The Full Complement of Yeast Ypt/Rab-GTPases and Their Involvement in Exo- and Endocytic Trafficking

  • Martin Götte
  • Thomas Lazar
  • Jin-San Yoo
  • Dietrich Scheglmann
  • Dieter Gallwitz
Part of the Subcellular Biochemistry book series (SCBI, volume 34)

Abbreviations Used in This Manuscript

aka also known as ALP alkaline phosphatase cAMP cyclic adenosine monophosphate COP I/II coatamer protein complexes I/II ER endoplasmic reticulum GAP GTPase activating protein GDI guanine-nucleotide dissociation inhibitor GDP guanosine diphosphate GEF guanine-nucleotide exchange factor GGT II geranylgeranyl transferase II GTP guanosine triphosphate NSF N-ethyl-maleimide sensitive fusion protein PrA proteinase A SNAP soluble NSF attachment protein SNARE SNAP receptor TGN trans-Golgi network VAM vacuolar aberrant morphology mutant VPS vacuolar protein sorting mutant vs. versus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalto, M. K., Ronne, H., and Keränen, S., 1993, Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport, EMBO J. 12: 4095–4104.Google Scholar
  2. Abeliovich, H., Grote, E., Novick, P., and Ferro-Novick, S., 1998, Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structures, J. Biol. Chem 273: 11719–11727.Google Scholar
  3. Araki, S., Kikuchi, A., Hata, Y., Isomura, M., and Takai, Y., 1990, Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor, J. Biol. Chem. 265:13007–13015.Google Scholar
  4. Armstrong, J., Craighead, M. W., Watson, R., Ponnambalam, S., and Bowden, S., 1993, Schizosaccharomyces pombe ypt5: a homologue of the rab5 endosome fusion regulator, Mol. Biol. Cell 4:583–592.Google Scholar
  5. Armstrong, J., Pidoux, A., Bowden, S., Craighead, M., Bone, N., and Robinson, E., 1994, The ypt proteins of Schizosaccharomyces pornbe, Biochem. Soc. Trans. 22:460–463.Google Scholar
  6. Bacon, R. A., Salminen, A., Ruohola, H., Novick, P., and Ferro-Novick, S., 1989, The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants, J. Cell Biol. 109:1015–1022.Google Scholar
  7. Baker, D., Wuestehube, L., Schekman, R., Botstein, D., and Segev, N., 1990, GTP-binding Ypt1 protein and Ca2+ function independently in a cell-free protein transport reaction, Proc. Natl. Acad. Sci. USA. 87:355–359.Google Scholar
  8. Becherer, K. A., Rieder, S. E., Emr, S. D., and Jones, E. W., 1996, Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast, Mol. Biol. Cell 7:579–594.Google Scholar
  9. Becker, J., Tan, T. J., Trepte, H.-H., and Gallwitz, D., 1991, Mutational analysis of the putative effector domain of the GTP-binding Ypt1 protein in yeast suggests specific regulation by a novel GAP activity, EMBO J. 10:785–792.Google Scholar
  10. Bednarek, S. Y., Orci, L., and Schekman, R., 1996, Traffic COPs and the formation of vesicle coats, Trends Cell Biol. 6:468–473.Google Scholar
  11. Bednarek, S. Y., Reynolds, T. L., Schroeder, M., Grabowski, R., Hengst, L., Gallwitz, D., and Raikhel, N. V. A., 1994, small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant, Plant Physiol. 104:591–596.Google Scholar
  12. Benito-Moreno, R. M., Miaczynska, M., Bauer, B. E., Schweyen, R. J., and Ragnini, A,, 1994, Mrs6p, the yeast homologue of themammalian choroideraemia protein: immunological evidence for its function as the Ypt1p Rab escort protein, Curr. Genet. 27:23–25.Google Scholar
  13. Benli, M., Döring, F., Robinson, D. G., Yang, X., and Gallwitz, D., 1996, Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast, EMBO J. 15:6460–6475.Google Scholar
  14. Bennett, M. K., and Scheller, R. H., 1993, The molecular machinery for secretion is conserved from yeast to neurons, Proc. Natl. Acad. Sci. USA. 90:2559–2563.Google Scholar
  15. Beranger, F., Paterson, H., Powers, S., de Gunzburg, J., and Hancock, J., 1994, The effector domain of Rab6, plus a highly hydrophobic C terminus, is required for Golgi apparatus localization, Mol. Cell. Biol. 14:744–758.Google Scholar
  16. Bode, H. P., Dumschat, M., Garotti, S., and Fuhrmann, G. F., 1995, Iron sequestration by the yeast vacuole, Eur. J. Biochem. 228:337–342.Google Scholar
  17. Boguski, M. S., and McCormick, F., 1993, Proteins regulating Ras and its relatives, Nature 366:643–654.Google Scholar
  18. Bokoch, G. M., and Der, C. J., 1993, Emerging concepts in the Ras superfamily of GTP-binding proteins, FASEB J. 7:750–759.Google Scholar
  19. Bollag, G., and McCormick, F., 1991, Differential regulation of rasGAP and neurofibromatosis gene product activities, Nature 351:576–519.Google Scholar
  20. Bone, N., Miilar, J. B. A., Toda, T., and Armstrong, J., 1998, Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases, Current Biol. 8:135–144.Google Scholar
  21. Bourne, H. R., 1995, GTPases: a family of molecular switches and clocks, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 349:283–289.Google Scholar
  22. Bourne, H. R., Sanders, D. A., and McConnick, F., 1990, The GTPase superfamily: a conserved switch for diverse cell functions, Nature 348:125–132.Google Scholar
  23. Bowser, R., and Novick, P., 1991, Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle, J. Cell Biol. 112:1117–1131.Google Scholar
  24. Bowser, R., Muller, H., Govindan, B., and Novick, P., 1992, Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis, J. Cell Biol. 118:1041–1056.Google Scholar
  25. Brennwald, P., and Novick, P., 1993, Interactions of three domains distinguishing the Rasrelated GTP-binding proteins Ypt1 and Sec4, Nature 362:560–563.Google Scholar
  26. Brennwald, P., Kearns, B., Champion, K., Kerônen, S., Bankaitis, V., and Novick, P., 1994, Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis, Cell 79:245–258.Google Scholar
  27. Brondyk, W. H., McKiernan, C. J., Fortner, K. A., Stabila, P., Holz, R. W., and Macara I. G., 1995, Interaction cloning of Rabin3, a novel protein that associates with the Ras-like GTPase Rab3A, Mol. Cell. Biol. 15:1137–1143.Google Scholar
  28. Buczynski, G., Bush, J., Zhang, L., Rodriguez-Paris, J., and Cardelli, J., 1997, Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum. Mol. Biol. Cell. 8:1343–1360.Google Scholar
  29. Bush, J., Franek, K., Daniel, J., Spiegelman, G. B., Weeks, G., and Cardelli, J., 1993, Cloning and characterization of five novel Dictyostelium discoideum Rab-relatedgenes. Gene 136: 55–60.Google Scholar
  30. Burd, C. G., Peterson, M., Cowles, C. R., and Emr, S. D., 1997, A novel Sec 18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast, Mol. Biol. Cell 8:1089–1104.Google Scholar
  31. Cao, X., Ballew, N., and Barlowe, C., 1998, Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins, EMBO J. 17:2156–2165.Google Scholar
  32. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M., 1990a, Localization of low molecular weight GTPbinding proteins to exocytic and endocytic compartments, Cell 62:317–329.Google Scholar
  33. Chavrier, P., Vingron, M., Sander, C., Simons, K., and Zerial, M., 1990b, Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line, Mol. Cell. Biol. 10:6578–6585.Google Scholar
  34. Chavrier, P., Gorvel, J. P., Stelzer, E., Simons, K., Gruenberg, J., and Zerial, M., 1991, Hypervariable C-terminal domain of Rab proteins acts as a targeting signal, Nature 353:769–772.Google Scholar
  35. Chen, W., Feng, Y., Chen, D., and Wandinger-Ness, A., 1998, Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor, Mol. Biol. CeII 9:3241–3257.Google Scholar
  36. Chen, Y., and Roxby, R., 1996, Characterization of a Phytophthora infestans gene involved in vesicle transport, Gene 181:89–94.Google Scholar
  37. Clement M., Fournier, H., de Repentigny, L., and Belhumeur, P., 1998, Isolation and characterization of the Candida albicans SEC4 gene, Yeast 14:675–480.Google Scholar
  38. Collins, R. N., Brennwald, P., Garrett, M., Lauring, A., and Novick, P., 1997, Interactions of nucleotide release factor Dss4p with Sec4p in the post-Golgi secretory pathway of yeast, J. Biol. Chem 272:18281–18289.Google Scholar
  39. Conibear, E., and Stevens, T. H., 1998, Multiple sorting pathways between the late golgi and the vacuole in yeast, Biochim. Biophys. Acta 1404:211–230.Google Scholar
  40. Cosson, P., and Letourneur, F., 1997, Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting, Curr. Opin. Cell Biol. 9:484–487.Google Scholar
  41. Cullen, P. J., Hsuan, J. J., Thong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F., 1995, Identification of a specific Ins(l,3,4,5)P4-binding protein as a member of the GAP1 family, Nature 376:527–530.Google Scholar
  42. Darsow, T., Rieder, S. E., and Emr, S. D., 1997, A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole, J. Cell Biol. 138:517–529.Google Scholar
  43. Darsow, T., Burd, C. G., and Emr, S. D., 1998, Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE, J. Cell Biol. 142:913–922.Google Scholar
  44. Dascher, C., Ossig, R., Gallwitz, D., and Schmitt, H. D., 1991, Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily, Mol. Cell. Biol. 11:872–885.Google Scholar
  45. DeRisi, J. L., Iyer, V. R., and Brown, P. O., 1997, Exploring the metabolic and genetic control of gene expression on a genomic scale, Science 278:680–686.Google Scholar
  46. Dirac-Svejstrup, A. B., Sumizawa, T., and Pfeffer, S. R., 1997, Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI, EMBO J. 16:465–472.Google Scholar
  47. Doignon, F., Biteau, N., Crouzet, M., and Aigle, M., 1993, The complete sequence of a 19,482 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae, Yeast 9:189–199.Google Scholar
  48. Du, L.-L., Collins, R. N., and Novick, P. J., 1998, Identification of a Sec4p GTPase-activating Protein (GAP) as a novel member of a Rab GAP family, J. Biol. Chem. 273:3253–3256.Google Scholar
  49. Ellis, E. M., and Reid, G. A., 1994, Assembly of Mitochondrial Membranes, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 151–182.Google Scholar
  50. Emr, S. D., and Malhotra, V., 1997, Membranes and sorting, Curr. Opin. Cell Biol. 9:475–476.Google Scholar
  51. Fabry, S., Jacobsen, A., Huber, H., Palme, K., and Schmitt, R., 1993, Structure, expression, and phylogentic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri., Curr. Genet. 3:229–240.Google Scholar
  52. Fabry, S., Steigerwald, R., Bernklau, C., Dietmaier, W., and Schmitt, R., 1995, Structure-function analysis of small G proteins from Volvox and Chlamydomonas by complementation of Saccharomyces cerevisiae YPT/SEC mutations, Mol. Gen. Genet. 247:265–274.Google Scholar
  53. Farquhar, M. G., and Palade, G. E., 1981, The Golgi apparatus (complex)-(1954–1981)—from artifact to center stage, J. Cell Biol. 91:77S–103S.Google Scholar
  54. Fasano, O., 1995a, Ras1p, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 172–174.Google Scholar
  55. Fasano, O., 1995b, Ras2p, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 175–181.Google Scholar
  56. Feng, Y., Press, B., and Wandinger-Ness, A., 1995, Rab 7: an important regulator of late endocytic membrane traffic, J. Cell Biol. 131:1435–1452.Google Scholar
  57. Ferro-Novick, S., and Jahn, R., 1994, Vesicle fusion from yeast to man, Nature 370:191–193.Google Scholar
  58. Field, H., and Field, M. C., 1997, Tandem duplication of Rab genes followed by sequence divergence and acquisition of distinct functions in Trypanosoma brucei, J. Bioi.Chem. 272: 10498–10505.Google Scholar
  59. Field, C., and Schekman, R., 1980, Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae, J. Cell Biol. 86:123–128.Google Scholar
  60. Finger, F. P., and Novick, P., 1997, Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae, Mol. Biol. Cell. 8:647–462.Google Scholar
  61. Finger, F. P., and Novick, P., 1998, Spatial regulation of exocytosis: lessons from yeast, J. Cell Biol. 142:609–412.Google Scholar
  62. Finger, F. P., Hughes, T. E., and Novick, P., 1998, Sec3p is a spatial landmark for polarized secretion in budding yeast, Cell 92:559–571.Google Scholar
  63. Fraga, D., and Hinrichsen, R. D., 1994, The identification of a complex of low-molecular weight GTP-binding proteins homologues from Paramecium tetraurelia by PCR cloning, Gene 147:345–148.Google Scholar
  64. Franzusoff, A., and Schekman, R., 1989, Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation, EMBO J. 8:2695–2702.Google Scholar
  65. Fujimura, K., Tanaka, K., Nakano, A., Toh-e, A. J., 1994, The Saccharomyces cerevisiae MS14 gene encodes the yeast counterpart of component Aof Rab geranylgeranyltransferase, J. Biol. Chem. 269:9205–9212.Google Scholar
  66. Fukui, K., Sasaki, T., Imazumi, K., Matsuura, Y., Nakanishi, H., and Takai, Y., 1997, Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. J. Biol. Chem. 272 8:4655–4658.Google Scholar
  67. Gallwitz, D., Donath, C., and Sander, C., 1983, A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product, Nature 306:704–707.Google Scholar
  68. Gallwitz, D., Becker, J., Benli, M., Hengst, L., Mosrin-Huaman, C., Mundt, M., Tan, T. J., Vollmer, P., and Wichmann, H., 1991, The YPT-branch of the Ras superfamily of GTP-binding proteins in yeast: Functional importance of the putative effector region, in: The superfamily of Ras-related genes, (D. A. Spandidos, ed.), Plenum Press, New York, pp. 121–128.Google Scholar
  69. Garrett, M. D., Self, A. J., van Oers, C., and Hall, A., 1989, Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins, J. Biol. Chem. 264:10–13.Google Scholar
  70. Garrett, M. D., Kabcenell, A. K., Zahner, J. E., Kaibuchi, K., Sasaki, T., Takai, Y., Cheney, C. M., and Novick, P. J., 1993, Interaction of Sec4 with GDI proteins from bovine brain, Drosophila melanogaster and Saccharomyces cerevisiae. Conservation of GDI membrane dissociation activity, FEBS Lett. 331:233–238.Google Scholar
  71. Garrett, M. D., Zahner, J. E., Cheney, C. M., and Novick, P. J., 1994, GD11 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway, EMBO J. 13:1718–1728.Google Scholar
  72. Garcia-Ranea, J. A., and Valencia, A., 1998, Distribution and functional diversification of the Ras superfamily in Saccharomyces cerevisiae, FEBS Lett. 434:219–225.Google Scholar
  73. Geyer, M., and Wittinghofer, A., 1997, GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins, Curr. Opin. Struct. Biol. 7:786–792.Google Scholar
  74. Götte, M., and Gallwitz, D., 1997, High expression of the yeast syntaxin-related Vam3 protein suppresses the protein transport defects of a pep12 null mutant, FEBS Lett. 411:48–52.Google Scholar
  75. Götte, M., and Fischer von Mollard, G., 1998, A new beat for the SNARE drum, Trends Cell. Biol. 8:215–218.Google Scholar
  76. Goud, B., Salminen, A., Walworth, N. C., and Novick, P. J., 1988, A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast, Cell 53:753–768.Google Scholar
  77. Grabowski, R., and Gallwitz, D., 1997, High-affinity binding of the yeast cis-Golgi t-SNARE, Sed5p, to wild-typeand mutant Sly1p, a modulator of transport vesicledocking, FEBS Lett. 411:169–172.Google Scholar
  78. Haas, A., Scheglmann, D., Lazar, T., Gallwitz, D., and Wickner, W., 1995, The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step in vacuole inheritance, EMBO J. 14:5258–5270.Google Scholar
  79. Haas, A., and Wickner, W., 1996, Homotypic vacuole fusion requires Sec17p (yeast a-SNAP) and Sec18p (yeast NSF), EMBO J. 15:3296–3305.Google Scholar
  80. Hall, A., 1998, Rho GTPases and the actin cytoskeleton, Science 279:09–514.Google Scholar
  81. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. E., 1997, Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy, Cell 90:523–535.Google Scholar
  82. Hamm-Alvarez, S. F., and Sheetz, M. P., 1998, Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney, Physiol. Rev. 78:1109–1129.Google Scholar
  83. Haubruck, H., Disela, C., Wagner, P., and Gallwitz, D., 1987, The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene, EMBO J. 6:4049–4053.Google Scholar
  84. Haubruck, H., Prange, R., Vorgias, C., and Gallwitz, D., 1989, The ras-related mouse Ypt1 protein can functionally replace the YPT1 gene product in yeast, EMBO J. 8:1427–1432.Google Scholar
  85. Haubruck, H., Engelke, U., Mertins, P., and Gallwitz, D., 1990, Structural and functional analysis of ypt2, an essential Ras-related gene in the fission yeast Schizosaccharomyces pombe encoding a Sec4 protein homologue, EMBO J. 9:1957–1962.Google Scholar
  86. Haucke, V., and Schatz, G., 1997, Import of proteins into mitochondria and chloroplasts, Trends Cell Biol. 7:103–106.Google Scholar
  87. Hay, J. C., and Scheller, R. H., 1997, SNARE’s and NSF in targeted membrane fusion, Curr. Opin. Cell Biol. 9:505–512.Google Scholar
  88. Hendriks, R. J.,, M., and Fuller, S. D., 1994, Compartments of the early secretory pathway, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 101–150.Google Scholar
  89. Hengst, L., Lehmeier, T., and Gallwitz, D., 1990, The ryh1 gene in the fission yeast Schizosaccharomyces pombe encoding a GTP-binding protein related to ras, rho and ypt: structure, expression and identification of its human homologue, EMBO J. 9:1949–1955.Google Scholar
  90. Hengst, L., Grabowski, R., and Gallwitz, D., 1995, Ypt6p, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 403–404.Google Scholar
  91. Hicke, L., Zanolari, B., Pypaert, M., Rohrer, J., and Riezman, H., 1997, Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/N-ethylmaleimide-sensitive fusion protein, Mol. Biol. Cell. 8:13–31.Google Scholar
  92. Hilgenfeld, R., 1995, Regulatory GTPases, Curr Opin. Struct. Biol. 5:810–817.Google Scholar
  93. Holthuis, J. C., Nichols, B. J., Dhruvakumar, S., and Pelham, H. R., 1998a, Two syntaxin homologues in the TGN/endosomal system of yeast, EMBO J. 17:113–126.Google Scholar
  94. Holthuis, J. C., Nichols, B. J., and Pelham, H. R., 1998b, The syntaxin Tlg1p mediates trafficking of chitin synthase III to polarized growth sites in yeast, Mol. Biol. Cell 9:3383–3397.Google Scholar
  95. Horazdovsky, B. F., De Wald, D. B., and Emr, S. D., 1995, Protein transport to the yeast vacuole, Curr. Opin. Cell Biol. 7:544–451.Google Scholar
  96. Horazdovsky, B.F., Busch, G. R., and Emr, S. D., 1994, VPS21 encodes a Rab5-like GTP-binding protein that is required for the sorting of yeast vacuolar proteins, EMBO J. 13:1297–1309.Google Scholar
  97. Horazdovsky, B. F., Cowles, C. R., Mustol, P., Holmes, M., and Emr, S. D., 1996, A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization, J. Biol. Chem. 271:33607–33615.Google Scholar
  98. Huang, P.-H., and Chiang, H.-L., 1997, Identification of novel vesicles in the cytosol to vacuole protein degradation pathway, J. Cell Biol. 136:803–810.Google Scholar
  99. Huber, L. A,, Pimplikar, S., Parton, R. G., Virta, H., Zerial, M., Simons, K., 1993, Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane, J. Cell Biol. l23:35–45.Google Scholar
  100. Huhse, B., and Kunau, W. H., 1995, Protein import into peroxisomes: an exception to the rule?, Cold Spring Harb. Symp.Quant. Biol. 60:651–562.Google Scholar
  101. Jaquemin-Faure, I., Thomas, D., Laporte, J., Cibert, C., and Surdin-Kerjan, Y., 1994, The vacuolar Compartment is required for sulfur amino acid homeostasis in S. cerevisiae. Mol. Gen. Genetics 244:519–529.Google Scholar
  102. Jedd, G., Richardson, C., Litt, R., and Segev, N., 1995, The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway, J. Cell Biol. 131:583–590.Google Scholar
  103. Jedd, G., Mulholland, J., and Segev, N., 1997, Two new Ypt GTPasa are required for exit from the yeast trans-Golgi compartment, J. Cell Biol. 137:563–580.Google Scholar
  104. Jena, B. P., Brennwald, M. D., Garrett, M. D., Novick, P., and Jamieson, J. D., 1992, Distinct and specific GAP activities in rat pancreas act on the yeast GTP-binding proteins Ypt1 and Sec4, FEBS Lett. 309:5–9.Google Scholar
  105. Jiang, Y., Rossi, G., and Ferro-Novick, S., 1993, Bet2p and Mad2p are components of a prenyl-transferase that adds geranylgeranyl onto Ypt1p and Sec4p, Nature 366:84–86.Google Scholar
  106. Jones, S., Litt, R. J., Richardson, C. J., and Segev, N., 1995, Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport, J. Cell Biol. 130:1051–1061.Google Scholar
  107. Jones, S., Richardson, C. J., Litt, R. J., and Segev, N., 1998, Identification of regulators for Ypt1 GTPase nucIeotide cycling, Mol. Biol. Cell 9:2819–2837.Google Scholar
  108. Kee, Y., Yoo, J.-S., Hazuka, C. D., Peterson, K. E., Hsu, S. C., and Scheller, R. H., 1997, Subunit structure of the mammalian exocyst complex, Proc. Natl. Acad. Sci. USA 94:14438–14443.Google Scholar
  109. Kim, W. Y., Cheong, N. E., Lee, D. C., Lee, K. O., Je, D. Y., Bahk, J. D., Cho, M. J., and Lee, S. Y., 1996, Isolation of an additional soybean cDNA encoding Ypt/Rab-related small GTP-binding protein and its functional comparison to Sypt using a yeast ypt1-1 mutant, Plant. Mol.Biol. 31:783–792.Google Scholar
  110. Kirchhausen, T., Bonifacino, J. S., and Riezman, H., 1997, Linking cargo to vesicle formation: receptor tail interactions with coat proteins, Curr. Opin. Cell Biol. 9:488–495.Google Scholar
  111. Kjeldgaard, M., Nyborg, J., and Clark, B. F., 1996, The GTP binding motif variations on a theme, FASEB J. 10:1347–1368.Google Scholar
  112. Klappa, P., Zimmermann, M., Dierks, T., and Zimmermann, R., 1993, Components and Mechanisms involved in transport of proteins into the endoplasmic reticulum, in: Subcellular Biochemistry, Volume 21 (N. Borgese and J. R. Hams, eds.), Plenum Press, New York, pp. 17–40.Google Scholar
  113. Kuehn, M. J., and Schekman, R., 1997, COPII and secretory cargo capture into transport vesicles, Curr. Opin. CellBiol. 9:477–483.Google Scholar
  114. Lai, M. H., Bard, M., and Kirsch, D. R., 1994, Identification of a gene encoding a new Ypt/Rab-like monomeric G-protein in Saccharomyces cerevisiae, Yeast 10:399–402.Google Scholar
  115. Lamarche, N., and Hall, A., 1994, GAPs for Rho-related GTPases, Trends Genet. 10:436–440Google Scholar
  116. Lazar, T., GŐtte, M., and Gallwitz, D., 1997, Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell?, Trends Biochem. Sci. 22:468–472.Google Scholar
  117. Lewis, M. J., Rayner, J. C., and Pelham, H. R, 1997, A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum, EMBO J. 16:3017–3024.Google Scholar
  118. Li, B., and Warner, J. R., 1996, Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis, J. Biol. Chem. 271:16813–16819.Google Scholar
  119. Li, B., and Warner, J. R., 1998, Genetic interaction between YPT6 and YPT1 in Saccharomyces cerevisiae, Yeast 14:915–922.Google Scholar
  120. Lian, J. P., Stone, S., Jiang, Y., Lyons, P., and Ferro-Novick, S., 1994, Ypt1p implicated in v-SNARE activation, Nature 372:698–701.Google Scholar
  121. Lippincott-Schwartz, J., Cole, N., and Presley, J,, 1998a, Unravelling Golgi membrane traffic with green fluorescent protein chimeras, Trends Cell Biol. 8:16–20.Google Scholar
  122. Lippincott-Schwartz, J., Cole, N., and Donaldson, J. G., 1998b, Building a secretory apparatus: role of ARF1/COPI in Golgi biogenesis and maintenance, Histochem. Cell Biol. 109:449–462.Google Scholar
  123. Lowe, M., Nakamura, N., and Warren, G., 1998, Golgi division and membrane traffic, Trends Cell Biol. 8:40–44.Google Scholar
  124. Lupashin, V. V., and Waters, M. G., 1997, t-SNARE activation through transient interaction with a Rab-like guanosine triphosphatase, Science 276:1255–1258.Google Scholar
  125. Macara, I. G., Lounsbury, K. M., Richards, S. A., McKiernan, C., and Bar-Sagi, D., 1996, The Ras superfamily of GTPases, FASEB J. 10:625–430.Google Scholar
  126. Maltese, W. A., Wilson, A. L., and Erdman, R. A., 1996, Prenylation-dependent interaction of Rab proteins with GDP dissociation inhibitors, Biochem. Soc. Trans. 24:703–708.Google Scholar
  127. Manser, E., Leung, T., Monfries, C., Teo, M., Hall, C., and Lim, L., 1992, Diversity and versatility of GTPase activating proteins for the p21rho subfamily of ras G proteins detected by a novel overlay assay, J. Biol. Chem. 267:16025–16028.Google Scholar
  128. Martinez, O., Schmidt, A., Salamero, J., Hoflack, B., Roa, M., and Goud, B., 1994, The small GTP-binding protein rab6 functions in intra-Golgi transport, J. Cell Biol. l27:1575–1588.Google Scholar
  129. Maurer, K. C., Urbanus, J. H., and Planta, R. J., 1995, Sequence analysis of a 30 kb DNA segment from yeast chromosome XIV carrying a ribosomal protein gene cluster, the genes encoding a plasma membrane protein and a subunit of replication factor C, and a novel putative serine/threonine protein kinase gene, Yeast 11:1303–1310.Google Scholar
  130. Mayer, A., Wickner, W., and Haas, A., 1996, Sec18p (NSF)-driven release of Sec17p (a-SNAP) can precede docking and fusion of yeast vacuoles, Cell 85:83–94.Google Scholar
  131. Mayer, A., and Wickner, W., 1997, Dockingofyeast vacuoles iscatalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF), J. Cell Biol. 136:307–317.Google Scholar
  132. Mayer, T., Toucho, N., and Elazar, Z., 1996, Transport between cis and medial Golgi cisternae requires the function of the Ras-related protein Rab6, J. Biol. Chem. 271:16097–16103.Google Scholar
  133. McCormick, F., Going for the GAP, 1998, Curr. Biol. 8:R673-474.Google Scholar
  134. Melchior, F., and Gerace, L., 1998, Two-way trafficking with Ran, Trends Cell Biol. 8:175–179.Google Scholar
  135. Mewes, H. W., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., and Zollner, A., 1997, Overview of the yeast genome, Nature 387(6632Suppl):7–65.Google Scholar
  136. Miaczynska, M., Lorenzetti, S., Bialek, U., Benito-Moreno, R. M., Schweyen, R. J., and Ragnini, A., 1997, The yeast Rab escort protein binds intracellular membranes in vivo and in vitro, J. Biol. Chem. 272:16972–16977.Google Scholar
  137. Miyake, S., and Yamamoto, M., 1990, Identification of ras-related, YPT family genes in Schizosaccharomyces pombe, EMBO J. 9:1417–1422.Google Scholar
  138. Molenaar, C.M., Prange, R., and Gallwitz, D.,1988, Acarboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity ofthe ras-relatedyeast YPT1 protein, EMBO J. 7:971–976.Google Scholar
  139. Mollat, P., Fournier, A,, Yang, C. Z., Alsat, E., Zhang, Y., Evain-Brion, D., Grassi, J., and Thang, M. N., 1994, Species specificity and organ, cellular and subcellular localization of the 100 kDa Ras GTPase activating protein, J. Cell Sci. 107:427–435.Google Scholar
  140. Moya, M., Roberts, D., and Novick, P., 1993, DSS4-1 is a dominant suppressor of sec4-8 that encodes a nucleotide exchange protein that aids Sec4p function, Nature 361:460–463.Google Scholar
  141. Nakamura, N., Hirata, A., Ohsumi, Y., and Wada, Y., 1997, Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes are involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae, J. Biol. Chem. 272:11344–11349.Google Scholar
  142. Narumiya, S., 1996, The small GTPase Rho: cellular functions and signal transduction, J. Biochem. (Tokyo) 120:215–228.Google Scholar
  143. Mulholland, J., Wesp, A., Riezman, H., and Botstein, D., 1997, Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretory vesicle, Mol. Biol. Cell. 8:1481–1499.Google Scholar
  144. Newman, A. P., and Ferro-Novick, S., 1987, Characterization of new mutants in theearly part of the yeast secretory pathway isolated by a [3H]mannose suicide selection, J. Cell Biol. 105:1587–1594.Google Scholar
  145. Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. T., and Haas, A., 1997, Homotypic vacuolar fusion mediated by t-and V-SNAREs, Nature 387:199–202.Google Scholar
  146. Nickel, W.,and Wieland, F. T., 1997, Biogenesis of COPI-coated transport vesicles, FEBS Lett. 413:395–400.Google Scholar
  147. Nuoffer, C., and Balch, W. E., 1994, GTPases-multifunctional molecular switches regulating vesicular traffic, Annu. Rev. Biochem. 63:949–990.Google Scholar
  148. Novick P., and Zerial, M., 1997, The diversity of Rab proteins in vesicle transport, Curr. Opin. Cell Biol. 9:496–504.Google Scholar
  149. Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21:205–215.Google Scholar
  150. Ossig, R., Dascher, C., Trepte, H.-H., Schmitt, H.D., and Gallwitz, D., 1991, The yeast SLY gene-products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport, Mol. Cell. Biol. 11:2980–2993.Google Scholar
  151. Ossig, R., Laufer, W., Schmitt, H.D., and Gallwitz, D., 1995, Functionality and specific membrane localization of transport GTPases carrying C-terminal membrane anchors of synaptobrevin-like proteins, EMBOJ. 14:3645–3653.Google Scholar
  152. Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.Google Scholar
  153. Park, S. H., and Weinberg, R. A., A putative effector of Ral has homology to Rho/Rac GTPase activating proteins, Oncogene 11:2349–2355.Google Scholar
  154. Parrini, M. C., Bernardi, A., and Parmeggiani, A., 1996, Determinants of Ras proteins specifying the sensitivity to yeast Ira2p and human p120-GAP. EMBO J. 15:1107–1111.Google Scholar
  155. Pelham, H. R., 1998, Getting through the Golgi complex, Trends Cell Biol. 8:45–49.Google Scholar
  156. Prescianotto-Baschong, C., and Riezman, H., 1998, Morphology of the yeast endocytic pathway, Mol. Biol. Cell 9:173–189.Google Scholar
  157. Quilliam, L. A., Khosravi-Far, R., Huff, S. Y., and Der, C. J., 1995, Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins, Bioessays 17:395–404.Google Scholar
  158. Rexach, M. F., and Schekman, R. W., 1991, Distinct biochemical requirements for the budding, targeting and fusion of ER-derived transport vesicles, J. Cell Biol. 114:219–230.Google Scholar
  159. Rey, I., Taylor-Hams, P., van Erp, H., and Hall, A., 1994, R-ras interacts with rasGAP, neurofibromin and c-raf but does not regulate cell growth or differentiation, Oncogene 9:685–492.Google Scholar
  160. Rieder, S. E., and Emr, S. D., 1997, A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole, Mol. Biol. Cell 8:2307–2327.Google Scholar
  161. Richardson, C. J., Jones, S., Litt, R. J., and Segev, N., 1998, GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport, Mol. Cell. Biol. 18:827–838.Google Scholar
  162. Ridley, A. J., Self, A. J., Kasmi, F., Paterson, H. F., Hall, A., Marshall, C. J., and Ellis, C., 1993, Rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo, EMBO J. l2:5151–5160.Google Scholar
  163. Robinson, C., 1994, The assembly of Chloroplast Membranes, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 183–195.Google Scholar
  164. Robinson, D. G., and Hinz, G., 1997, Vacuole biogenesis and protein transport to the plant vacuole: a comparison with the yeast vacuole and the mammalian lysosome, Protoplasma 19:71–25.Google Scholar
  165. Robinson, J. S., Klionsky, D. J., Banta, L. M., and Emr, S. D., 1988, Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8:4936–4948.Google Scholar
  166. Rossi, G., Salminen, A., Rice, L. M., BrÜnger, A. T., and Brennwald, P., 1997, Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C-terminus of the SNAP-25homolog, Sec9, J. Biol. Chem. 272: 16610–16617.Google Scholar
  167. Rossi, G., Jiang, Y., Newman, A. P., and Ferro-Novick, S., 1991, Dependence of YPT1 and SEC4 membrane attachment on BET2, Nature 351:158–161.Google Scholar
  168. Rothman, J. E., 1994, Mechanisms of intracellular protein transport, Nature 372:55–43.Google Scholar
  169. Rowling, P. J. E., and Freedman, R. B., 1993, Folding, assembly, and posttranslational modification of proteins within the lumen of the Endoplasmic Reticulum, in: Subcellular Biochemistry, Volume 21 (N. Borgeseand and J.R. Harris, eds.), Plenum Press, New York, pp. 41–80.Google Scholar
  170. Rubinfeld, B., Crosier, W. J., Albert, I., Conroy, L., Clark, R., McCormick, E, and Polakis, P., 1992, Localization of the rap1GAP catalytic domain and sites of phosphorylation by mutational analysis, Mol. Cell. Biol. 12:4634–4642.Google Scholar
  171. Rybin, V., Ullrich, O., Rubino, M., Alexandrov, K., Simon, I., Seabra, C., Goody, R., and Zerial, M., 1996, GTPase activity of Rab5 acts as a timer for endocytic membrane fusion, Nature 383:266–269.Google Scholar
  172. Sacher, M., Jiang, Y., Barrowman, J., Scarpa, A., Burston, J., Zhang, L., Schieltz, D., Yates, J. R., Abeliovich, H., and Ferro-Novick, S., 1998, TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17:2424–2303.Google Scholar
  173. Salminen, A., and Novick, P. J., 1987, A.ras-like protein is required for a post-Golgi event in yeast secretion, Cell 49:527–538.Google Scholar
  174. Sato, K., and Wickner, W., 1998, Functional reconstitution of Ypt7p GTPase and a purified vacuole SNARE complex, Science 281:700–702.Google Scholar
  175. Scheffzek, K., Ahmadian, M. R., and Wittinghofer, A., 1998, GTPase-activating proteins: helping hands to complement an active site, Trends Biochem. Sci. 23:257–262.Google Scholar
  176. Schimmöller, F., Simon, I., and Pfeffer, S. R., 1998, Rab GTPases, directors of vesicle docking, J. Biol. Chem. 273:22161–22164.Google Scholar
  177. Schmitt, H. D., Wagner, P., Pfaff, E., and Gallwitz, D., 1986, The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization, Cell 47:401–412.Google Scholar
  178. Schmitt, H. D., Puzicha, M., and Gallwitz, D., 1988, Study of a temperature-sensitive mutant of the Ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium, Cell 53:635–647.Google Scholar
  179. Scott, S. V., and Klionsky, D. J., 1997, Nonclassical protein sorting, Trends Cell Biol. 7:225–229.Google Scholar
  180. Segev, N., 1991, Mediation of the attachment or fusion step in vesicular transport by the GTP-binding Ypt1 protein, Science 252:1553–1556.Google Scholar
  181. Segev, N., and Botstein, D., 1987, The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response, Mol. Cell. Biol. 7:2367–2377.Google Scholar
  182. Segev, N., Mulholland, J., and Botstein, D., 1988, The yeast GTP-binding Ypt1 protein and a mammalian counterpart are associated with the secretion machinery, Cell 52:915–924.Google Scholar
  183. Séron, K., Tieaho, V., Prescianotto-Baschong, C., Aust, T., Blondel, M. O., Guillaud, P., Devil-liers, G., Rossanese, O. W., Glick, B. s., Riezman, H., Keranen, s., and Haguenauer-Tsapis, R., 1998, A yeast t-SNARE involved in endocytosis, Mol. Biol. Cell 9:2873–2889.Google Scholar
  184. Shirahama, K., Yazaki, Y., Sakano, K., Wada, Y., and Ohsumi, Y., 1996, Vacuolar function in the phosphate homestasis of the yeast S. cerevisiae. Plant and Cell Physiol. 37:1090–1093.Google Scholar
  185. Singer-Krüger, B., and Ferro-Novick, S., 1997, Use of a synthetic lethal screen to identify yeast mutants impaired in endocytosis, vacuolar protein sorting and the organization of the cytoskeleton. Eur. J. Cell Biol. 74:365–375.Google Scholar
  186. Singer-Küger, B., Frank, R., Crausaz, F., and Riezman, H., 1993, Partial purification and characterization of early and late endosomes from yeast. Identification of four novel proteins. J.Biol. Chem. 268:14376–14386.Google Scholar
  187. Singer-Krüger, B., Stenmark, H., Duesterhöft, A., Philippsen, P., Yoo, J.-S., Gallwitz, D., and Zerial, M., 1994, Role of three rab5 like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast, J. Cell Biol. 125:283–298.Google Scholar
  188. Singer-Krüger, B., Stenmark, H., and Zerial, M., 1995, Yeast Ypt51p and mammalian Rab5: Counterparts with similar function in the early endocytic pathway, J. Cell Sci. 108:3509–3521.Google Scholar
  189. Simon, I., Zerial, M., and Goody, R. S., 1996, Kinetics of interaction of Rab5 and Rab7 with nucleotides and Magnesium ions, J. Biol. Chem. 271:20470–20478.Google Scholar
  190. Søgaard, M., Tani, K., Ye, R. R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J. E., and Söllner, T., 1994, A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles, Cell 78:937–948.Google Scholar
  191. Soldati, T., Shapiro, A. D., Svejstrup, A. B. D., and Pfeffer, S. R., 1994, Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange, Nature 369:76–78.Google Scholar
  192. Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E., 1993, SNAP receptors implicat ed in vesicle targeting and fusion, Nature 362:318–324.Google Scholar
  193. Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R., Orci, L., 1998, Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes, Proc. Natl. Acad. Sci. USA 95:11199–11204.Google Scholar
  194. Sprang, S. R., and Coleman, D. E., 1998, Invasion of the nucleotide snatchers: structural insights into the mechanism of G protein GEFs, Cell 95:155–158.Google Scholar
  195. Springer, S., and Schekman, R., 1998, Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs, Science 281:698–700.Google Scholar
  196. Strom, M., and Gallwitz, D., 1994, Ypt proteins in yeast and their role in intracellular transport, in: GTPases in Biology Volume I (B. F. Dickey and L. Birnbaumer, eds.) Springer Verlag, Berlin, pp. 409–421.Google Scholar
  197. Strom, M., Vollmer, P., Tan, T. J., and Gallwitz, D., 1993, A yeast GTPase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 361:736–739.Google Scholar
  198. Strom, M., Vollmer, P., and Gallwitz, D., 1995, Gyp6p (Ypt6-GAP), in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 408–410.Google Scholar
  199. Tan, J., Vollmer, P., and Gallwitz, D., 1991, Identification and partial purification of GTPase-activating proteins from yeast and mammalian cells that preferentially act on Ypt1/Rab1 proteins, FEBS Lett. 291:322–326.Google Scholar
  200. Tanaka, K., Lin, B. K., Wood, D. R., and Tamanoi, F., 1991, ZRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein, Proc. Natl. Acad. Sci. USA 88:468–472.Google Scholar
  201. TerBush, D. R., and Novick, P., 1995, Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae, J. Cell Biol. 130:299–312.Google Scholar
  202. TerBush, D. R., Maurice, T., Roth, D., and Novick, P., 1996, The Exocyst is a multiprotein complex required for exocytosis in S. cerevisiae, EMBO J. 15:6483–6494.Google Scholar
  203. Thatcher, J. W., Shaw, J. M., and Dickinson, W. J., 1998, Marginal fitness contributions of nonessential genes in yeast, Proc. Natl. Acad. Sci. USA 95:253–257.Google Scholar
  204. Tsukada, M., and Gallwitz, D., 1996, Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p, J. Cell Sci. 109:2471–2481.Google Scholar
  205. Tsukada, M., Will, E., and Gallwitz, D., 1999, Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast, Mol. Biol. Cell 10: in press.Google Scholar
  206. Ueda, T., Anai, T., Tsukaya, H., Hirata, A., and Uchimiya, H., 1996, Characterization and subcellular localization of a small GTP-binding protein (Ara-4) from Arabidopsis: conditional expression under control of the promoter of the gene for heat-shock protein HSP81-1, Mol. Gen. Genet. 50:533–539.Google Scholar
  207. Ullrich, O., Horiuchi, H., Bucci, C., and Zerial, M., 1994, Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange, Nature 368:157–160.Google Scholar
  208. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M., and Parton, R. G., 1996, Rab11 regulates recycling through the pericentriolar recycling endosome, J. Cell Biol. 135:913–924.Google Scholar
  209. Ungermann, C., and Wickner, W., 1998, Vam7p, a vacuolar SNAP-25 homologue, is required for SNARE complex integrity and vacuole docking and fusion, EMBO J. 17:3269–3276.Google Scholar
  210. Ungermann, C., Nichols, B. J., Pelham, H. R. B., and Wickner, W., 1998, A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion, J. Cell Biol. 140:61–69.Google Scholar
  211. van den Hazel, H. B., Kielland-Brandt, M. C., and Winther, J. R., 1996, Biosynthesis and function of yeast vacuolar proteases, Yeast l2:1–16.Google Scholar
  212. van Veldhoven, P. P., and Mannaerts, G. P., 1994, Assembly of Peroxisomal Membranes, in: Subcellular Biochemistry, Volume 22 (A. H. Maddy and J. R. Harris, eds.), Plenum Press, New York, pp. 231–262.Google Scholar
  213. VanRheenen, S. M., Cao, X., Lupashin, V. V., Barlowe, C., and Waters, M. G., 1998, Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking, J. Cell Biol. 141:1107–1119.Google Scholar
  214. Vollmer, P., and Gallwitz, D., 1995, High expression cloning, purification, and assay of Ypt-GTPase-activating proteins. Meth. Enzymol. 257:118–128.Google Scholar
  215. Wada, Y., Ohsumi, Y., and Anraku, Y., 1992, Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants, J. Biol. Chem. 267:18665–18670.Google Scholar
  216. Wada, Y., Ohsumi, Y., Kawai, E., and Ohsumi, M., 1996, Mutational analysis of Vam4/Ypt7p function in the vacuolar biogenesis and morphogenesis in the yeast, Saccharomyces cerevisiae. Protoplasma 191:126–135.Google Scholar
  217. Walch-Solimena, C., Collins, R. N., and Novick, P. J., 1997, Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles, J. Cell Biol. 137:1495–1509.Google Scholar
  218. Waldherr, M., Ragnini, A., Schweyer, R. J., and Boguski, M. S., 1993, MRS6-yeast homologue of the choroideraemia gene. Nat. Genet. 3:193–194.Google Scholar
  219. Walworth, N. C., Goud, B., Kabcenell, A. K., and Novick, P. J., 1989, Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic, EMBO J. 8:1685–1693.Google Scholar
  220. Waterham, H. R., and Cregg, J. M., 1997, Peroxisome biogenesis, BioEssays 19:57–66.Google Scholar
  221. Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Söllner T. H., Rothman, J. E., 1998, SNAREpins: minimal machinery for membrane fusion, Cell 92:759–772.Google Scholar
  222. Wichmann, H., Hengst, L., and Gallwitz, D., 1992, Endocytosis in yeast: evidence for the involvement of a small GTP binding protein (Ypt7p), Cell 71:1131–1142.Google Scholar
  223. Witter, D. J., and Poulter, C. D., 1996, Yeast geranylgeranyltransferase type-11: steady state kinetic studies of the recombinant enzyme. Biochemistry 35:10454–10463.Google Scholar
  224. Wittinghofer, A., 1998, Signal transduction via Ras, Biol. Chem. 379:933–993.Google Scholar
  225. Wittinghofer, A., and Nassar, N., 1996, How Ras-related proteins talk to their effectors, Trends Biochem. Sci. 21:488–491.Google Scholar
  226. Wittinghofer, A., and Valencia, A., 1995, Three-dimensional structure of Ras-and Ras-related proteins, in: Guidebook to the small GTPases (M. Zerial and L. A. Huber, eds.), Oxford University Press, Oxford, pp. 20–29.Google Scholar
  227. Wu, S. K., Zeng, K., Wilson, I. A., and Balch, W. E., 1996, Structural insights into the function of the Rab GDI superfamily, Trends Biochern. Sci. 21:472–476.Google Scholar
  228. Xu, Z., Mayer, A,, Muller, E., Wickner, W., 1997, A heterodimer of thioredoxin and IB2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance, J. Cell Biol. 136:299–306.Google Scholar
  229. Xu, Z., Sato, K., and Wickner, W., 1998, LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion, Cell 93:1125–1134.Google Scholar
  230. Yang, X., Matern, H., and Gallwitz, D., 1998, Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p, EMBO J. 17:4954–4963.Google Scholar
  231. Yoo, J.-S., Grabowski, R., Xing, L., Trepte, H.-H., Schmitt, H.-D., and Gallwitz, D., 1999, Functional implications of genetic interactions between genes encoding small GTPases involved in vesicular transport in yeast, Mol. Gen. Genet., in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Martin Götte
    • 1
  • Thomas Lazar
    • 1
  • Jin-San Yoo
    • 1
  • Dietrich Scheglmann
    • 1
  • Dieter Gallwitz
    • 1
  1. 1.Department of Molecular GeneticsMax-Planck-Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations