Skip to main content

Chairman’s Summary: Mechanisms of Oxygen Homeostasis, Circa 1999

  • Chapter
Book cover Oxygen Sensing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 475))

Abstract

Oxygen sensing is a fundamental physiologic requirement of all living organisms and all cells within the human body. This paper presents a brief summary of recent investigations into the molecular mechanisms underlying oxygen sensing and adaptive responses to hypoxia, with particular reference to other papers in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. Mitochondria! reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95;11715–11720, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Clementi, E., Brown, G.C., Foxwell, N., and Moncada, S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc. Natl. Acad. Sci. USA 96;1559–1562, 1999.

    CAS  PubMed  Google Scholar 

  • Cutz, E., and Jackson, A. Neuroepithelial bodies as airway oxygen sensors. Respir. Physiol. 115:201–214, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Giulivi, C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem. J. 332:673–679, 1998.

    CAS  PubMed  Google Scholar 

  • Gleadle, J.M., Ebert, B.L., and Ratcliffe, P.J. Diphenylene iodonium inhibits the induction of erythropoietin and other mammalian genes by hypoxia: implications for the mechanism of oxygen sensing. Eur. J. Biochem. 234:92–99, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M.A., Dunning, S.P., and Bunn, H.F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415, 1988.

    CAS  PubMed  Google Scholar 

  • Iwai, K., Drake, S.K., Wehr, N.B., Weissman, A.M., LaVaute, T., Minato, N., Klausner, R.D., Levine, R.L., and Rouault, T.A. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. USA 95:4924–4928, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, R.A. Early life thrived despite earthly travails. Science 284:2111–2113, 1999.

    CAS  PubMed  Google Scholar 

  • Lopez-Barneo, J., Pardal, R., Montoro, R.J., Smani, T., Garcia-Hirschfeld, J., and Urena, J. and Urena, J. K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir. Physiol. 115:215–227, 1999.

    CAS  PubMed  Google Scholar 

  • Ma, E., Xu, T., and Haddad, G.G. Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster. Mol. Brain Res. 63:217–224, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Salceda, S., and Caro, J. Hypoxia-inducible factor la is a non-heme iron protein: implications for oxygen sensing. J. Biol. Chem. 273:18019–18022, 1998. Correction: J. Biol. Chem. 274:1180, 1999.

    PubMed  Google Scholar 

  • Semenza, G.L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Devel. Biol., in press, 1999.

    Google Scholar 

  • Taylor, B.L., and Zhulin, I.B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479–506, 1999.

    CAS  PubMed  Google Scholar 

  • Wingrove, J.A., and O’Farrell, P.H. Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98:105–114, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Wood, S.M., Wiesener, M.S., Yeates, K.M., Okada, N., Pugh, C.W., Maxwell, P.H., and Ratcliffe, P.J. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-la subunit (HIF-1a): characterization of HIF-1a-dependent and independent hypoxia-inducible gene expression. J. Biol. Chem. 273:8360–8368, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Youngson, C., Nurse, C., Yeger, H., and Cutz, E. Oxygen sensing in airway chemoreceptors. Nature 365:153–155, 1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Semenza, G.L. (2002). Chairman’s Summary: Mechanisms of Oxygen Homeostasis, Circa 1999. In: Lahiri, S., Prabhakar, N.R., Forster, R.E. (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, vol 475. Springer, Boston, MA. https://doi.org/10.1007/0-306-46825-5_29

Download citation

  • DOI: https://doi.org/10.1007/0-306-46825-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46367-9

  • Online ISBN: 978-0-306-46825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics