Skip to main content

Evolution of Human Hypoxia Tolerance Physiology

  • Chapter
Oxygen Sensing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 475))

Abstract

Analysis of human responses to hypobaric hypoxia in different lineages (lowlanders, Andean natives, Himalayan natives, and East Africans) indicates ‘conservative’ and ‘adaptable’ physiological characters involved in human responses to hypoxia. Conservative characters, arising by common descent, dominant and indeed define human physiology, but in five hypoxia response systems analyzed, we also found evidence for ‘adaptable’ characters at all levels of organization in all three high altitude lineages. Since Andeans and Himalayans have not shared common ancestry with East Africans for most of our species history, we suggest that their similar hypoxia physiology may represent the ‘ancestral’ condition for humans - an interpretation consistent with recent evidence indicating that our species evolved under ‘colder, drier, and higher’ conditions in East Africa where the phenotype would be simultaneously advantageous for endurance performance and for high altitude hypoxia. It is presumed that the phenotype was retained in low capacity form in highlanders and in higher capacity form in most lowland lineages (where it would be recognized by most physiologists as an endurance performance phenotype). Interestingly, it is easier for modern molecular evolution theory to account for the origin of ‘adaptable’ characters through positive selection than for conserved traits. Many conserved physiological systems are composed of so many gene products that it seems difficult to account for their unchanging state (for unchanging structure and function of hundreds of proteins linked in sequence to form the physiological system) by simple models of stabilizing selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker H, Xue D (1995) Mechanism of oxygen sensing in the carotid body in comparison with other oxygen sensing cells. News Physiol. Sci. 10, 211–216

    CAS  Google Scholar 

  2. Alien PS, Matheson GO, Zhu G, Gheorgiu D, Dunlop RS, Falcomer T, Stanley C, Hochachka PW (1997) Simultaneous 3 I P Magnetic Resonance spectroscopy of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise. Amer. J. Physiol. 273, R999–R1007

    Google Scholar 

  3. Amu PMH, Simoneau JA, Boulay MR, Serresse CW, Theriault G, Bouchard C (1986) Skeletal muscle characteristics in sedentary Black and Caucasian males. J. Appl. Physiol. 61, 1758–1761

    Google Scholar 

  4. Antenzana AM, Richalet JP, Antenzana G, Spielvogel H, Kacini R.( 1992) Adrenergic system in high altitude residents. Intl. J. Sports Med. 13, S92–95

    Google Scholar 

  5. Antenzana AM, Richalet JP, Noriega I, Galarza M, Antenzana G (1995) Hormonal changes in normal and polycythemic high-altitude residents. J. Appl. Physiol. 79, 795–800

    Google Scholar 

  6. Brooks GA (1998) Mammalian fuel preferences during exercise. Comp. Biochem. Physiol., in press

    Google Scholar 

  7. Brooks GA, Fahey TD, and White TP (1996) Exercise Physiology-Human Biocnergetics and Its Applications. Mayfield Publ. Co., London pp 1–750.

    Google Scholar 

  8. Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS. Sutton JR, Wolfel EE, Reeves JT (1991) Increased dependence on blood glucose after acclimatization to 4,300 m. J. Appl. Physiol. 70, 919–927

    CAS  PubMed  Google Scholar 

  9. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885

    CAS  PubMed  Google Scholar 

  10. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton Univ. Press, Princeton, NJ pp 1–535

    Google Scholar 

  11. Colice GL, Lawrason J, Munsef A, Bittle, P, Dietz J, Ramirez G (1993) Hormonal responses to exercise in high altitude natives and COPD patients. Aviation Space & Env. Med. 64, 512–516

    CAS  Google Scholar 

  12. Eyre-Walker, A. and Keightley, P.D. High genomic deleterious mutation rates in hominids. Nature 1999; 397, 344–347.

    Article  CAS  PubMed  Google Scholar 

  13. Fagard R, Biclen E, Amery A (1991) Heritability of aerobic power and anaerobic energy generation during exercise. J. Appl. Physiol. 70, 357–362

    CAS  PubMed  Google Scholar 

  14. Favier R, Desplanches D, Hoppeler H, Caceres E, Grunenfelder A, Koubi H, Leuenberger M, Sempore B, Tuscher L, Spielvogel H (1996) Hormonal and metabolic adjustments during exercise in hypoxia and normoxia in highland natives. J. Appl. Physiol. 80, 632–637

    CAS  PubMed  Google Scholar 

  15. Forsythe JS, Hang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cellular Biol. 16, 4604–4613

    CAS  Google Scholar 

  16. Golding GB (1994) In: Golding GB (ed), Non-Neutral Evolution — Theories and Molecular Data. Chapman and Hall, London, pp 126–138

    Google Scholar 

  17. Harik N, Harik SI, Kuo NT, Sakai K, Przybylski RJ, LaManna JC (1996) Time-course and reversibility of the hypoxia induced alterations in cerebral vascularity and cerebral capillary glucose transporter density. Brain Research 737, 335–338

    Article  CAS  PubMed  Google Scholar 

  18. Heath D, Williams DR (1981) Man at High Altitude. Churchill Livingstone, London pp 3–23

    Google Scholar 

  19. Henderson K, McCanse W, Urano T, and Gonzalez NC, FASEB J. 12, 5, 3701 (1998).

    Google Scholar 

  20. Hochachka PW (1992) Muscle enzymatic composition and metabolic regulation in high altitude adapted natives. Int. J. Sport Med. 13, S89–91

    Google Scholar 

  21. Hochachka PW (1994) Muscles as Molecular and Metabolic Machines. CRC Press, Boca Raton, Florida pp 1–158

    Google Scholar 

  22. Hochachka PW (1998) Mechanism and evolution of hypoxia-tolerance in humans. J. Exp. Biol. 201, 1243–1254.

    CAS  PubMed  Google Scholar 

  23. Hochachka PW, and Mottishaw PD (1998) Evolution and adaptation of the diving response: Phocids and otariids. In: Pörtner HO, Playle R (eds) Cold Ocean Physiology, Cambridge University Press, Cambridge, UK 391–431.

    Google Scholar 

  24. Hochachka PW, Clark CM, Brown WD, Stanely C, Stone CK, Nickles RJ, Zhu G, Alien PS, Holden JE (1995) The brain at high altitude: Hypometabolism as a defense against chronic hypoxia? J. Cerebral Blood Flow and Metabolism, 14, 671–679

    Google Scholar 

  25. Hochachka PW, Clark CM, C.Monge C, Stanley C, Brown WD, Stone CK., Nickles RJ, Holden JE (1996) Sherpa brain glucose metabolism and defense adaptations against chronic hypoxia. J. Appl. Physiol., 81: 1355–1361

    CAS  PubMed  Google Scholar 

  26. Hochachka PW, Clark CM, Holden JE, Stanley C, Ugurbil K, Menon RS (1996) 31P Magnetic Resonance Spectroscopy of the Sherpa Heart: A PCr/ATP Signature of Metabolic Defense Against Hypobaric Hypoxia. Proc. Natl. Acad. Sci., U.S.A. 93: 1215–1220

    CAS  PubMed  Google Scholar 

  27. Hochachka PW, Gunga HC, Kirsch K (1998) Our ancestral physiological phenotype: An adaptation for hypoxia tolerance and for endurance performance? Proc. Natl. Acad. Sci. USA 95, 1915–1920

    Article  CAS  PubMed  Google Scholar 

  28. Hochachka PW, Somero GN (1984) Biochemical Adaptation. Princeton University Press, Princeton, pp 1–557

    Google Scholar 

  29. Hochachka PW, Stanley C, Matheson GO, McKenzie DC, Alien PS, Parkhousc WS (1991) Metabolic and work efficiencies during exercise in Andean natives. J. Appl. Physiol, 70: 1720–1730

    CAS  PubMed  Google Scholar 

  30. Hochachka PW, Stanley C, McKenzie DC, Villena A, C Monge C (1992) Enzyme mechanisms for pyruvate-to-lactatc flux attentuation: A study of Sherpas, Quechuas, and hummingbirds Int. J. Sport Med. 13, S11–123

    Google Scholar 

  31. Hlolden JE, Stone CK, Brown WD, Nickles RJ, Stanley C, Clark CM, Hochachka PW (1995) Enhanced cardiac metabolism of plasma glucose in high altitude natives. Adaptations against chronic hypoxia J. Appl. Physiol., 79: 222–228

    Google Scholar 

  32. Jones S, Martin R, Pilbeam D, Editors (1995) Human Evolution. Cambridge Univ. Press, Cambridge, UK p 1–506

    Google Scholar 

  33. Kayser B, Hoppeler H, Classsen H, Cerretelli P (1991) Muscle structure and performance capacity of Himalayan Sherpas. J. Appl. Physiol. 70, 1938–1942

    CAS  PubMed  Google Scholar 

  34. Kayser B, Hoppeler H, Desplanches D, Marconi C, Broers B, Cerretelli P (1996) Muscle ultrastructure and biochemistry in lowland Tibetans. J. Appl. Physiol. 80, 632–637

    Google Scholar 

  35. Kirkpatrick M (1997) Genes and adaptation: A pocket guide to the theory. In: Rose M R, Lauder GV (eds), Adaptation., Academic Press, San Diego, pp. 125–146

    Google Scholar 

  36. Ladoux A, Felin C (1993) Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heartz Biochem. Biophys. Res. Commun. 195, 1005–1010

    Article  CAS  PubMed  Google Scholar 

  37. Lahiri S (1996) Peripheral chemoreceptors and their sensory neurons in chronic states of hypo-and hyperoxygenation. Handbook of Physiology 2 (4), 1183–1206

    Google Scholar 

  38. Lahiri S, Edelman NH, Cherniack NS, and Fishman AP (1969) Blunted hypoxic drive to ventilation in subjects with life-long hypoxemia. Fed. Proc. 28, 1289–1295

    CAS  PubMed  Google Scholar 

  39. Levine RD, Stray-Gunderson J (1996) A practical approach to altitude training: Where to live and tram for optimal performance enhancement. J. Appl. Physiol. 13, S209–212

    Google Scholar 

  40. Mangum CP, Hochachka PW (1998) New directions in comparative physiology and biochemistry: Mechanisms, adaptations, and evolution. Physiol. Zool., 71, 471–484.

    CAS  PubMed  Google Scholar 

  41. Matheson GO, Alien PS, Ellinger DC, Hanstock CC, Gheorghiu D, McKenzie DC, Stanley C, Parkhouse WS, Hochachka, PW (1991) Skeletal muscle metabolism and work capacity: a 3 I P-NMR study of Andean natives and lowlanders. J. Appl. Physiol., 70: 1963–1976

    CAS  PubMed  Google Scholar 

  42. Matsubayashi K, Ozawa T, Nakashima M, Saito A, Fukuyamu H, Harada N, Kameyama M (1986) Cerebral blood flow and metabolism before and after staying at high altitude. J. Mountain Medicine 6, 51–57

    Google Scholar 

  43. Maxwell PH, Pugh CW, Ratcliffe PJ (1993) Inducible operation of the erythropoitin 3’ enhancer in multiple cell lines: evidence for a widespread oxygen sensing mechanism. Proc. Natl. Acad. Sci. USA 90, 2423–2427

    CAS  PubMed  Google Scholar 

  44. Mazzeo RS, Bender PR, Brooks GA, Butterfield GE, Groves BM, Sutton JR, Wolfel EE, Reeves JT (1991) Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Amer. J. Physiol. 261, E419–424

    CAS  PubMed  Google Scholar 

  45. Moore LG, Curran-Everett L, Drama TS, Groves BM, McCullough RE, Sun SF, Sutton JR, Zamudio S, Zhuang JG (1992) Arc Tibetans better adapted? Intl. J. Sports Med. 13,S86–S88

    Google Scholar 

  46. Mottishaw PD, Thornton SK and Hochachka PW (1999). The diving response and its surprisingly evolutionary path in seals and sea lions. Amer. Zool., 39, 434–450.

    Google Scholar 

  47. Ogita HE, Nakaoka, T, Matsuoka R, Takao A, Kira Y (1994) Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Amer. J. Physiol. 267, H1948–1954

    PubMed  Google Scholar 

  48. Resink T, Buravkova L, Mirzapoyazova E, Kohler E, Erne P, Tkachuk V. (1996) Involvement of protein kinase C in hypoxia induced desensitization of the beta-adrenergic system in human endothelial cells. Biochem. Biophys. Res. Commun. 222, 753–758

    Article  CAS  PubMed  Google Scholar 

  49. Ridley M (1993) Evolution. Blackwell Scientific, Cambridge, MA, USA p141–183

    Google Scholar 

  50. Rosser BWC, Hochachka PW (1994) Metabolic capacity of muscle fibers from high-altitude natives. Europ. J. Appl. Physiol., 67: 513–517

    Google Scholar 

  51. Rumsey WL Abbot B, Bertelsen D, Mallamaci M, Hagan K, Nelson D, Erecinska M (1999) Adaptation to hypoxia alters energy metabolism in rat heart. Amer. J. Physiol., in press

    Google Scholar 

  52. Saltin B, Kim CK, Terrados N, Larsen H, Svedenhag J, Rolf CJ (1995) Morphology, enzyme activities, and buffer capacity in leg muscles of Kenyan and Scandinavian runners Scand. J. Med. Sci. Sports 5, 222–230

    CAS  PubMed  Google Scholar 

  53. Saltin B, Larsen H, Torrados N, Bangsbo J, Bak T, Kim CK, Svedenhag J, Rolf CJ (1995) Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand. J. Med. Sci. Sports 5, 209–221

    CAS  PubMed  Google Scholar 

  54. Samaja M, Mariani C, Prestini A, Cerretelli P (1997) Acid-base balance and 02 transport at high altitude. Acta Physiol. Scand. 159, 249–256

    Article  CAS  PubMed  Google Scholar 

  55. Strohl KP, Beall CM (1997) Ventilatory response to experimental hypoxia in adult male and female natives of the Tibetan and Andean pleateaus. In: Houston C. (ed) Women at Altitude. Queen City Printers, Burlington, VT pp 154–165

    Google Scholar 

  56. Terrados N (1992) Altitude training and muscular metabolism. Intl. J. Sports Med. 13, S206–209

    Google Scholar 

  57. Wang GL, Jian BH, Rue EA, Semenza G.L (1995) Hypoxia inducible factor 1 is a basic-helix-loop-helix PAS heterodimer regulated by cellular oxygen tension. Proc. Natl. Acad. Sci. USA 92, 5510–5514

    CAS  PubMed  Google Scholar 

  58. Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: a tale of two channels. FASEB J. 9, 183–189

    CAS  PubMed  Google Scholar 

  59. Wenger, RH, Gassman M (1997) Oxygen(es) and the hypoxia inducible factor 1. Biol. Chem. 378, 609–616

    CAS  PubMed  Google Scholar 

  60. Winslow RM, C Mongr C (1987) Hypoxia, Polycythemia, and Chronic Mountain Sickness. Johns Hopkins Univ. Press, Baltimore, pp 1–255

    Google Scholar 

  61. Zamudio S, Droma T, Norkyel KY, Acharya G, Zamudio JA, Niermeyer SN, Moore LG (1993) Protection from intrauterine growth retardation in Tibetans at high altitude. Amer. J. Physical Anthropol. 91, 215–224 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hochachka, P.W., Carlos Monge, C. (2002). Evolution of Human Hypoxia Tolerance Physiology. In: Lahiri, S., Prabhakar, N.R., Forster, R.E. (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, vol 475. Springer, Boston, MA. https://doi.org/10.1007/0-306-46825-5_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46825-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46367-9

  • Online ISBN: 978-0-306-46825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics