Advertisement

Annexins and Membrane Fusion

  • Helmut Kubista
  • Sandra Sacre
  • Stephen E. Moss
Part of the Subcellular Biochemistry book series (SCBI, volume 34)

Keywords

Annexin Versus Chromaffin Cell Membrane Fusion Early Endosome Lamellar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S. M., Geisow, M. J., and Burgoyne, R. D., 1989, A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Nature 340:313–315.Google Scholar
  2. Ando, Y., Imamura, S., Hong, Y. M., Owada, M. K., Kakunaga, T., and Kannagi, R., 1989, Enhancement of calcium sensitivity of lipocortin I in phospholipid binding induced by limited proteolysis and phosphorylation at the amino terminus as analyzed by phospholipid affinity column chromatography. J. Biol. Chem. 264:6948–4955.Google Scholar
  3. Aunis, D., and Bader, M. F., 1988, The cytoskeleton as a barrier to exocytosis in secretory cells. J. Exp. Biol. 139:253–266.Google Scholar
  4. Baba, T., Damke, H., Hinshaw, J. E., Ikeda, K., Schmid, S. L., and Warnock, D. E., 1995, Role of dynamin in clathrin-coated vesicle formation. Cold. Spring. Harb. Symp. Quant. Biol. 60:235–242.Google Scholar
  5. Bandorowicz Pikula, J., 1998, A nucleotide-binding domain of porcine liver annexin VI. Proteolysis of annexin VI labelled with 8-azido-ATP, purification by affinity chromatography on ATP-agarose, and fluorescence studies. Mol. Cell Biochem 181:11–20.Google Scholar
  6. Bandorowicz Pikula, J., and Awasthi, Y. C., 1997, Inʼnteraction of annexins IV and VI with ATP. An alternative mechanism by which a cellular function of these calcium-and membrane-binding proteins is regulated. FEBS Lett. 409:300–306.Google Scholar
  7. Bandorowicz Pikula, J., Wrzosek, A., Makowski, P., and Pikula, S., 1997, The relationship between the binding of ATP and calcium to annexin IV. Effect of nucleotide on the calcium-dependent interaction of annexin with phosphatidylserine. Mol. Membr. Biol. 14:179–186.Google Scholar
  8. Bianchi, R., Giambanco, I., Ceccarelli, P., Pula, G., and Donato, R., 1992, Membrane-bound annexin V isoforms (CaBP33 and CaBP37) and annexin VI in bovine tissues behave like integral membrane proteins. FEBS Left. 296:158–162.Google Scholar
  9. Bitto, E., and Cho, W., 1998, Roles of individual domains of annexin I in its vesicle binding and vesicle aggregation: a comprehensive mutagenesis study. Biochemistry 37:10231–10237.Google Scholar
  10. Bomsel, M., Prydz, K., Parton, R. G., Gruenberg, J., and Simons, K., 1989, Endocytosis in filter-grown Madin-Darby canine kidney cells. J. Cell Biol. 109:3243–3258.Google Scholar
  11. Braun, E. L., Kang, S., Nelson, M. A., and Natvig, D. O., 1998, Identification of the first fungal annexin:analysis of annexin gene duplications and implications for eukaryotic evolution. J. Mol. Evol. 47:531–543.Google Scholar
  12. Burger, A., Berendes, R., Liemann, S., Benz, J., Hofmann, A,, Gottig, P., Huber, R., Gerke, V., Thiel, C., Romisch, J., and Weber, K., 1996, The crystal structure and ion channel activity of human annexin II, a peripheral membrane protein. J. Mol. Biol. 257:839–847.Google Scholar
  13. Burgoyne, R. D., and Geisow, M. J., 1989, The annexin family of calcium-binding proteins. Review article. Cell Calcium. 10:1–10.Google Scholar
  14. Burgoyne, R. D., Morgan, A,, Robinson, I., Pender, N., and Cheek, T. R., 1993, Exocytosis in adrenal chromaffin cells. J. Anat. 183:309–314.Google Scholar
  15. Calvert, C. M., Gant, S. J., and Bowles, D. J., 1996, Tomato annexins p34 and p35 bind to Factin and display nucleotide phosphodiesterase activity inhibited by phospholipid binding. Plant. Cell 8:333–342.Google Scholar
  16. Cao, T. T., Mays, R. W., and von Zastrow, M., 1998, Regulated endocytosis of G-protein-coupled receptors bya biochemically and functionally distinct subpopulation of clathrin-coated pits. J. Biol. Chem. 273:24592–24602.Google Scholar
  17. Caohuy, H., Srivastava, M., and Pollard, H. B., 1996, Membrane fusion protein synexin (annexin VII) as a Ca2+/GTP sensor in exocytotic secretion. Proc. Natl. Acad. Sci. USA 93:10797–10802.Google Scholar
  18. Carlberg, K., Tapley, P., Haystead, C., and Rohrschneider, L., 1991, The role of kinase activity and the kinase insert region in ligand-induced internalization and degradation of the c-fms protein. EMBO J. 10:877–883.Google Scholar
  19. Chan, H. C., Kaetzel, M. A., Gotter, A. L., Dedman, J. R., and Nelson, D. J., 1994, Annexin IV inhibits calmodulin-dependent protein kinase II-activated chloride conductance. A novel mechanism for ion channel regulation. J. Biol. Chem. 269:32464–32468.Google Scholar
  20. Chander, A., and Wu, R. D., 1991, In vitro fusion of lung lamellar bodies and plasma membrane is augmented by lung synexin. Biochim. Biophys. Acta 1086:157–166.Google Scholar
  21. Chasserot Golaz, S., Vitale, N., Sagot, I., Delouche, B., Dirrig, S., Pradel, L.A., Henry, J. P., Aunis, D., and Bader, M. F., 1996, Annexin II in exocytosis: catecholamine secretion requires the translocation of p36 to the subplasmalemmal region in chromaffin cells. J. Cell Biol. 133:1217–1236.Google Scholar
  22. Chen, W. J., Goldstein, J. L., and Brown, M. S., 1990, NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265:3116–3123.Google Scholar
  23. Chuah, S. Y., and Pallen, C. J., 1989, Calcium-dependent and phosphorylation-stimulated proteolysis of lipocortin I by an endogenous A431 cell membrane protease. J. Biol. Chem. 264:21160–21166.Google Scholar
  24. Clark, D. M., Moss, S. E., Wright, N. A., and Crumpton, M. J., 1991, Expression of annexin VI (p68,67 kDa-calelectrin) in normal human tissues: evidence for developmental regulation in B-and T-lymphocytes. Histochemistry 96:405–412.Google Scholar
  25. Cohen, S., and Fava, R. A., 1985, Internalization of functional epidermal growth factor: receptor/kinase complexes in A-431 cells. J. Biol. Chem. 260:12351–12358.Google Scholar
  26. Collins, H. L., Schaible, U. E., Ernst, J. D., and Russell, D. G., 1997, Transfer of phagocytosed particles to the parasitophorous vacuole of Leishmania mexicana is a transient phenomenon preceding the acquisition of annexin I by the phagosome. J. Cell Sci. 110:191–200.Google Scholar
  27. Creutz, C. E., 1981, Secretory vesicle—cytosol interactions in exocytosis: isolation by Ca2+-dependent affinity chromatography of proteins that bind to the chromaffin granule membrane. Biochem Biophys. Res Commun. 103:1395–1400.Google Scholar
  28. Creutz, C. E., 1992, The annexins and exocytosis. Science 258:924–931.Google Scholar
  29. Creutz, C. E., Dowling, L. G., Sando, J. J., Villar Palasi, C., Whipple, J. H., and Zaks, W. J., 1983, Characterization of the chromobindins. Solubleproteins that bind to the chromaffin granule membrane in the presence of Ca2+. J. Biol. Chem. 258:14664–14674.Google Scholar
  30. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J. Biol. Chem. 253:2858–2866.Google Scholar
  31. Crumpton, M. J., and Dedman, J. R., 1990, Protein terminology tangle [letter] [see comments]. Nature 345:212.Google Scholar
  32. Damke, H., Gossen, M., Freundlieb, S., Bujard, H., and Schmid, S. L., 1995, Tightly regulated and inducible expression of dominant interfering dynamin mutant in stably transformed HeLa cells. Methods Enzymol. 257:209–220.Google Scholar
  33. de la Fuente, M., and Ossa, C. G., 1997, Binding to phosphatidyl serine membranes causes a conformational change in the concave face of annexin I. Biophys. J. 72:383–387.Google Scholar
  34. de la Fuente, M., and Parra, A. V., 1995, Vesicle aggregation by annexin I: role of a secondary membrane binding site. Biochemistry 34:10393–10399.Google Scholar
  35. De, B. K., Misono, K. S., Lukas, T. J., Mroczkowski, B., and Cohen, S., 1986, A calcium-dependent 35-kilodalton substrate for epidermal growth factor receptodkinase isolated from normal tissue. J. Biol. Chem. 261:13784–13792.Google Scholar
  36. Delmer, D. P., and Potikha, T. S., 1997, Structures and functions of annexins in plants. Cell Mol. Life Sci. 53:546–553.Google Scholar
  37. Demange, P., Voges, D., Benz, J., Liemann, S., Gottig, P., Berendes, R., Burger, A., and Huber, R., 1994, Annexin V the key to understanding ion selectivity and voltage regulation? Trends Biochem Sci. 19:272–276.Google Scholar
  38. Desjardins, M., Celis, J. E., van Meer, G., Dieplinger, H., Jahraus, A., Griffiths, G., and Huber, L. A., 1994, Molecular characterization of phagosomes. J. Biol. Chem. 269:32194–32200.Google Scholar
  39. Diakonova, M., Gerke, V., Ernst, J., Liautard, J. P., van der Vusse, G., and Griffiths, G., 1997, Localization of five annexins in J774 macrophages and on isolated phagosomes. J. Cell Sci. 110:1199–1213.Google Scholar
  40. Donnelly, S. R., and Moss, S. E., 1997, Annexins in the secretory pathway. Cell Mol. Life Sci. 53:533–538.Google Scholar
  41. Doring, V., Veretout, F., Albrecht, R., Muhlbauer, B., Schlatterer, C., Schleicher, M., and Noegel, A. A., 1995, The in vivo role of annexin VII (synexin): characterization of an annexin VII-deficient Dictyostelium mutant indicates an involvement inCa(2+)-regulated processes. J. Cell Sci. 108:2065–2076.Google Scholar
  42. Doubell, A. F., Bester, A. J., and Thibault, G., 1991, Annexins V and VI: major calcium-dependent atrial secretory granule-binding proteins. Hypertension 18:648–656.Google Scholar
  43. Drust, D. S., and Creutz, C. E., 1988, Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331:88–91.Google Scholar
  44. Edwards, H. C., and Crumpton, M. J., 1991, Ca(2+)-dependent phospholipid and arachidonic acid binding by the placental annexins VI and IV. Eur. J. Biochem 198:121–129.Google Scholar
  45. Emans, N., Gorvel, J. P., Walter, C., Gerke, V., Kellner, R., Griffiths, G., and Gruenberg, J., 1993, Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol. 120:1357–1369.Google Scholar
  46. Ernst, J. D., 1991, Annexin III translocates to the periphagosomal region when neutrophils ingest opsonized yeast. J. Immunol. 146:3110–3114.Google Scholar
  47. Ernst, J. D., Hoye, E., Blackwood, R. A., and Mok, T. L., 1991, Identification of a domain that mediates vesicle aggregation reveals functional diversity of annexin repeats. J. Biol. Chem. 266:6670–6673.Google Scholar
  48. Fava, R. A., and Cohen, S., 1984, Isolation of a calcium-dependent 35-kilodalton substrate for the epidermal growth factor receptodkinase from A-431 cells. J. Biol. Chem. 259:2636–2645.Google Scholar
  49. Felder, S., Miller, K., Moehren, G., Ullrich, A., Schlessinger, J., and Hopkins, C. R., 1990, Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61:623–634.Google Scholar
  50. Fiedler, K., Lafont, F., Parton, R. G., and Simons, K 1995, Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J. Cell Biol. 128:1043–1053.Google Scholar
  51. Futter, C. E., Felder, S., Schlessinger, J., Ullrich, A., and Hopkins, C. R., 1993, Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J. Cell Biol. 120:77–83.Google Scholar
  52. Geisow, M. J., and Walker, J. H., 1986, New proteins involved in cell regulation by Ca2+ and phospholipids. TIBS 11:420–422.Google Scholar
  53. Gerke, V., 1996, Annexins and membrane traffic, in: (B. A. Seaton, ed.) Annexins: Molecular structure to cellular function. Chapman & Hall 67–79.Google Scholar
  54. Gerke, V., and Moss, S. E., 1997, Annexins and membrane dynamics. Biochim. Biophys. Acta. 1357:129–154.Google Scholar
  55. Gerke, V., and Weber, K., 1985, The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J. 4:2917–2920.Google Scholar
  56. Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F., and Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling:double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32:277–287.Google Scholar
  57. Glenney, J., 1986, Phospholipid-dependent Ca2+ binding by the 36-kDa tyrosine kinase substrate (calpactin) and its 33-kDa core. J. Biol. Chem. 261:7247–7252.Google Scholar
  58. Glenney, J. R. J., Chen, W. S., Lazar, C. S., Walton, G. M., Zokas, L. M., Rosenfeld, M. G., and Gill, G. N., 1988, Ligand-induced endocytosis of the EGF receptor is blocked by mutational inactivation and by microinjection of anti-phosphotyrosine antibodies. Cell 52:675–484.Google Scholar
  59. Goossens, E. L., Reutelingsperger, C. P., Jongsma, F. H., Kraayenhof, R., and Hermens, W. T., 1995, Annexin V perturbs or stabilises phospholipid membranes in a calcium-dependent manner. FEBS Len. 359:155–158.Google Scholar
  60. Gorvel, J. F’., Chavrier, P., Zerial, M., and Gruenberg, J., 1991, rab5 controls early endosome fusion in vitro. Cell 64:915–925.Google Scholar
  61. Gotow, T., Sakata, M., Funakoshi, T., and Uchiyama, Y.,1996, Preferential localization of annexin V to the axon terminal. Neuroscience. 75:507–521.Google Scholar
  62. Gottlieb, T. A., Ivanov, I. E., Adesnik, M., and Sabatini, D. D., 1993, Actin microfilaments play a critical roleinendocytosisat theapical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120:695–710.Google Scholar
  63. Gould, K. L., Woodgett, J. R., Isacke, C. M., and Hunter, T., 1986, The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivo. Mol. Cell Biol. 6:2738–2744.Google Scholar
  64. Graham, M. E., Gerke, V., and Burgoyne, R. D., 1997, Modification of annexin II expression in PC12 cell lines does not affect Ca(2+)-dependent exocytosis. Mol. Biol. Cell 8:431–442.Google Scholar
  65. Gruenberg, J., and Emans, N., 1993, Annexins in membrane traffic. Trends in Cell Biology 3:224–227.Google Scholar
  66. Gruenberg, J., and Howell, K. E., 1989, Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 5:453–431.Google Scholar
  67. Haigler, H. T., Schlaepfer, D. D., and Burgess, W. H., 1987, Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptodkinase substrates and phospholipase A2 inhibitors. J. Biol. Chem. 262:6921–4930.Google Scholar
  68. Han, H. Y., Lee, Y. H., Oh, J. Y., Na, D. S., and Lee, B. J., 1998, NMR analyses of the interactions of human annexin I with ATP, Ca2+, and Mg2+. FEBS Lett 425:523–527.Google Scholar
  69. Hanover, J. A., Willingham, M. C., and Pastan, I., 1984, Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Cell 39:283–293.Google Scholar
  70. Harder, T., and Gerke, V., 1993, The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J. Cell Biol. 123:1119–1132.Google Scholar
  71. Harder, T., Kellner, R., Parton, R. G., and Gruenberg, J., 1997, Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell 8:533–545.Google Scholar
  72. Harmon, B. G., Adams, L. G., and Frey, M., 1988, Survival of rough and smooth strains of Brucella abortus in bovine mammary gland macrophages. Am. J. Vet. Res 49:1092–1097.Google Scholar
  73. Harricane, M. C., Caron, E., Porte, F., and Liautard, J. P., 1996, Distribution of annexin I during non-pathogenor pathogen phagocytosis by confocal imagingand immunogold electron microscopy. Cell Biol. Int. 20:193–203.Google Scholar
  74. Hertogs, K., Leenders, W. P., Depla, E., De Bruin, W. C., Meheus, L., Raymackers, J., Moshage, H., and Yap, S. H., 1993, Endonexin 11, present on human liver plasma membranes, is a specific binding protein of small hepatitis B virus (HBV) envelope protein. Virology. 197:549–557.Google Scholar
  75. Heuser, J. E., and Anderson, R. G., 1989, Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108:389–400.Google Scholar
  76. Hinshaw, J. E., and Schmid, S. L., 1995, Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding [see comments]. Nature 374:190–192.Google Scholar
  77. Hirokawa, N., Sobue, K., Kanda, K., Harada, A., and Yorifuji, H., 1989, The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin l. J. Cell Biol. 108:111–126.Google Scholar
  78. Hoekstra, D., Buist Arkema, R., Klappe, K., and Reutelingsperger, C. P., 1993, Interaction of annexins with membranes: the N-terminus as a governing parameter as revealed with a chimeric annexin. Biochemistry 32:14194–14202.Google Scholar
  79. Holleran, E. A., Tokito, M. K., Karki, S., and Holzbaur, E. L., 1996, Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135:1815–1829.Google Scholar
  80. Huber, R., Berendes, R., Burger, A., Schneider, M., Karshikov, A., Luecke, H., Romisch, J., and Paques, E., 1992, Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J. Mol. Biol. 223:683–704.Google Scholar
  81. Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C., and Simons, K., 1995, Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81:571–580.Google Scholar
  82. Jackle, S., Beisiegel, U., Rinninger, F., Buck, F., Grigoleit, A., Block, A., Groger, I., Greten, H., and Windler, E., 1994, Annexin VI, a marker protein of hepatocytic endosomes. J. Biol. Chem. 269:1026–1032.Google Scholar
  83. Jaconi, M. E., Lew, D. P., Carpentier, J. L., Magnusson, K. E., Sjogren, M., and Stendahl, O., 1990, Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J. Cell Biol. 110:1555–1564.Google Scholar
  84. Johnsson, N., Nguyen Van, P., Soling, H. D., and Weber, K., 1986, Functionally distinct serine phosphorylation sites of p36, the cellular substrate of retroviral protein kinase; differential inhibition of reassociation with p11. EMBO J. 5:3455–3460.Google Scholar
  85. Johnstone, S. A., Hubaishy, I., and Waisman, D. M., 1992, Phosphorylation of annexin II tetramer by protein kinase C inhibits aggregation of lipid vesicles by the protein. J. Biol. Chem. 267:25976–25981.Google Scholar
  86. Joiner, K. A., Ganz, T., Albert, J., and Rotrosen, D., 1989, The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J. Cell Biol. 109:2771–2782.Google Scholar
  87. Jones, P. G., Fitzpatrick, S., and Waisman, D. M., 1994, Chromaffin granules release calcium on contact with annexin VI: implications for exocytosis. Biochemistry 33:8180–8187.Google Scholar
  88. Jones, P. G., Moore, G. J., and Waisman, D. M., 1992, A nonapeptide to the putative F-actin binding site of annexin II tetramer inhibits its calcium dependent activation of actin filament bundling. J. Biol. Chem. 267:13993–13997.Google Scholar
  89. Jost, M., Weber, K., and Gerke, V., 1994, Annexin II contains two types of Ca(2+)-binding sites. Biochem J. 298 Pt 3:553–559.Google Scholar
  90. Jost, M., Zeuschner, D., Seemann, J., Weber, K., and Gerke, V., 1997, Identification and characterization of a novel type of annexin-membrane interaction: Ca2+ is not required for the association of annexin II with early endosomes. J. Cell Sci. 110:221–228.Google Scholar
  91. Junker, M., and Creutz, C. E., 1993, Endonexin (annexin 1V)-mediated lateral segregation of phosphatidylglycerol in phosphatidylglycerol/lphosphatidylcholine membranes. Biochemistry 32:9968–9974.Google Scholar
  92. Kamal, A., Ying, Y., and Anderson, R. G., 1998, Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J. Cell Biol. 142:937–947.Google Scholar
  93. Karshikov, A., Berendes, R., Burger, A., Cavalie, A., Lux, H. D., and Huber, R., 1992, Annexin V membrane interaction: an electrostatic potential study. Eur. Biophys. J. 20:337–344.Google Scholar
  94. Kaufman, M., Leto, T., and Levy, R., 1996, Translocation of annexin I to plasma membranes and phagosomes in human neutrophils upon stimulation with opsonized zymosan: possible role in phagosome function. Biochem J. 316:35–42.Google Scholar
  95. Knochel, M., Kissmehl, R., Wissmann, J. D., Momayezi, M., Hentschel, J., Plattner, H., and Burgoyne, R. D., 1996, Annexins in Paramecium cells. Involvement in site-specific positioning of secretory organelles. Histochem. Cell Biol. 105:269–281.Google Scholar
  96. Kohler, G., Hering, U., Zschornig, O., and Arnold, K., 1997, Annexin V interaction with phosphatidylserine-containing vesicles at low and neutral pH. Biochemistry 36:8189–8194.Google Scholar
  97. Koenig, J., Prenen, J., Nilius, B., and Gerke, V., 1998, The annexin IITp11 complex is involved in regulated exocytosis in bovine pulmonaryartery endothelial cells. J. Biol. Chem. 273:19679–19684.Google Scholar
  98. Koumanov, K., Wolf, C., and Bereziat, G., 1997, Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI. Biochem J. 326:227–233.Google Scholar
  99. La Verda, D., and Byrne, G.I., 1994, Interactions between macrophages and chlamydiae. Immunol. Ser. 60:381–399.Google Scholar
  100. Lafont, F., Lecat, S., Verkade, P., and Simons, K., 1998, Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142:1413–1427.Google Scholar
  101. Lambert, O., Gerke, V., Bader, M. F., Porte, E, and Brisson, A., 1997, Structural analysis of junctions formed between lipid membranes and several annexins by cryo-electron microscopy. J. Mol. Biol. 272:42–55.Google Scholar
  102. Langen, R., Isas, J. M., Luecke, H., Haigler, H. T., and Hubbell, W. L., 1998a, Membrane-mediated assembly of annexins studied by site-directed spin labeling. J. Biol. Chem. 273:22453–22457.Google Scholar
  103. Langen, R., Isas, J. M., Hubbel, W. L., and Haigler, H. T., 1998b, A transmembrane form of annexin XII detected by site-directed spin labeling. Proc. Natl. Acad. Sci. USA 95:14060–14065.Google Scholar
  104. Larkin, J. M., Donzell, W. C., and Anderson, R. G., 1986, Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J. Cell Biol. 103:2619–2627.Google Scholar
  105. Larsson, M., Majeed, M., Ernst, J. D., Magnusson, K. E., Stendahl, O., and Forsum, U., 1997, Role of annexins in endocytosis of antigens in immature human dendritic cells. Immunelogy. 92:501–511.Google Scholar
  106. Larsson, M., Majeed, M., Stendahl, O., Magnusson, K. E., Ernst, J. D., and Forsum, U., 1995, Mobilization of annexin V during the uptake of DNP-albumin by human dendritic cells. APMIS. 103:855–861.Google Scholar
  107. Liemann, S., Bringemeier, I., Benz, J., Gottig, P., Hofmann, A., Huber, R., Noegel, A. A., and Jacob, U., 1997, Crystal structure of the C-terminal tetrad repeat from synexin (annexin VII) of Dictyostelium discoideum. J. Mol. Biol. 270:79–88.Google Scholar
  108. Liemann, S., and Huber, R., 1997, Three-dimensional structure of annexins. Cell Mol. Life Sci. 53:516–521.Google Scholar
  109. Lin, H. C., Moore, M. S., Sanan, D. A., and Anderson, R. G., 1991, Reconstitution of clathrin-coated pit budding from plasma membranes. J. Cell Biol. 114:881–891.Google Scholar
  110. Lin, H. C., Sudhof, T. C., and Anderson, R. G., 1992, Annexin VI is required for budding of clathrin-coated pits. Cell 70:283–291.Google Scholar
  111. Liu, L., and Chander, A., 1995, Stilbene disulfonic acids inhibit synexin-mediated membrane aggregation and fusion. Biochim. Biophys. Acta 1254:274–282.Google Scholar
  112. Liu, L., Fisher, A. B., and Zimmerman, U. J., 1995, Lung annexin II promotes fusion of isolated lamellar bodies with liposomes. Biochim. Biophys. Acta 1259:166–172.Google Scholar
  113. Liu, L., Tao, J. Q., Li, H. L., and Zimmerman, U. J., 1997, Inhibition of lung surfactant secretion from alveolar type II cells and annexin II tetramer-mediated membrane fusion by phenothiazines. Arch. Biochem Biophys. 342:322–328.Google Scholar
  114. Liu, L., Wang, M., Fisher, A. B., and Zimmerman, U. J., 1996, Involvement of annexin II in exocytosis of lamellar bodies from alveolar epithelial type II cells. Am. J. Physiol. 270:L668–L676.Google Scholar
  115. Majeed, M., Ernst, J. D., Magnusson, K. E., Kihlstrom, E., and Stendahl, O., 1994, Selective translocation of annexins III, IV, and V during intracellular redistribution of Chlamydia trachomatis serovar L2 in HeLa and McCoy cells. Ann. N. Y. Acad. Sci. 730:326–328.Google Scholar
  116. Majeed, M., Perskvist, N., Ernst, J. D., Orselius, K., and Stendahl, O., 1998, Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb. Pathog. 24:309–320.Google Scholar
  117. Mamiya, N., Iino, S., Mizutani, A., Kobayashi, S., and Hidaka, H., 1994, Development-related and cell-type specific nuclear localization of annexin XI: immunolocalization analysis in rat tissues. Biochem Biophys. Res Commun. 202:403–409.Google Scholar
  118. Mayorga, L. S., Beron, W., Sarrouf, M. N., Colombo, M. I., Creutz, C., and Stahl, P. D., 1994, Calcium-dependent fusion among endosomes. J. Biol. Chem. 269:30927–30934.Google Scholar
  119. Mayorga, L. S., Bertini, F., and Stahl, P. D., 1991, Fusion of newly formed phagosomes with endosomes in intact cells and in a cell-free system. J. Biol. Chem. 266:6511–6517.Google Scholar
  120. Meers, P., 1990, Location of tryptophans in membrane-bound annexins. Biochemistry 29:3325–3330.Google Scholar
  121. Meers, P., Mealy, T., Pavlotsky, N., and Tauber, A. I., 1992, Annexin I-mediated vesicular aggregation: mechanism and role in human neutrophils. Biochemistry 31:6372–6382.Google Scholar
  122. Megli, F. M., Selvaggi, M., Liemann, S., Quagliariello, E., and Huber, R., 1998, The calcium-dependent binding of annexin V to phospholipid vesicles influences the bilayer inner fluidity gradient. Biochemistry 37:10540–10546.Google Scholar
  123. Michener, M. L., Dawson, W. B., and Creutz, C. E., 1986, Phosphorylation of a chromaffin granule-binding protein in stimulated chromaffin cells. J. Biol. Chem. 261:6548–6555.Google Scholar
  124. Mizutani, A., Tokumitsu, H., Kobayashi, R., and Hidaka, H., 1993, Phosphorylation of annexin XI (CAP-50) in SR-3Y1 cells. J. Biol. Chem. 268:15517–15522.Google Scholar
  125. Mizutani, A., Watanabe, N., Kitao, T., Tokumitsu, H., and Hidaka, H., 1995, The long amino-terminal tail domain of annexin XI is necessary for its nuclear localization. Arch. Biochem Biophys. 318:157–165.Google Scholar
  126. Mochly Rosen, D., Khaner, H., and Lopez, J., 1991a, Identification of intracellular receptor proteins for activated protein kinase C. Proc. Natl. Acad. Sci. USA 88:3997–4000.Google Scholar
  127. Mochly Rosen, D., Khaner, H., Lopez, J., and Smith, B. L., 1991b, Intracellular receptors for activated protein kinase C. Identification of a binding site for the enzyme. J. Biol. Chem. 266:14866–14868.Google Scholar
  128. Monck, J. R., and Fernandez, J. M., 1992, The exocytotic fusion pore. J. Cell Biol. 119:1395–1404.Google Scholar
  129. Morgan, R. O., and Fernandez, M. P., 1995, Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. Mol. Biol. Evol. 12:967–979.Google Scholar
  130. Moss, S. E., 1995, Ion channels. Annexins taken to task [news; comment]. Nature 378:446–447.Google Scholar
  131. Moss, S. E., and Crumpton, M. J., 1990, Alternative splicing gives rise to two forms of the p68 Ca2(+)-binding protein. FEBS Lett 261:299–302.Google Scholar
  132. Naciff, J. M., Behbehani, M. M., Kaetzel, M. A., and Dedman, J. R., 1996, Annexin VI modulates Ca2+ and K+ conductances of spinal cord and dorsal root ganglion neurons. Am. J. Physiol. 271:C200–C2015.Google Scholar
  133. Nakata, T., Sobue, K., and Hirokawa, N., 1990, Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze; deep-etch electron microscopy and immunocytochemistry. J. Cell Biol. 110:13–25.Google Scholar
  134. Nelson, W. J., and Veshnock, P. J., 1987, Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 104:1527–1537.Google Scholar
  135. Nesterov, A., Reshetnikova, G., Vinogradova, N., and Nikolsky, N., 1990, Functional state of the epidermal growth factor-receptor complexes during their internalization in A-431 cells. Mol. Cell Biol. 10:5011–5014.Google Scholar
  136. Ohnishi, M., Tokuda, M., Masaki, T., Fujimura, T., Tai, Y., Itano, T., Matsui, H., Ishida, T., Konishi, R., Takahara, J., and et al., 1995, Involvement of annexin-I in glucose-induced insulin secretion in rat pancreatic islets. Endocrinology 136:2421–2426.Google Scholar
  137. Ortega, D., Pol, A., Biermer, M., Jackle, S., and Enrich, C., 1998, Annexin VI defines an apical endocytic compartment in rat liver hepatocytes. J. Cell Sci. 111:261–269.Google Scholar
  138. Oshry, L., Meers, P., Mealy, T., and Tauber, A. I., 1991, Annexin-mediated membrane fusion of human neutrophil plasma membranes and phospholipid vesicles. Biochim. Biophys. Acta 1066:239–244.Google Scholar
  139. Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G., 1989, Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol. 109:3259–3272.Google Scholar
  140. Pepinsky, R. B., Tiard, R., Mattaliano, R. J., Sinclair, L. K., Miller, G. T., Browning, J. L., Chow, E. P., Burne, C., Huang, K. S., Pratt, D., and et al., 1988, Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J. Biol. Chem. 263:10799–10811.Google Scholar
  141. Peters, C., and Mayer, A., 1998. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396:575–580.Google Scholar
  142. Pike, L. J., and Miller, J. M., 1998, Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J. Biol. Chem. 273:22298–22304.Google Scholar
  143. Pol, A., Ortega, D., and Enrich, C., 1997, Identification of cytoskeleton-associated proteins in isolated rat liver endosomes. Biochem J. 327:741–746.Google Scholar
  144. Pollard, H. B., Burns, A. L., and Rojas, E., 1988, A molecular basis for synexin-driven, calcium-dependent membrane fusion. J. Exp. Biol. 139:267–286.Google Scholar
  145. Pollard, H. B., Bums, A. L., and Rojas, E., 1990, Synexin (annexin VII): a cytosolic calcium-binding protein which promotes membrane fusion and forms calcium channels in artificial bilayer and natural membranes. J. Membr. Biol. 117:101–112.Google Scholar
  146. Pollard, H. B., Caohuy, H., Minton, A. P., and Srivastava, M., 1998, Synexin (annexin VII) hypothesis for Ca2+/GTP-regulated exocytosis. Adv. Pharmacol. 42:81–87.Google Scholar
  147. Pollard, H. B., Rojas, E., and Bums, A. L., 1992, Synexin (annexin VII) and membrane fusion during the process of exocytotic secretion. Prog. Brain Res 92:247–255.Google Scholar
  148. Powell, M. A., and Glenney, J. R., 1987, Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by p60v-src. Biochem J. 247:321–328.Google Scholar
  149. Prina, E., Antoine, J. C., Wiederanders, B., and Kirschke, H., 1990, Localization and activity of various lysosomal proteases in Leishmania amazonensis-infected macrophages. Infect. Immun. 58:1730–1737.Google Scholar
  150. Raynal, P., and Pollard, H. B., 1994, Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. BBA 1197:63–93.Google Scholar
  151. Regnouf, F., Sagot, I., Delouche, B., Devilliers, G., Cartaud, J., Henry, J. P., and Pradel, L. A., 1995, “In vitro” phosphorylation of annexin 2 heterotetramer by protein kinase C. Comparative properties of the unphosphorylated and phosphorylated annexin 2 on the aggregation and fusion of chromaffin granule membranes. J. Biol. Chem. 270:27143–27150.Google Scholar
  152. Riezman, H., Woodman, P. G., van Meer, G., and Marsh, M., 1997, Molecular mechanisms of endocytosis. Cell 91:731–738.Google Scholar
  153. Rohrer, J., Schweizer, A., Russell, D., and Kornfeld, S., 1996, The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J. Cell Biol. 132:565–576.Google Scholar
  154. Rosales, J. L., and Emst, J. D., 1997, Calcium-dependent neutrophil secretion: characterization and regulation by annexins. J. Immunol. 159:6195–6202.Google Scholar
  155. Rosengarth, A., Wintergalen, A., Galla, H. J., Hinz, H. J., and Gerke, V., 1998, Ca2+-independent interaction of annexin I with phospholipid monolayers. FEBS Lett 438:279–284.Google Scholar
  156. Roth, D., Morgan, A., and Burgoyne, R. D., 1993, Identification of a key domain in annexin and 14-3-3 proteins that stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells. FEBS Lett. 320:207–210.Google Scholar
  157. Rothhut, B., 1997, Participation of annexins in protein phosphorylation. Cell Mol. Life Sci. 53:522–526.Google Scholar
  158. Sagot, I., Regnouf, F., Henry, J. P., and Pradel, L. A., 1997, Translocation of cytosolic annexin 2 to a Triton-insoluble membrane subdomain upon nicotine stimulation of chromaffin cultured cells. FEBS Lett. 410:229–234.Google Scholar
  159. Salzman, N. H., and Maxfield, F. R., 1988, Intracellular fusion of sequentially formed endocytic compartments. J. Cell Biol. 106:1083–1091.Google Scholar
  160. Salzman, N. H., and Maxfield, F. R., 1989, Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells. J. Cell Biol. 109:2097–2104.Google Scholar
  161. Sarafian, T., Pradel, L. A., Henry, J. P., Aunis, D., and Bader, M. F., 1991, The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C. J. Cell Biol. 114:1135–1147.Google Scholar
  162. Schlaepfer, D. D., Bode, H. R., and Haigler, H. T., 1992, Distinct cellular expression pattern of annexins in Hydra vulgaris. J. Cell Biol. 118:911–928.Google Scholar
  163. Schlaepfer, D. D., and Haigler, H. T., 1987, Characterization of Ca2+-dependent phospholipid binding and phosphorylation of lipocortin I. J. Biol. Chem. 262:6931–6937.Google Scholar
  164. Schnitzer, J. E., Liu, J., and Oh, P., 1995, Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270:14399–14404.Google Scholar
  165. Seemann, J., Weber, K., and Gerke, V., 1997, Annexin I targets S100C to early endosomes. FEBS Lett. 413:185–190.Google Scholar
  166. Seemann, J., Weber, K., Osborn, M., Parton, R. G., and Gerke, V., 1996, The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain. Mol. Biol. Cell 7:1359–1374.Google Scholar
  167. Sen, N., Spitzer, A. R., and Chander, A., 1997, Calcium-dependence of synexin binding may determine aggregation and fusion of lamellar bodies. Biochem J. 322:103–109.Google Scholar
  168. Senda, T., Okabe, T., Matsuda, M., and Fujita, H., 1994, Quick-freeze, deep-etch visualization of exocytosis in anterior pituitary secretory cells: localization and possible roles of actin and annexin II. Cell Tissue. Res 277:51–60.Google Scholar
  169. Senda, T., Yamashita, K., Okabe, T., Sugimoto, N., and Matsuda, M., 1998, Intergranular bridges in the anterior pituitary cell and their possible involvement in Ca2+-induced granule-granule fusion. Cell Tissue. Res 292:513–519.Google Scholar
  170. Sheets, E. E., Giugni, T. D., Coates, G. G., Schlaepfer, D. D., and Haigler, H. T., 1987, Epidermal growth factor dependent phosphorylation of a 35-kilodalton protein in placental membranes. Biochemistry 26:1164–1172.Google Scholar
  171. Shpetner, H. S., Herskovits, J. S., and Vallee, R. B., 1996, A binding site for SH3 domains targets dynamin to coated pits. J. Biol. Chem. 271:13–16.Google Scholar
  172. Sjolin, C., and Dahlgren, C., 1996a, Isolation by calcium-dependent translation to neutrophil-specific granules of a 42-kD cytosolic protein, identified as being a fragment of annexin XI. Blood. 87:4817–4823.Google Scholar
  173. Sjolin, C., and Dahlgren, C., 1996b, Diverse effects of different neutrophil organelles on truncation and membrane-binding characteristics of annexin I. Biochim. Biophys. Acta 1281: 227–234.Google Scholar
  174. Sjolin, C., Movitz, C., Lundqvist, H., and Dahlgren, C., 1997, Translocation of annexin XI to neutrophil subcellular organelles. Biochim. Biophys. Acta 1326:149–156.Google Scholar
  175. Smythe, E., Smith, P. D., Jacob, S. M., Theobald, J.. and Moss, S. E., 1994, Endocytosis occurs independently of annexin VI in human A431 cells. J. Cell Biol. 124:301–306.Google Scholar
  176. Sudhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C., 1984, Isolation of mammalian calelectrins: a new class of ubiquitous Ca2+-regulated proteins. Biochemistry 23:1103–1109.Google Scholar
  177. Swairjo, M. A., Concha, N. O., Kaetzel, M. A., Dedman, J. R., and Seaton, B. A., 1995, Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 2:968–974.Google Scholar
  178. Tagoe, C. E., Boustead, C. M., Higgins, S. J., and Walker, J. H., 1994, Characterization and immunolocalization of rat liver annexin VI. Biochim. Biophys. Acta 119:2272–280.Google Scholar
  179. Tahara, M., Coorssen, J. R., Timmers, K., Blank, P. S., Whalley, T., Scheller, R., and Zimmerberg, J., 1998, Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion. J. Biol. Chem. 273:33667–33673.Google Scholar
  180. Thiel, C., Osborn, M., and Gerke, V., 1992, The tight association of the tyrosine kinase substrate annexin II with the submembranous cytoskeleton depends on intact p11-and Ca(2+)-binding sites. J. Cell Sci. 103:733–742.Google Scholar
  181. Turgeon, J. L., Cooper, R. H., and Waring, D. W., 1991, Membrane-specific association of annexin I and annexin II in anterior pituitary cells. Endocrinology 128:96–102.Google Scholar
  182. Turpin, E., Russo Marie, F., Dubois, T., de Paillerets, C., Alfsen, A., and Bomsel, M., 1998, In adrenocortical tissue, annexins II and VI are attached to clathrin coated vesicles in a calcium-independent manner. Biochim. Biophys. Acta 1402:115–130.Google Scholar
  183. van Deurs, B., Petersen, O. W., Olsnes, S., and Sandvig, K., 1989, The ways of endocytosis. 6Int. Rev. Cytol. 117:131–177.Google Scholar
  184. Veras, P. S., de Chastellier, C., and Rabinovitch, M., 1992, Transfer of zymosan (yeast cell walls) to the parasitophorous vacuoles of macrophages infected with Leishmania amazonensis. J. Exp. Med 176:639–446.Google Scholar
  185. Voges, D., Berendes, R., Burger, A., Demange, P., Baumeister, W., and Huber, R., 1994, Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J. Mol. Biol. 238:199–213.Google Scholar
  186. Voges, D., Berendes, R., Demange, P., Benz, J., Gottig, P., Liemann, S., Huber, R., and Burger, A., 1995, Structure and function of the ion channel model system annexin V. Adv. Enzymol. Relat. Areas. Mol. Biol. 71:209–239.Google Scholar
  187. Wada, I., Lai, W. H., Posner, B. I., and Bergeron, J. J., 1992, Association of the tyrosine phosphorylated epidermal growth factor receptor with a 55-kD tyrosine phosphorylated protein at the cell surface and in endosomes. J. Cell Biol. 116:321–330.Google Scholar
  188. Wang, W., and Creutz, C. E., 1992, Regulation of the chromaffin granule aggregating activity of annexin I by phosphorylation. Biochemistry 31:9934–9939.Google Scholar
  189. Wang, W., and Creutz, C. E., 1994, Role of the amino-terminal domain in regulating interactions of annexin I with membranes: effects of amino-terminal truncation and mutagenesis of the phosphorylation sites. Biochemistry 33:275–282.Google Scholar
  190. Warnock, D. E., Hinshaw, J. E., and Schmid, S. L., 1996, Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem. 271:22310–22314.Google Scholar
  191. Watanabe, T., Inui, M., Chen, B. Y., Iga, M., and Sobue, K., 1994, Annexin VI-binding proteins in brain. Interaction of annexin VI with a membrane skeletal protein, calspectin (brain spectrin or fodrin). J. Biol. Chem. 269:17656–17662.Google Scholar
  192. Weber, K., and Johnsson, N., 1986, Repeating sequence homologies in the p36 target protein of retroviral protein kinases and lipocortin, the p37 inhibitor of phospholipase A2. FEBS Lett. 203:95–98.Google Scholar
  193. Wessling Resnick, M., and Braell, W. A., 1990, Characterization of the mechanism of endocytic vesicle fusion in vitro. J. Biol. Chem. 265:16751–16759.Google Scholar
  194. White, J. M., 1992, Membrane fusion. Science 258:917–924.Google Scholar
  195. White, J. M., 1995, Membrane fusion: the influenza paradigm. Cold. Spring. Harb. Symp. Quant. Biol. 60:581–588.Google Scholar
  196. Wright, J. F., Kurosky, A., and Wasi, S., 1994, An endothelial cell-surface form of annexin II binds human cytomegalovirus. Biochem Biophys. Res Commun. 198:983–989.Google Scholar
  197. Yamashiro, D. J., Tycko, B., Fluss, S. R., and Maxfield, F. R., 1984, Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37:789–800.Google Scholar
  198. Zaks, W. J., and Creutz, C. E., 1990a, Evaluation of the annexins as potential mediators of membrane fusion in exocytosis. J. Bioenerg. Biomembr. 22:97–120.Google Scholar
  199. Zaks, W. J., and Creutz, C. E., 1990b, Annexin-chromaffin granule membrane interactions: a comparative study of synexin, p32 and p67. Biochim. Biophys. Acta 1029:149–160.Google Scholar
  200. Zaks, W. J., and Creutz, C. E., 1991, Ca(2+)-dependent annexin self-association on membrane surfaces. Biochemistry 30:9607–9615.Google Scholar
  201. Zheng, X., and Bobich, J. A., 1998, A sequential view of neurotransmitter release. Brain Res. Bull. 47:117–128.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Helmut Kubista
    • 1
  • Sandra Sacre
    • 1
  • Stephen E. Moss
    • 1
  1. 1.Department of PhysiologyUniversity College LondonLondonUK

Personalised recommendations