Skip to main content

Mitochondrial Changes after Acute Alcohol Ingestion

  • Chapter
Mitochondria in Pathogenesis
  • 189 Accesses

Conclusion

Active oxidants produced during ethanol metabolism modulate mitochondrial membrane potential and permeability changes in isolated and cultured hepatocytes. These mitochondrial alterations (loss of ΔΨ;the MPT) are now recognized as a key step in programmed cell death. Our fluorographic investigations demonstrate that acute ethanol-induced oxidative stress can induce mitochondrial permeability change, cyto-chrome c release, caspase activation, and apoptosis in cultured hepatocytes. In addition, our investigations implicate endogenous glutathioneglutathione peroxidase as an impor-tant antioxidant with a cytoprotective machinery in hepatocyte mitochondria exposed to ethanol. Oxidative stress is the consequence of an imbalance between oxidant production and antioxidant defense. Development of new and effective strategies to diminish oxidant production, enhance intracellular and extracellular antioxidant defenses, or both, in the liver offers great promise for preventing and treating liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antébi, H., Ribière, C., Sinaceur, J., Abu-Murad, C., and Nordmann, R., 1984, Involvement of oxygen radicals in ethanol oxidation and in the ethanol-induced decrease in liver glutathione, in Oxygen Radicals in Chemistry and Biology (W. Bors, M. Saran, and D. Tait, Eds.), Walter de Gruyter, Berlin, New York, pp. 757–760.

    Google Scholar 

  • Attardi, G., and Schatz, G., 1998, Biogenesis of mitochondria, Annu. Rev. Cell Biol. 4:289–333.

    Google Scholar 

  • Bautista, A. P., and Spitzer, J. J., 1992, Acute ethanol intoxication stimulates superoxide anion production by in situ perfused rat liver, Hepatology 15:892–898.

    CAS  PubMed  Google Scholar 

  • Bernardi, P., 1996, The permeability transition pore; Control points of cyclosporin A-sensitive mitochondrial channel involved in cell death, Biochim. Biophys. Acta 1275:5–9.

    PubMed  Google Scholar 

  • Beutner, G., Ruck, A., Riede, B., Welte, W., and Brdiczka, D., 1996, Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore, FEBS Lett. 396:189–195.

    Article  CAS  PubMed  Google Scholar 

  • Beutner, G., Ruck, A., Riede, B., and Brdiczka, D., 1998, Complexes between porin, hexokinase, mitochondrial creatine kinase, and adenylate translocator display properties of the permeability transition pore; Implication for regulation of permeability transition by the kinases, Biochim. Biophys. Acta 1368:7–18.

    CAS  PubMed  Google Scholar 

  • Cook, J. A., Pass, H. I., Russo, A., Type, S., and Mitchell, J. B., 1989, Use of monochlorobimane for glutathione measurements in hamster and human tumor cell lines, Int. J. Radiat. Oncol. Biol. Phys. 16:1321–1324.

    CAS  PubMed  Google Scholar 

  • Cook, J. A., Pass, H. I., Lype, S. N., Friedman, N., DeGraff, W., Russo, A., and Mitchell, J. B., 1991, Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue, Cancer Res. 51:4287–4294.

    CAS  PubMed  Google Scholar 

  • Costantini, P., Chernyak, B. V, Petronilli, V, and Bernardi, P., 1996, Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem. 271:6746–6751.

    CAS  PubMed  Google Scholar 

  • Di Luzio, N. R., 1963, Prevention of the acute ethanol-induced fatty liver by antioxidants, Physiologist 6:169–173.

    Google Scholar 

  • Di Luzio, N. R., and Hartman, A. D., 1967, Role of lipid peroxidation in the pathogenesis of ethanol-induced fatty liver, Fed. Proc. 26:1436–1442.

    PubMed  Google Scholar 

  • Garcia-Ruiz, C., Colell, A., Morales, A., Kaplowitz, N., and Fernández-Checa, J., 1995, Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor NF-κB, Mol. Pharmacol. 48:825–834.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Flecha, B., and Boveris, A., 1995, Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex, Biochim. Biophys. Acta 1243:361–366.

    PubMed  Google Scholar 

  • Gonzalez-Flecha, B., Cutrin, J. C., and Boveris, A., 1993, Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion, J. din. Invest. 91:456–464.

    CAS  Google Scholar 

  • Goossens, V, Grooten, J., DeVos, K., and Fiers, W., 1995, Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity, Proc. Natl. Acad. Sci. USA 92:8115–8119.

    CAS  PubMed  Google Scholar 

  • Guerri, C., and Grisolia, S., 1980, Changes in glutathione in acute and chronic alcohol intoxication, Pharmacol. Biochem. Behav. 13 (Suppl. 1):53–61.

    CAS  PubMed  Google Scholar 

  • Handler, J. A., and Thurman, R. G., 1990, Redox interactions between catalase and alcohol dehydrogenase pathways of ethanol metabolism in the perfused rat liver, J. Biol. Chem. 265:1510–1515.

    CAS  PubMed  Google Scholar 

  • Hunter, D. R., Haworth, R. A., and Southard, J. H., 1976, Relationship between configulation, function, and permeability in calcium-treated mitochondria, J. Biol. Chem. 251:5069–5077.

    CAS  PubMed  Google Scholar 

  • Ichas, F., Jouavill, L. S., and Mazat, J. P., 1997, Mitochondria are excitable organelles 19 capable of generating and conveying electrical and calcium signals, Cell 89:1145–1153.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, H., Kurose, I., and Kato, S., 1997, Pathogenesis of alcoholic liver disease with paticular emphasis on oxidative stress, J. Gastroenterol. Hepatol. 12(Suppl.):S272–S282.

    CAS  PubMed  Google Scholar 

  • Israel, Y., and Orrego, H., 1984, Hypermetabolic state and hypoxic liver damage, in Recent Developments in Alcoholism, Plenum, New York, pp. 119–133.

    Google Scholar 

  • Kaplowitz, N., and Tsukamoto, H., 1996, Oxidative stress and liver disease, Prog. Liver Dis. 14:131–159.

    CAS  PubMed  Google Scholar 

  • Kera, Y, Kiriyama, T., and Komura, S., 1985, Conjugation of acetaldehyde with cysteinylglycine, the first metabolite in glutathione breakdown by γ-glutamyltranspeptidase, Agents Actions 17:48–52.

    Article  CAS  PubMed  Google Scholar 

  • Kinnally, K. W., Lohret, T. A., Campo, M. L., and Mannella, C. A., 1996, Perspectives on the mitochondrial multiple conductance channel, J. Bioenerg. Biomembi. 28:115–123.

    CAS  Google Scholar 

  • Kroemer, G., Zamzami, N., and Susin, S. A., 1997, Mitochondrial control of apoptosis, Immunol. Today 18:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Kurose, I., Higuchi, H., Kato, S., Miura, S., Watanabe, N., Kamegaya, Y, Tomita, K., Takaishi, M., Horie, Y., Fukuda, M., Mizukami, K., and Ishii, H., 1997a, Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol, Gastroenterology 112:1331–1343.

    Article  CAS  PubMed  Google Scholar 

  • Kurose, I., Higuchi, H., Miura, S., Saito, H., Watanabe, N., Hokari, R., Hirokawa, M., Takaishi, M., Zeki, S., Nakamura, T., Ebinuma, H., Kato, S., and Ishii, H., 1997b, Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication, Hepatology 25:368–378.

    CAS  PubMed  Google Scholar 

  • Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86:147–157.

    CAS  Google Scholar 

  • Liu, X., Zou, H., Alaughter, C., and Wang, X., 1997, DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis, Cell 89:175–184.

    CAS  PubMed  Google Scholar 

  • Müller, A., and Sies, H., 1987, Alcohol, aldehydes, and lipid peroxidation: Current notions, Alcohol Alcoholism. (Suppl.) 1:67–74.

    Google Scholar 

  • Nair, S., Singh, S. V, and Krishan, A., 1992, Flow cytometric monitoring of glutathione content and anthracycline retention in tumor cells, Cytometry 12:336–342.

    Google Scholar 

  • Nicolli, A., Basso, E., Petronilli, V, Wagner, R. M., and Bernardi, P., 1996, Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel, J. Biol. Chem. 271:2185–2192.

    CAS  PubMed  Google Scholar 

  • Nieminen, A.-L, Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J., 1995, Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide, Biochem. J. 307:99–106.

    CAS  PubMed  Google Scholar 

  • O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., and Wallimann, T., 1997, The role of creatine kinase in inhibition of mitochondrial permeability transition, FEBS Lett. 414:253–257.

    CAS  PubMed  Google Scholar 

  • Reinke, L. A., Lai, E. K., Du Bose, C. M., and MacCay, P. B., 1987, Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: Correlation with radical formation in vitro, Proc. Natl. Acad. Sci. USA 84: 9223–9227.

    CAS  PubMed  Google Scholar 

  • Rice, G. C., Bump, E. A., Shrieve, D. C., Lee, W., and Kovacs, M., 1986, Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: Some applications to radiation and drug resistance in vitro and in vivo, Cancer Res. 46:6105–6110.

    CAS  PubMed  Google Scholar 

  • Rouach, H., Park, M. K., Orfanelli, M. T., Janvier, B., Brissot, P., Bourel, M., and Nordmann, R., 1988, Effects of ethanol on hepatic and cerebellar lipid peroxidation and endogenous antioxidants in native and chronic iron-overload rats, in Alcohol Toxicity and Free Radical Mechanism: Advances in the Biosciences, Vol. 71 (R. Nordmann, C. üRibière, and H. Rouach, Eds.), Pergamon, Oxford, England pp. 49–54.

    Google Scholar 

  • Schulze-Osthoff, K., Bakker, A. C., Vanhaese-Broeck, B., Beyaert, R., Jacob, W. A., and Fiers, W., 1992, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions, J. Biol. Chem. 267:5317–5323.

    CAS  PubMed  Google Scholar 

  • Shaw, S., Jayatilleke, E., and Lteber, C. S., 1988, Lipid peroxidation as a mechanism of alcoholic liver injury: Role of iron mobilization and microsomal induction, Alcohol 5:135–140.

    Article  CAS  PubMed  Google Scholar 

  • Sinaceur, J., Ribière, C., Sabourault, D., and Nordmann, R., 1985, Superoxide formation in liver mitochondria during ethanol intoxication: Possible role in alcohol hepatotoxicity, in Free Radicals in Liver Injury (G. Poli, K. H Cheeseman, M. U. Dianzani, and T. F. Slater, Eds.), IRL Oxford, England pp. 175–177.

    Google Scholar 

  • Slater, T. F, Sawyer, B. C., and Sträuli, U. D., 1964, Changes in liver nucleotide concentrations in experimental liver injury. H. Acute ethanol poisoning, Biochem. J. 93:267–270.

    CAS  PubMed  Google Scholar 

  • Speisky, H., MacDonald, A., Giles, G., Orrego, H., and Israel, Y, 1985, Increased loss and decreased synthesis of hepatic glutathione after acute ethanol administration, Biochem. J. 225:565–572.

    CAS  PubMed  Google Scholar 

  • Speisky, H., Kera, Y, Penttila, K. E., Israel, Y, and Lindros, K. O., 1988, Depletion of hepatic glutathione by ethanol occurs independently of ethanol metabolism, Alcoholism: Clin. Exp. Res. 12:224–227.

    CAS  Google Scholar 

  • Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H. G., Geley, S., Fassy, F., Reed, J. C., and Kroemer, G., 1997, The central executioner of apoptosis: Multiple connections between protease activation and mitochondria in Fas/APO-l/CD95-and ceramide-induced apoptosis, J. Exp. Med. 186:25–37.

    Article  CAS  PubMed  Google Scholar 

  • Susin, S. A., Zamzami, N., Castedo, M., Hirsh, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G., 1996, Bcl-2 inhibits the mitochondrial release of an apoptogenic protease, J. Exp. Med. 84: 1331–1342.

    Google Scholar 

  • Susin, S. A., Zamzami, N., and Kroemer, G., 1998, Mitochondria as a regulator of apoptosis: Doubt no more, Biochim. Biophys. Ada 1366:151–165.

    CAS  Google Scholar 

  • Thurman, R. G., and Handler, J. A., 1989, New perspectives in catalase-dependent ethanol metabolism, Drug Metab. Rev. 20:679–688.

    CAS  PubMed  Google Scholar 

  • Ublacker, G. A., Johnson, J. A., Siegel, F. L., and Mulcahy, R. T., 1991, Influence of glutathione S-transferases on cellular glutathione determination by flow cytometry using monochlorobimane, Cancer Res. 51:1783–1788.

    CAS  PubMed  Google Scholar 

  • Videla, L. A., and Valenzuela, A., 1982, Alcohol ingestion, liver glutathione, and lipoperoxidation: Metabolic interrelations and pathological implications, Life Sci. 31:2395–2407.

    Article  CAS  PubMed  Google Scholar 

  • Vina, J., Estrela, J. M., Guerri, C., and Romero, F. J., 1980, Effect of ethanol on glutathione concentration in isolated hepatocytes, Biochem. J. 188:549–552.

    CAS  PubMed  Google Scholar 

  • Zahrebelski, G., Nieminen, A.-L., Al-Ghoul, K., Qian, T, Hermen, B., and Lemasters, J. J., 1995, Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: A laser scanning confocal microscopic study, Hepatology 21:1361–1372.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X., and Kroemer, G., 1995, Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocytes death in vivo, J. Exp. Med. 181:1661–1672.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami, N., Susin, S. A., Marchetti, P., Hirsh, T., Gomez-Monterrey, I., Castedo, M., and Kroemer, G., 1996, Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183:1533–1544.

    Article  CAS  PubMed  Google Scholar 

  • Zentella de Pina, M., Corona, S., Rocha-Hernández, A. E., Saldana Balmori, Y, Cabrera, G., and Pina, E., 1994, Restoration by piroxicam of liver glutathione levels decreased by acute ethanol intoxication, Life Sci. 54: 1433–1439.

    CAS  PubMed  Google Scholar 

  • Zhou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. D., 1997, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell 90:405–413.

    Google Scholar 

  • Zoratti, M., and Szabò, I., 1995, The mitochondrial permeability transition, Biochim. Biophys. Acta 1241:139–176.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Higuchi, H., Ishii, H. (2002). Mitochondrial Changes after Acute Alcohol Ingestion. In: Lemasters, J.J., Nieminen, AL. (eds) Mitochondria in Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46835-2_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-46835-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46433-1

  • Online ISBN: 978-0-306-46835-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics