Membrane Fusion Events during Nuclear Envelope Assembly

  • Philippe Collas
  • Dominic Poccia
Part of the Subcellular Biochemistry book series (SCBI, volume 34)


Nuclear Envelope Nuclear Membrane Sperm Nucleus Outer Nuclear Membrane Membrane Fusion Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, U., Jacobs, R., Peters, J. M., Watson, N., Farquhar, M. G., and Malhotra, V., 1995a, The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events, Cell 82:895–904.Google Scholar
  2. Acharya, U., and Malhotra, V., 1995b, Reconstitution of Golgi stacks from vesiculated Golgi membranes in permeabilized cells, Cold Spring Harb. Symp. Quant. Biol. 60:559–66 559–566.Google Scholar
  3. Aebi, U., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323:560–564.Google Scholar
  4. Ashery-Padant, R., Weiss, A. M., Feinstein, N., and Gruenbaum, Y., 1997, Distinct regions specify the targeting of otefin to the nucleoplasmic side of the nuclear envelope, J. Biol. Chem. 272:2493–2499.Google Scholar
  5. Bailer, S. M., Eppenberger, H. M., Griffiths, G., and Nigg, E. A., 1991, Characterization of a 54-kD protein of the inner nuclear membrane: evidence for cell cycle-dependent interaction with the nuclear lamina, J. Cell Biol. 114:389–400.Google Scholar
  6. Beh, C. T., Brizzio, V., and Rose, M. D., 1997, KARS encodes a novel pheromone-inducible protein required for homotypic nuclear fusion, J. Cell Biol. 139:1063–1076.Google Scholar
  7. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.Google Scholar
  8. Berrios, M., and Avilion, A. A., 1990, Nuclear formation in a Drosophila cell-free system, Exp. Cell Res. 191:64–70.Google Scholar
  9. Boman, A. L., Delannoy, M., and Wilson, K., 1992, GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro, J. Cell Biol. 116:281–294.Google Scholar
  10. Boman, A. L., Taylor, T. C., Berger, S. J., Melancon, P., and Wilson, K. L., 1996, Purification and mass spectrometric analysis of ADP-ribosylation factor proteins from Xenopus egg cytosol, Biochemistry 35:8244–8251.Google Scholar
  11. Boman, A. L., Taylor, T. C., Melancon, P., and Wilson, K. L., 1992, A role for ADP-ribosylation factor in nuclear vesicle dynamics, Nature 358:512–514.Google Scholar
  12. Buendia, B., and Courvalin, J.-C., 1997, Domain-specific disassembly and reassembly of nuclear membranes during mitosis, Exp. Cell Res. 230:133–144.Google Scholar
  13. Burke, B., 1990, On the cell-free association of lamins A and C with metaphase chromosomes, Exp. Cell Res. 186:169–176.Google Scholar
  14. Burke, B., and Gerace, L., 1986, A cell-free system to study reassembly of the nuclear envelope at the end of mitosis, Cell 44:639–652.Google Scholar
  15. Cameron, L. A,, and Poccia, D. L., 1994, in vitro development of the sea urchin male pronucleus, Dev. Biol. 162:568–578.Google Scholar
  16. Chaudhary, N., and Courvalin, J.-C., 1993, Stepwise reassembly of the nuclear envelope at the end of mitosis, J. Cell Biol. 122:295–306.Google Scholar
  17. Collas, P., 1999, Cytoplasmic control of nuclear assembly, Reprod. Fertil. Devel.Google Scholar
  18. Collas, P., Courvalin, J.-C., and Poccia, D. L., 1996, Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein, J. Cell Biol. 135:1715–1725.Google Scholar
  19. Collas, P., Pinto-Correia, C., and Poccia, D. L. 1995a, Lamin dynamics during sea urchin male pronuclear formation in vitro, Exp. Cell Res. 219:687–498.Google Scholar
  20. Collas, P., and Poccia, D. L., 1995b, Formation of the sea urchin male pronucleus in vitro: membrane-independent chromatin decondensation and nuclear envelope-dependent nuclear swelling, Mol. Reprod. Devel. 42:106–113.Google Scholar
  21. Collas, P., and Poccia, D. L., 1995c, Lipophilic structures of sperm nuclei target membrane vesicle binding and are incorporated into the nuclear envelope, Dev. Biol. 169:123–135.Google Scholar
  22. Collas, P., and Poccia, D. L., 1996a, Conserved binding recognition elements of sperm chromatin, sperm lipophilic structures and nuclear envelope precursor vesicles, Eur. J. Cell Biol. 71:22–32.Google Scholar
  23. Collas, P., and Poccia, D. L., 1996b, Distinct egg membrane vesicles differing in binding and fusion properties contribute to sea urchin male pronuclear envelopes formed in vitro, J. Cell Sci. 109:1275–1283.Google Scholar
  24. Collas, P., and Poccia, D. L., 1998, Methods for studying in vitro assembly of male pronuclei using oocyte extracts from marine invertebrates: sea urchins and surf clams, Meth. Cell Biol. 53:417–452.Google Scholar
  25. Courvalin, J.-C., Segi, N., Blobel, G., and Woman, H. J., 1992, The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase, J. Biol. Chem. 267:19035–19038.Google Scholar
  26. Cox, L. S., and Hutchison, C. J. Nuclear envelope assembly and disassembly. In: Sucellular Biochemistry: Membrane Bioenergetics, edited by (A. H. Maddy and J. R. Harris, ed.) New York: Plenum Press, 1994, pp. 263–325.Google Scholar
  27. Dingwall, C., and Laskey, R., 1992, The nuclear membrane, Science 258:942–947.Google Scholar
  28. Divecha, N., Banfic, H., and Irvine, R. F., 1993, Inositides and the nucleus and inositides in the nucleus, Cell 74:405–407.Google Scholar
  29. Favreau, C., Worman, H. J., Wozniak, R. W., Frappier, T., and Courvalin, J.-C., 1996, Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein gp210, Biochemistry 35:8035–8044.Google Scholar
  30. Fields, A. P., and Thompson, L. The regulation of mitotic nuclear envelope breakdown: a role for multiple kinases, in: Progress in cell cycle research, edited by (L. Meijer, S. Guidet, and H. Y. Tung, eds.) New York, NY Plenum Press, 1995, p. 271–286.Google Scholar
  31. Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequencing of nuclear lamins A and C reveals primary and secondary structual homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83:6450–6454.Google Scholar
  32. Foisner, R., and Gerace, L., 1993, Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation, Cell 73:1267–1279.Google Scholar
  33. Furukawa, K., Fritze, C. E., and Gerace, L., 1998, The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but it distinct from its chromatin interaction domain, J. Biol. Chem. 273:4213–4219.Google Scholar
  34. Furukawa, K., Pantù, N., Aebi, U., and Gerace, L.,1995, Cloning of a cDNA for lamina-associated polypeptide 2 (LAP2) and identification of regions that specify targeting to the nuclear envelope, EMBO J. 14:1626–1636.Google Scholar
  35. Gant, T. M., and Wilson, K. L., 1997, ARF is not required for nuclear vesicle fusion or mitotic membrane disassembly in vitro: evidence for a non-ARF GTPase in fusion, Eur. J.Cell Biol. 74:10–19.Google Scholar
  36. Gerace, L., and Foisner, R., 1994, Integral membrane proteins and dynamic organization of the nuclear envelope, Trends Cell Biol. 4:127–131.Google Scholar
  37. Gerace, L., Ottaviano, Y., and Kondor-Koch, C., 1982, Identification of a major polypeptide of the nuclear pore complex, J. Cell Biol. 95:826–837.Google Scholar
  38. Gerasimenko, O. V., Gerasimenko, J. V., Tepekin, A. V., and Petersen, O. H., 1995, ATP-dependent accumulation and inositol trisphosphate-or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope, Cell 80:439–444.Google Scholar
  39. Glass, J. R., and Gerace, L., 1990, Lamins A and C bind and assemble at the surface of mitotic chromosomes, J. Cell Biol. 111:1047–1057.Google Scholar
  40. Goldberg, M. W., and Allen, T. D., 1995, Structural and functional organization of the nuclear envelope, Curr. Opin. Cell Biol. 7:301–309.Google Scholar
  41. Goldberg, M. W., Wiese, C., Allen, T. D., and Wilson, K. L., 1997, Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly, J. Cell Sci. 110:409–420.Google Scholar
  42. Greber, U. F., and Gerace, L., 1995, Depletion of calcium from the lumen of the endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus, J. Cell Biol. 128:5–14.Google Scholar
  43. Götte, M., and Fischer von Mollard, G., 1998, A new beat for the SNARE drum, Trends Cell Biol. 8:215–218.Google Scholar
  44. Hallberg, E., Wozniak, R. W., and Blobel, G., 1993, An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region, J. Cell Biol. 122:513–521.Google Scholar
  45. Harris, C. A., Andryuk, P. J., Cline, S., et al., 1994, Three distinct human thymopoietins are derived from alternatively spliced mRNAs, Proc. Natl. Acad. Sci.USA 91:6283–6287.Google Scholar
  46. Humbert, J. P., Matter, N., Artault, J. C., Koppler, P., and Malviya, A. N., 1996, Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes [published erratum appears in J Biol Chem 1996 Mar 1; 271(9):5287], J. Biol. Chem. 271:478–485.Google Scholar
  47. Kahn, R. A,, 1991, Fluoride is not an activator of the smaller (20–25-kDa) GTP-binding proteins, J. Biol. Chem. 266:15595–15597.Google Scholar
  48. Kurihara, L. J., Beh, C. T., Latterich, M., Schekman, R., and Rose, M., 1994, Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway, J. Cell Biol. 126:911–923.Google Scholar
  49. Laskey, R., Görlich, D., Madine, M. A., Makkerh, J. P. S., and Romanowski, P., 1996, Regulatory roles of the nuclear envelope, Exp. Cell Res. 229:204–211.Google Scholar
  50. Latterich, M., Fröhlich, K.-U., and Schekman, R., 1995, Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes, Cell 82:885–893.Google Scholar
  51. Latterich, M., and Schekman, R., 1994, The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion, Cell 78:237–98.Google Scholar
  52. Lavoie, C., Lanoix, J., Kan, F. W., and Paiement, J., 1996, Cell-free assembly of rough and smooth endoplasmic reticulum, J. Cell Sci. 109:1415–1425.Google Scholar
  53. Lemaitre, J.-M., Géraud, G., and Méchali, M., 1998, Dynamics of the genome during early Xenopus laevis development: karyomeres as independent units of replication, J. Cell Biol. 142:1159–1166.Google Scholar
  54. Lenhard, J. M., Kahn, R. A., and Stahl, P. D., 1992, Evidence for ADP-ribosylation factor (ARF) as a regulator of in vitro endosome-endosome fusion, J. Biol. Chem. 267:13047–13052.Google Scholar
  55. Lippincott-Schwartz, J., Donaldson, J. G., Schweitzer, A,, et al. 1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway, Cell 69:821–836.Google Scholar
  56. Lohka, M. J., and Masui, Y., 1983, Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components, Science 220:719–721.Google Scholar
  57. Longo, F. J., and Anderson, E., 1968, The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata, J. Cell Biol. 39:339–368.Google Scholar
  58. Longo, F. J., Matthews, J., and Palazzo, R. E., 1994, Sperm nuclear transformations in cytoplasmic extracts from surf clam (Spisula solidissima) oocytes, Dev. Biol. 162:254–258.Google Scholar
  59. Lourim, D., and Krohne, G., 1993, Membrane-associated lamins in Xenopus egg extracts: identification of two vesicle populations, J. Cell Biol. 123:501–512.Google Scholar
  60. Lourim, D., and Krohne, G., 1994, Lamin-dependent nuclear envelope reassembly following mitosis: an argument, Trends Cell Biol. 4:314–318.Google Scholar
  61. Love, H. D., Lin, C.-C., Short, C. S., and Ostermann, J., 1998, Isolation of functional Golgiderived vesicles with a possible role in retrograde transport, J. Cell Biol. 140:541–551.Google Scholar
  62. Macaulay, C., and Forbes, D. J., 1996, Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTPgS, and BAPTA, J. Cell Biol. 132:5–20.Google Scholar
  63. Malviya, A. N., and Rogue, P. J., 1998, “Tell me where is calcium bred”: clarifying the roles of nuclear calcium, Cell 92:17–23.Google Scholar
  64. Marshall, I. C. B., Gant, T. M., and Wilson, K. L., 1997a, Ionophore-releasable lumenal Ca2+ stores are not required for nuclear envelope assembly or nuclear protein import in Xenopus egg extracts, Cell Calcium 21:151–161.Google Scholar
  65. Marshall, I. C. B., and Wilson, K. L., 1997b, Nuclear envelope assembly after mitosis, Trends Cell Biol. 7:69–74.Google Scholar
  66. Martin, L., Crimaudo, C., and Gerace, L., 1995, cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), and integral protein of the inner nuclear membrane, J. Biol. Chem. 270:8822–8828.Google Scholar
  67. McKeon, F., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondeary structure between nuclear envelope and intermediate filament proteins, Nature 319:463–468.Google Scholar
  68. Meier, J., Campbell, K. H. S., Ford, C. C., Stick, R., and Hutchison, C. J., 1991, The role of lamin LIII in nuclear assembly and DNA replication, in cell-free extracts of Xenopus eggs, J. Cell Sci. 98:271–279.Google Scholar
  69. Meier, J., and Georgatos, S. D., 1994, vpe B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for unclear assembly, EMBO J.13:1888–1898.Google Scholar
  70. Nagano, A, Koga, R., Ogawa, M, Kurano, Y, Kawada, J, Okada, R, Hayashi, Y. K., Tsukahara, T., and Arahata, K., 1996, Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy, Nat. Genet. 12:254–259.Google Scholar
  71. Nakagawa, J., Kitten, G. T., and Nigg, E. A., 1989, A somatic cell-derived system for studying both early and late mitotic events in vitro, J. Cell Sci. 94:449–462.Google Scholar
  72. Newmeyer, D. D., Finlay, D. R., and Forbes, D. J., 1986, in vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins, J. Cell Biol. 103:2091–2102.Google Scholar
  73. Newport, J., and Dunphy, W., 1992, Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components, J. Cell Biol. 116:295–306.Google Scholar
  74. Newport, J. W., 1987, Nuclear reconstitution in vitro: stages of assembly around protein-free DNA, Cell 48:205–217.Google Scholar
  75. Newport, J. W., Wilson, K. L., and Dunphy, W. G., 1990, A lamin-independent pathway for nuclear envelope assembly, J. Cell Biol. 111:2247–2259.Google Scholar
  76. Ostermann, J., Orci, L., Tani, K., et al., 1993, Stepwise assembly of functionally active transport vesicles, Cell 75:1015–1025.Google Scholar
  77. Paiement, J., 1981, GTP-dependent fusion of outer nuclear membranes in vitro, Exp. Cell Res. 134:93–102.Google Scholar
  78. Paiement, J., 1984a, GTP stimulates fusion between homologous and heterologous nuclear membranes, Biochim. Biophys. Acta 777:274–282.Google Scholar
  79. Paiement, J., 1984b, Physiological concentations of GTP stimulate fusion of the endoplasmic reticulum and the nuclear envelope, Exp. Cell Res. 151:354–366.Google Scholar
  80. Paulin-Levasseur, M., Blake, D. L., Julien, M., and Rouleau, L., 1996, The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells, Chromosoma 104:367–379.Google Scholar
  81. Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L., and Clapham, D. E., 1996, Conformational states of nuclear pore complex induced by depletion of nuclear Ca2+ stores, Science 273:1875–1877.Google Scholar
  82. Peters, J.-M., Walsh, M. J., and Franke, W. W.,1990, An abundant and ubiquitous homooligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins, Sec18p and NSF, EMBO J. 9:1757–1767.Google Scholar
  83. Pfaller, R., and Newport, J. W., 1995, Assembly/disassembly of the nuclear envelope membrane. Characterization of the membrane-chromatin interaction using partially purified regulatory enzymes, J. Biol. Chem. 270:19066–19072.Google Scholar
  84. Pfaller, R., Smythe, C., and Newport, J. W., 1991, Assembly/disassembly of the nuclear envelope membrane: cell cycle-dependent binding of nuclear membrane vesicles to chromatin in vitro, Cell 65:209–217.Google Scholar
  85. Poccia, D. L., and Collas, P., 1996, Transforming sperm nuclei into male pronuclei in vivo and in vitro, Curr. Topics Dev. Biol. 34:25–88.Google Scholar
  86. Poccia, D. L., and Collas, P., 1997, Nuclear envelope dynamics during male pronuclear development, Devel. Growth. Differ. 39:541–550.Google Scholar
  87. Poccia, D. L., and Green, G. R., 1992, Packaging and unpackaging the sea urchin sperm genome, Trends Biochem. Sci. 17:223–227.Google Scholar
  88. Pyrpasopoulou, A., Meier, J., Maison, C., Simos, G., and Georgatos, S. D., 1996, The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope, EMBO J. 15:7108–7119.Google Scholar
  89. Rabouille, C., Kondo, H., Newman, R., Hui, N., Freemont, P., and Warren, G., 1998, Syntaxin 5 is a common component of the NSF-and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro, Cell 92:603–610.Google Scholar
  90. Rabouille, C., Levine, T. P., Peters, J. M., and Warren, G., 1995, An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments, Cell 82:905–914.Google Scholar
  91. Rapoport, T. A., Jungnickel, B., and Kutay, U., 1996, Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes, Annu. Rev. Biochem. 65:271–303.Google Scholar
  92. Rothman, J. E., and Sollner, T. H., 1997, Throttles and dampers: controlling the engine of membrane fusion, Science 276:1212–1213.Google Scholar
  93. Rothman, J. E., and Warren, G., 1994, Implications of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4:220–223.Google Scholar
  94. Santella, L., and Carafoli, E., 1997, Calcium signaling in the cell nucleus, FASEB J. 11:1091–1109.Google Scholar
  95. Schuler, E., Lin, F., and Worman, H. J., 1994, Characterization of the human gene encoding LBR,anintegralproteinofthenuclearenvelopeinnermembrane, J. Biol. Chem. 269:11312–11317.Google Scholar
  96. Sheehan, M. A., Mills, A. D., Sleeman, A. M., Laskey, R. A., and Blow, J. J., 1988, Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs, J. Cell Biol. 106:1–12.Google Scholar
  97. Shumaker, D. K., Vann, L. R., Goldberg, M. W., Allen, T. D., and Wilson, K. L., 1998, TPEN, a Zn2+/Fe2+chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro, Cell Calcium 23:151–164.Google Scholar
  98. Simos, G., and Georgatos, S. D., 1992, The inner nuclear membrane protein p58 associates in vivo with a p58 kinase and the nuclear lamins, EMBO J. 11:4027–4036.Google Scholar
  99. Sollner, T., 1995, SNAREs and targeted membrane fusion, FEBS Lett. 369:80–83.Google Scholar
  100. Spiro, D. J., Taylor, T. C., Melancon, P., and Wessling-Resnick, M., 1995, Cytosolic ADP-ribosylation factors are not required for endosome-endosome fusion but are necessary for GTPgammaS inhibition of fusion, J. Biol. Chem. 270:13693–13697.Google Scholar
  101. Stehno-Bittel, L., Perez-Terzic, C., and Clapham, D. E., 1995, Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store, Science 270:1835–1838.Google Scholar
  102. Sullivan, K. M., Lin, D. D., Agnew, W., and Wilson, K. L., 1995, Inhibition of nuclear vesicle fusion by antibodies that block activation of inositol 1,4,5-trisphosphate receptors, Proc. Natl. Acad. Sci. USA 92:8611–8615.Google Scholar
  103. Sullivan, K. M., and Wilson, K. L., 1994, A new role for IP3 receptors: Ca2+ release during nuclear vesicle fusion, Cell Calcium 16:314–321.Google Scholar
  104. Sullivan, K. M. C., Busa, W. B., and Wilson, K. L., 1993, Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function, Cell 73:1411–1422.Google Scholar
  105. Ulitzur, N., and Gruenbaum, Y., 1989, Nuclear envelope assembly around sperm chromatin in cell-free preparations from Drosophila embryos, FEBS Lett. 259:113–116.Google Scholar
  106. Ulitzur, N., Harel, A., Feinstein, N., and Gruenbaum, Y., 1992, Lamin activity is essential for nuclear envelope assembly in a Drosophila embryo cell-free extract, J. Cell Biol. 119:17–25.Google Scholar
  107. Ulitzur, N., Harel, A., Goldberg, M., Feinstein, N., and Gruenbaum, Y., 1997, Nuclear membrane vesicle targeting to chromatin in a Drosophila cell-free system, Mol. Biol. Cell 8:1439–1448.Google Scholar
  108. Vigers, G. P. A., and Lohka, M. J., 1991, A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs, J. Cell Biol. 112:545–556.Google Scholar
  109. Vigers, G. P. A,, and Lohka, M. J., 1992, Regulation of nuclear envelope precursor functions during cell division, J. Cell Sci. 102:273–284.Google Scholar
  110. Weber, T., Zemelman, B. V., McNew, J. A., et al., 1998, SNAREpins: minimal machinery for membrane fusion, Cell 92:759–772.Google Scholar
  111. Wiese, C., Goldberg, M., Allen, T. D., and Wilson, K. L., 1997, Nuclear envelope assembly in Xenopus extracts visualized by scanning EM reveals a transport-dependent“envelope smoothing” event, J. Cell Sci. 110:1489–1502.Google Scholar
  112. Wiese, C., and Wilson, K., 1993, Nuclear membrane dynamics, Curr Opin. Cell Biol. 5:387–394.Google Scholar
  113. Wilson, K. L., and Newport, J. W., 1988, A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro, J. Cell Biol. 107:57–68.Google Scholar
  114. Worman, H. J., Evans, C., and Blobel, G., 1990, The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains, J.Cell Biol. 11:1153–1542.Google Scholar
  115. Worman, H. J., Yuan, J., Blobel, G., and Georatos, S. D., 1988,A lamin B receptor in the nuclear envelope, Proc. Natl. Acad. Sci. USA 85:8531–8534.Google Scholar
  116. Ye, Q., and Worman, H. J., 1994, Primary structure analysis and lamin B and DNA binding of human LBR, and integral protein of the nuclear envelope inner membrane,J. Biol. Chem. 269:11306–11311.Google Scholar
  117. Ye, Q., and Worman, H. J., 1996, Interaction between and integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1, J. Biol. Chem. 271:14653–14656.Google Scholar
  118. Zatsepina, O. V., Polyakov, V. Y., and Chentsov, Y. S., 1977, Some structural aspects of the fate of the nuclear envelope during mitosis, Eur. J. Cell Biol. 16:130–144.Google Scholar
  119. Zatsepina, O. V., Polyakov, V. Y., and Chentsov, Y. S., 1982, Nuclear envelope formation around metaphase chromosomes: chromosome decondensation and nuclear envelope reconstitution during mitosis, Eur J. Cell Biol. 26:277–283.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Philippe Collas
    • 1
  • Dominic Poccia
    • 2
  1. 1.Institute of Medical BiochemistryUniversity of OlsoOsloNorway
  2. 2.Department of BiologyAmherst CollegeAmherstUSA

Personalised recommendations