholar 

  • Nieminen, A.-L., Petrie, T. G., Lemasters, J. J., and Selman, W. R., 1996, Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: Evidence of the mitochondrial permeability transition, Neuroscience 75: 993–997.

    CAS  PubMed  Google Scholar 

  • Nieminen, A. L., Byrne, A. M., Herman, B., and Lemasters, J. J., 1997, Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am. J. Physiol. 271: C1286–C1294.

    Google Scholar 

  • Nishino, T., 1994, The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury, J. Biochem. (Tokyo) 116: 1–6.

    CAS  Google Scholar 

  • Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., Ouaini, E., DiLoreto, C., Beltrami, C. A., Krajewski, S., Reed, J. C., and Anversa, P., 1997, Apoptosis in the failing human heart, N. Engl. J. Med. 336: 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  • Omar, B., McCord, J., and Downey, J., 1991, Ischaemia-reperfusion, in Oxidative Stress: Oxidants and Antioxidants (H. Sies, Ed.), Academic, San Diego, pp. 493–527.

    Google Scholar 

  • Opie, L., 1992, Myocardial stunning: A Role for calcium antagonists during reperfusion, Curdiovasc. Res. 26: 20–24.

    CAS  Google Scholar 

  • Peng, C. F., Kane, J. J., Straus, K. D., and Murphy, M. L., 1980, Improvement of mitochondrial energy production in ischaemic myocardium by in vivo infusion of ruthenium red, J. CanJiovasc. Pharmacol. 2: 45–54.

    CAS  Google Scholar 

  • Petronilli, V, Cola, C., Massari, S., Colonna, R., and Bernardi, P., 1993, Physiological effectors modify voltage sensing by the Cyclosporin A-sensitive permeability transition pore of mitochondria, J. Biol. Chem. 268: 21939–21945.

    CAS  PubMed  Google Scholar 

  • Petronilli, V, Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P., 1994, The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols: Increase of the gating potential by oxidants and its reversal by reducing agents, J. Biol. Chem. 269: 16638–16642.

    CAS  PubMed  Google Scholar 

  • Piper, H. M., 1997, Mechanism of myocardial injury during acute reperfusion, News Physiol. Sci. 12: 53–54.

    Google Scholar 

  • Piper, H. M., Noll, T., and Siegmund, B., 1994, Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell, Curdiovasc. Res. 28: 1–15.

    CAS  Google Scholar 

  • Qian, T., Nieminen, A.-L., Herman, B., and Lemasters, J. J., 1997, Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes, Am. J. Physiol. 273: C1783–C1792.

    CAS  PubMed  Google Scholar 

  • Reed, J. C., 1997, Cytochrome c: Can’tlive with it: Can’t livewithout it, Cell 91: 559–562.

    Article  CAS  PubMed  Google Scholar 

  • Reimer, K. A., and Jennings, R. B., 1992, Myocardial ischemia, hypoxia, and infarction, in The Heart and Cardovascular System, 2nd ed. (H. A. Fozzard, R. B. Jennings, E. Huber, A. M. Katz, and H. E. Morgan, Eds.), Raven, New York, pp. 1875–1973.

    Google Scholar 

  • Reimer, M. A., Murry, C. E., and Richard, V. J., 1989, The role of neutrophils and free radicals in the ischemic-reperfused heart: Why the confusion and controversy? J. Mol. Cell. Cardiol. 21: 1225–1239.

    Article  CAS  PubMed  Google Scholar 

  • Rigoulet, M., Devin, A., Averet, N., Vandais, B., and Guerin, B., 1996, Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the generalanesthetic 2,6-diisopropylphenol, Eur. J. Biochem. 241: 280–285.

    CAS  PubMed  Google Scholar 

  • Sack, S., Mohri, M., Schwarz, E. R., Arras, M., Schaper, J., Ballagipordany, G., Scholz, W., Lang, H. J., Scholkens, B. A., and Schaper, W., 1994, Effects of a new Na+/H+ antiporter inhibitor on postischemic reperfusion in pig heart, J. Cardiovasc. Pharmacol. 23: 72–78.

    CAS  PubMed  Google Scholar 

  • Salvioli, S., Ardizzoni, A., Franceschi, C., and Cossarizza, A., 1997, JC-1, but not DiOC(6)(3) or rhodamine 123, is a reliable fluorescent probe to assess Delta Psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis, FEBS Lett. 411: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, S., L., 1991, Chemistry and biology of theimmunophilins and their immunosuppressive ligands, Science 251:283–287.

    CAS  PubMed  Google Scholar 

  • Schultz, J. E. J., Yao, Z. H., Cavero, I., and Gross, G. J., 1997a, Glibenclamide-induced blockade of ischemic preconditioning is time dependent in intact rat heart, Am. J. Physiol. 272: H2607–H2615.

    CAS  PubMed  Google Scholar 

  • Schultz, J. J., Hsu, A. K., and Gross, G. J., 1997b, Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart, J. Mol. Cell. Cardiol. 29: 1355–1362.

    CAS  PubMed  Google Scholar 

  • Schwarz, E. R., Whyte, W. S., and Kloner, R. A., 1997, Ischemic preconditioning, Curr. Opin. Cardiol. 12: 475–481.

    CAS  PubMed  Google Scholar 

  • Scorrano, L., Petronilli, V., and Bernardi, P., 1997, On the voltage dependence of the mitochondrial permeability transition pore: A critical appraisal, J. Biol. Chem. 272: 12295–12299.

    Article  CAS  PubMed  Google Scholar 

  • Servin, F., Desmonts, J. M., Haberer, J. P., Cockshott, I. D., Plummer, G. F., and Farinotti, R., 1988, Pharmacokinetics and protein binding of propofol in patients with cirrhosis, Anesthesiology 69: 887–891.

    CAS  PubMed  Google Scholar 

  • Shiga, Y., Onodera, H., Matsuo, Y., and Kogure, K., 1992, Cyclosporin-A protects against ischemia-reperfusion injury in the brain, Brain Res. 595: 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki, K., Ishida, A., and Kawai, N., 1994, Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus, Neurosci. Res. 20: 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Kamiike, W., Hatanaka, N., Miyata, R., Inoue, T., Yoshida, Y., Tagawa, K., and Matsuda, H., 1994, Beneficial effects of cyclosporine on reoxygenation injury in hypoxic rat liver, Transplantation 57: 1562–1566.

    CAS  PubMed  Google Scholar 

  • Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., and Tsujimoto, Y., 1995, Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL, Nature 374: 811–813.

    Article  CAS  PubMed  Google Scholar 

  • Silverman, H. S., and Stern, M. D., 1994, Ionic basis of ischaemic cardiac injury: Insights from cellular studies, Cardiovasc. Res. 28: 581–597.

    CAS  PubMed  Google Scholar 

  • Stone, D., Darley-Usmar, V., Smith, D. R., and O’Leary, V., 1989, Hypoxia-reoxygenation induced increase in cellular Ca2+in myocytes and perfused hearts: The role of mitochondria, J. Mol. Cell. Cardiol. 21: 963–973.

    Article  CAS  PubMed  Google Scholar 

  • Sztark, F., Ichas, F., Ouhabi, R., Dabadie, P., and Mazat, J. P., 1995, Effects of the anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: Direct pore inhibition and shift of the gating potential, FEBS Lett. 368: 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Travis, D. L., Fabia, R., Netto, G. G., Husberg, B. S., Goldstein, R. M., Klintmalm, G. B., and Levy, M. F., 1998, Protection by cyclosporine A against normothermic liver ischemia-reperfusion in pigs, J. Surg. Res. 75: 116–126.

    Article  CAS  PubMed  Google Scholar 

  • Turrens, J. F., Alexandre, A., and Lehninger, A. L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys. 237: 408–414.

    Article  CAS  PubMed  Google Scholar 

  • Ubl, J. J., Chatton, J. Y., Chen, S. H., and Stucki, J. W., 1996, A critical evaluation of in situ measurement of mitochondrial electrical potentials in single hepatocytes, Biochim. Biophys. Acta 1276: 124–132.

    PubMed  Google Scholar 

  • Uchino, H., Elmer, E., Uchino, K., Lindvall, O., and Siesjo, B. K., 1995, Cyclosporin A dramatically ameliorates CAI hippocampal damage following transient forebrain ischaemia in the rat, Acta Physiol. Scand 155: 469–471.

    CAS  PubMed  Google Scholar 

  • Umansky, S. R., and Tomei, L. D., 1997, Apoptosis in the heart, Adv. Pharmacol. 41: 383–407.

    CAS  PubMed  Google Scholar 

  • Vandenberg, J. I., Metcalfe, J. C., and Grace, A. A., 1993, Mechanisms of intracellular pH recovery following global ischaemia in the perfused heart, Circulation Res. 72: 993–1003.

    CAS  PubMed  Google Scholar 

  • Vanderheide, R. S., Hill, M. L., Reimer, K. A., and Jennings, R. B., 1996, Effect of reversible ischemia on the activity of the mitochondrial ATPase: Relationship to ischemic preconditioning, J. Mol. Cell. Cardiol. 28: 103–112.

    CAS  Google Scholar 

  • Vuorinen, K., Ylitalo, K., Peuhkurinen, K., Raatikainen, P., Alarami, A., and Hassinen, I. E., 1995, Mechanisms of ischemic preconditioning in rat myocardium: Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase, Circulation 91: 2810–2818.

    CAS  PubMed  Google Scholar 

  • Woodfield, K.-Y., Rück, A., Brdiczka, D., and Halestrap, A. P., 1998, Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition, Biochem. J. 336: 287–290.

    CAS  PubMed  Google Scholar 

  • Yabe, K., Nasa, Y., Sato, M., Iijima, R., and Takeo, S., 1997, Preconditioning preserves mitochondrial function and glycolytic flux during an early period of reperfusion in perfused rat hearts, Cardiovasc. Res. 33: 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Yamabe, K., Shimizu, S., Kamiike, W., Waguri, S., Eguchi, Y., Hasegawa, J., Okuno, S., Yoshioka, Y., Ito, T., Sawa, Y., Uchiyama, Y., Tsujimoto, Y., and Matsuda, H., 1998, Prevention of hypoxic liver cell necrosis by in vivo human bcl-2 gene transfection, Biochem. Biophys. Res. Commun. 243: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Liu, X. S., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J. Y., Peng, T. I., Jones, D. P., and Wang, X. D., 1997, Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked, Science 275: 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  • Yaoita, H., Ogawa, K., Maehara, K., and Maruyama, Y, 1998, Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor, Circulation 97: 276–281.

    CAS  PubMed  Google Scholar 

  • Yoshida, T., Watanabe, M., Engelman, D. T., Engelman, R. M., Schley, J. A., Maulik, N., Ho, Y. S., Oberley, T. D., and Das, D. K., 1996, Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury, J. Mol. Cell. Cardiol. 28: 1759–1767.

    Article  CAS  PubMed  Google Scholar 

  • Ytrehus, K., Liu, Y. G., and Downey, J. M., 1994, Preconditioning protects ischemic rabbit heart by protein kinase C activation, Am. J. Physiol. 266: H1145–H1152.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Halestrap, A.P., Kerr, P.M., Javadov, S., Suleiman, MS. (2002). The Permeability Transition Pore in Myocardial Ischemia and Reperfusion. In: Lemasters, J.J., Nieminen, AL. (eds) Mitochondria in Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46835-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46835-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46433-1

  • Online ISBN: 978-0-306-46835-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics