Advertisement

Neurotoxins as Tools in Dissecting the Exocytic Machinery

  • Michal Linial
Part of the Subcellular Biochemistry book series (SCBI, volume 34)

Keywords

Synaptic Vesicle Chromaffin Cell Snare Complex Tetanus Toxin Hemifacial Spasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguado, F., Gombau, L., Majo, G., Marsal, J., Blanco, J., and Blasi, J., 1997, Regulated secretion is impaired in AtT-20 endocrine cells stably transfected with botulinum neurotoxin type A light chain, J. Biol. Chem. 272:26005–26008.Google Scholar
  2. Ahnert-Hilger, G., Bhakdi, S., and Gratzl, M., 1985, Minimal requirements for exocytosis. A study using PC 12 cells permeabilized with staphylococcal alpha-toxin, J.Biol. Chem. 260:12730–12734.Google Scholar
  3. Ahnert-Hilger, G., Wegenhorst, U., Stecher, B., Spicher, K., Rosenthal, W., and Gratz, M., 1992, Exocytosis from permeabilized bovine adrenal chromaffin cells is differently modulated by guanosine 5′-[gamma-thio]triphosphate and guanosine 5′-[beta gamma-imidoltriphosphate. Evidence for the involvement of various guanine nucleotide-binding proteins, Biochem. J. 284:321–326.Google Scholar
  4. Ahnert-Hilger, G., and Wiedenmann, B., 1994, Requirements for exocytosis in permeabilized neuroendocrine cells. Possible involvement of heterotrimeric G proteins associated with secretory vesicles, Ann. N. Y. Acad. Sci. 733:298–305.Google Scholar
  5. Arora, N., Williamson, L. C., Leppla, S. H., and Halpern, J. L., 1994, Cytotoxic effects of a chimeric protein consisting of tetanus toxin light chain and anthrax toxin lethal factor in non-neuronal cells, J. Biol. Chem. 269:26165–26171.Google Scholar
  6. Ashton, A. C., and Dolly, J. O., 1997, Microtubules and microfilaments participate in the inhibition of synaptosomal noradrenaline release by tetanus toxin, J. Neurochem. 68:649–458.Google Scholar
  7. Banerjee, A., Barry, V. A., DasGupta, B. R., and Martin, T., 1996, N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis, J. Biol. Chem. 271:20223–20226.Google Scholar
  8. Bean, A. J., Seifert, R., Chen, Y. A., Sacks, R., and Scheller, R. H., 1997, Hrs-2 is an ATPase implicated in calcium-regulated secretion, Nature 385:826–829.Google Scholar
  9. Bennett, M. K., 1994, Molecular mechanisms of neurotransmitter release, Ann. N. Y: Acad. Sci. 733:256–265.Google Scholar
  10. Bennett, M. K., 1995, SNAREs and the specificity of transport vesicle targeting, Curr. Opin. Cell Biol. 7:581–586.Google Scholar
  11. Bennett, M. K., and Scheller, R. H., 1993, The molecular machinery for secretion is conserved from yeast to neurons, Proc. Natl. Acad. Sci. USA 90:2559–2563.Google Scholar
  12. Bennett, M. K., and Scheller, R. H., 1994, Molecular correlates of synaptic vesicle docking and fusion, Curr. Opin. Neurobiol. 4:324–329.Google Scholar
  13. Buzzese, G., Agnoli, A., Agostino, R., Caraceni, T., Carella, F., G., D. F., D., D. G., and al., e., 1993, Botulinum toxin treatment in patients with focal dystonia and hemifacial spasm. A multicenter study of the Italian Movement Disorder Group, Ital. J. Neurol. Sci. 14:361–367.Google Scholar
  14. Binz, T., Blasi, J., Yamasaki, S., Baurneister, A., Link, E., Sudhoc T. C., Jahn, R., and Niemann, H., 1994, Proteolysis of SNAP-25 by types E and A botulinal neurotoxins, J. Biol. Chem. 269:1617–1620.Google Scholar
  15. Bittner, M. A., Bennett, M. K., and Holz, R. W., 1996, Evidence that syntaxin 1A is involved in storage in the secretory pathway, J. Biol. Chem. 271:11214–11221.Google Scholar
  16. Bittner, M. A., Krasnoperov, V. G., Stuenkel, E. L., Petrenko, A. G., and Holz, R. W., 1998, A Ca2+-independentreceptor for alpha-latrotoxin, CIRL, mediates effects on secretion via multiple mechanisms, J. Neurosci. 18:2914–2922.Google Scholar
  17. Blasi, J., Chapman, E. R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Sudhof, T. C., Niemann, H., and Jahn, R., 1993a, Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25, Nature 365:160–163.Google Scholar
  18. Blasi, J., Chapman, E. R., Yamasaki, S., Binz, T., Niemann, H., and Jahn, R., 1993b, Botulinum neurotoxinC1blocksneurotransmitterreleasebymeansofcleavingHPC-1/syntaxin, EMBO J. 12:4821–4828.Google Scholar
  19. Broadie, K., Prokop, A., Bellen, H. J., O’kane, C. J., Schulze, K. L., and Sweeny, S.T., 1995, Syntaxin and synaptobrevin function downstream ofvesicle docking in Drosophila, Neuron 15:663–673.Google Scholar
  20. Brose, N., 1998, Synaptic vesicle proteins— A genetic approach, in “Secretory systems and toxins”, Vol. 2. (M. Linial, A. Grasso, and P. Lazarovici, eds.), pp. 45–62, Harwood Academic Publishers, Amsterdam.Google Scholar
  21. Bruns, D., Engers, S., Yang, C., Ossig, R., Jeromin, A., and Jahn, R., 1997, Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis, J. Neurosci. 17:1898–1910.Google Scholar
  22. Calakos, N., and Scheller, R. H., 1994, Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle, J. Biol. Chem. 269:24536–24537.Google Scholar
  23. Ceccarelli, B., Hurlbut, W. P., and Iezzi, N., 1988, Effect of alpha-latrotoxin on the frog neuro-muscular junction at low temperature, J. Physiol. (Lond) 402:195–217.Google Scholar
  24. Chapman, E. R., An, S., Barton, N., and Jahn, R., 1994, SNAP-25, at-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils, J. Biol.Chem. 269:27427–27432.Google Scholar
  25. Chapman, E. R., Hanson, P. I., An, S., and Jahn, R., 1995, Ca2+ regulates the interaction between synaptotagmin and syntaxin 1, J. Biol. Chem. 270:23667–23671.Google Scholar
  26. Cornille, F., Deloye, F., Fournie, Z. M., Roques, B. P., and Poulain, B., 1995, Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain ofvesicle-associatedmembraneprotein/synaptobreviniscriticalforneuro-exocytosis, J. Biol. Chem. 270:16826–16832.Google Scholar
  27. Davletov, B. A., Shamotienko, O. G., Lelianova, V. G., Grishin, E. V., and Ushkaryov, Y. A., 1996, Isolation and biochemical characterization of a Ca2+-independenta-latrotoxin-binding protein, J. Biol. Chem. 271:23239–23245.Google Scholar
  28. Davletov, B. A., and Sudhof, T. C., 1994, Ca2+-dependent conformational change in synaptotagmin I, J. Biol. Chem. 269:28547–28550.Google Scholar
  29. Dayanithi, G., Stecher, B., Hohne, Z. B., Yamasaki, S., Binz, T., Weller, U., Niemann, H., and Gratzl, M., 1994, Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals, Neuroscience 58:423–431.Google Scholar
  30. De Filippis, V., Vangelista, L., Schiavo, G., Tonello, F., and Montecucco, C., 1995, Structural studies on the zinc-endopeptidaselightchainof tetanus neurotoxin, Eur. J. Biochem. 229:61–69.Google Scholar
  31. DeBello, W. M., Betz, H., and Augustine, G. J.,1993, Synaptotagmin and neurotransmitter release, Cell 74:947–950.Google Scholar
  32. Edwardson, J. M., 1998, Membrane fusion: all done with SNAREpins?, Curr. Biol. 8:390–393.Google Scholar
  33. El Far, O., Charvin, N., Leveque, C., Martin, M. N., Takahashi, M., and Seagar, M. J., 1995, Interaction of asynaptobrevin(VAMP)-syntaxincomplexwithpresynapticcalciumchannels, FEBS Lett. 361:101–105.Google Scholar
  34. Fasshauer, D., Eliason, W. K., Brunger, A. T., and Jahn, R., 1998, Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly, Biochemistry. 37:10354–10362.Google Scholar
  35. Ferro-Novick, S., and Jahn, R., 1994, Vesicle fusion from yeast to man, Nature 370:191–193.Google Scholar
  36. Fiedler, K., Lafont, F., Parton, R. G., and Simons, K., 1995, Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane, J. Cell. Biol. 128:1043–1053.Google Scholar
  37. Filippov, A. K., Kobrinsky, E. M., Tsurupa, G. P., Pashkov, V. N., and Grishin, E. V., 1990, Expression of receptor for a-latrotoxin in Xenopus oocytes after injection of mRNA from rat brain, Neuroscience 39:809–814.Google Scholar
  38. Filippov, A. K., Tertishnikova, S. M., Alekseev, A. E., Tsurupa, G. P., Pashkov, V. N., and Grishin, E. V., 1994, Mechanism of alpha-latrotoxin action asrevealed bypatch-clamp experiments on Xenopus oocytes injected with rat brain messenger RNA, Neuroscience 61:179–189.Google Scholar
  39. Foran, P., Lawrence, G. W., Shone, C. C., Foster, K. A., and Dolly, J. O., 1996, Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: Correlation with its blockade of catecholamine release, Biochemistry 35:2630–2636.Google Scholar
  40. Fournier, S., Novas, M. L., and Trifaro, J. M., 1989, Subcellular distribution of 65,000 calmodulin-binding protein (p65) and synaptophysin (p38) in adrenal medulla, J. Neurochem. 53:1043–1049.Google Scholar
  41. Fujita, Y., Shirataki, H., Sakisaka, T., Asakura, T., Ohya, T., Kotani, H., Yokoyama, S., Nishioka, H., Matsuura, Y., Mizoguchi, A., Scheller, R. H., and Takai, Y., 1998, Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process, Neuron 20:905–915.Google Scholar
  42. Fujita-Yoshigaki, J., Dohke, Y., Hara-Yokoyama, M., Furuyama, S., and Sugiya, H., 1998, Snare proteins essential for cyclic AMP-regulated exocytosis in salivary glands, Eur. J. Morphol. 36:46–49.Google Scholar
  43. Gaisano, H. Y., Sheu, L., Foskett, J. K., and Trimble, W. S., 1994, Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion, J. Biol. Chem. 269:17062–17066.Google Scholar
  44. Galli, T., Zahraoui, A., Vaidyanathan, V. V., Raposo, G., Tian, J. M., Karin, M., Niemann, H., and Louvard, D., 1998, A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells, Mol. Biol. Cell. 9:1431–1448.Google Scholar
  45. Geppert, M., Khvotchev, M., Krasnoperov, V., Goda, Y., Missler, M., Hammer, R.E., Ichtchenko, K., Petrenko, A. G., and Sudhof, T. C., 1998, Neurexin I-a is a major a-latrotoxin receptor that cooperates in a-latrotoxin action, J. Biol. Chem. 273:1705–1710.Google Scholar
  46. Girlanda, P., Vita, G., Nicolosi, C., Milone, S., and Messina, C., 1992, Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system, J. Neurol. Neurosurg. Psychiatry 55:844–845.Google Scholar
  47. Gobbi, M., Frittoli, E., and Mennini, T., 1996, Role of transglutaminase in [3H]5-HT release from synaptosomes and in the inhibitory effect of tetanus toxin, Neurochem.Int. 2:129–134.Google Scholar
  48. Gotte, M., and von Mollard, G. F., 1998, A new beat for the SNARE drum [see comments], Trends. Cell Biol. 8:215–218.Google Scholar
  49. Grishin, E. V., 1998, Black widow spider toxins: the present and the future, Toxicon 36:1693–1701.Google Scholar
  50. Grishin, E. V., Himmelreich, N. H., Pluzhnikov, K. A., Pozdnyakova, N. G., L. G., Volkova, T. M., and Woll, P. G., 1993, Modulation of functional activities of the neurotoxin from black widow spider venom, FEBS Lett. 336:205–207.Google Scholar
  51. Hackam, D. J., Rotstein, O. D., Sjolin, C., Schreiber, A. D., Trimble, W. S., and Grinstein, S., 1998, v-SNARE-dependent secretion is required for phagocytosis, Proc. Natl. Acad. Sci. USA 95:11691–11696.Google Scholar
  52. Halachmi, N., and Lev, Z., 1996, The Sec1 family: A novel family of proteins involved in synaptic transmission and general secretion, J. Neurochem. 66:889–897.Google Scholar
  53. Hanson, P. I., Heuser, J. E., and Jahn, R., 1997, Neurotransmitter release-four years of SNARE complexes, Curr. Opin. Neurobiol. 7:310–315.Google Scholar
  54. Hata, Y., Davletov, B., Petrenko, A. G., Jahn, R., and Sudhof, T. C., 1993, Interaction of synaptotagmin with the cytoplasmic domains of neurexins, Neuron 10:307–315.Google Scholar
  55. Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C., and Niemann, H., 1994, Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly, EMBO J. 13:5051–5061.Google Scholar
  56. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T., and Niemann, H., 1995, Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro, EMBO J. 14:2317–2325.Google Scholar
  57. Haynes, L. P., Barnard, R. J., Morgan, A, and Burgoyne, R. D., 1998, Stimulation of NSF ATPase activity during t-SNARE priming, FEBS Lett. 436:1–5.Google Scholar
  58. Hens, J. J., Ghijsen, W. E., Dimjati, W., Wiegant, V. M., Oestreicher, A. B., Gispen, W. H., and De Graan, P. N., 1993, Evidence for a role of protein kinase C substrate B-50 (GAP-43) in Ca2+-induced neuropeptide cholecystokinin-8 release from permeated synaptosomes, J. Neurochem. 61:602–409.Google Scholar
  59. Hirling, H., and Scheller, R. H., 1996, Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex, Proc. Natl. Acad.Sci. USA 93:11945–11949.Google Scholar
  60. Hohne, Z. B., Ecker, A., Weller, U., and Gratzl, M., 1994, Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells, FEBS Lett. 335:131–134.Google Scholar
  61. Holds, J. B., Alderson, K., Fogg, S. G., and Anderson, R. L., 1990, Motor nerve sprouting in human orbicularis muscle after botulinum A injection, Invest. Ophthalmol. Vis. Sci. 31:964–967.Google Scholar
  62. Horikawa, H. P., Saisu, H., Ishizuka, T., Sekine, Y., Tsugita, A., Odani, S., and Abe, T., 1993, A complex of rab3A, SNAP-25, VAMP/synaptobrevin-2 and syntaxins in brain presynaptic terminals, FEBS Lett. 330:236–240.Google Scholar
  63. Huang, X., Wheeler, M. B., Kang, Y. H., Sheu, L., Lukacs, G. L., Trimble, W. S., and Gaisano, H. Y., 1998, Truncated SNAP-25 (1–197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells, Mol. Endocrinol. l2:1060–1070.Google Scholar
  64. Hunt, J. M., Bommert, K., Charlton, M. P., Kistner, A., Habermann, E., Augustine, G. J., and Betz, H., 1994, A post-docking role for synaptobrevin in synaptic vesicle fusion, Neuron l2:1269–1279.Google Scholar
  65. Hurlbut, W. P., Chieregatti, E., Valtorta, F., and Haimann, C., 1994, α-Latrotoxin channels in neuroblastoma cells, J. Membr. Biol. 138:91–102.Google Scholar
  66. Ichtchenko, K., Khvotchev, M., Kiyatkin, N., Simpson, L., Sugita, S., and Sudhof, T. C., 1998, α-Latrotoxin action probed with recombinant toxin: receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal, EMBO J. 17:6188–6199.Google Scholar
  67. Igarashi, M., Kozaki, S., Terakawa, S., Kawano, S., Ide, C., and Komiya, Y., 1996, Growth cone collapseand and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth, J. Cell Biol. 134:205–215.Google Scholar
  68. Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C., and Simons, K., 1995, Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells, Cell 81:571–580.Google Scholar
  69. Jahn, R., and Hanson, P. I., 1998, Membrane fusion. SNAREs line up in new environment, Nature 393:14–15.Google Scholar
  70. Jahn, R., and Sudhof, T. C., 1994, Synaptic vesicles and exocytosis, Annu.Rev. Neurosci. 17:219–246.Google Scholar
  71. Jonas, J. C., Li, G., Palmer, M., Weller, U., and Wollheim, C. B., 1994, Dynamics of Ca2+ and guanosine 5′-[γ-S]triphosphate action on insulin secretion from alpha-toxin-permeabilized HIT-T15 cells, Biochem. J. 301:523–529.Google Scholar
  72. Kimura, K., Kimura, H., Yokosawa, N., Isogai, H., Isogai, E., Kozaki, S., Miyamoto, A., Nishikawa, T., Ohshika, H., Kubota, T., and Fujii, N., 1998, Negative chronotropic effect of botulinum toxin on neonatal rat cardiac myocytes, Biochem. Biophys. Res. Commun. 244:275–279.Google Scholar
  73. Kiyatkin, N. I., Kulikovskaya, I. M., Grishin, E. V., Beadle, D. J., and King, L. A., 1995, Functional characterization of black widow spider neurotoxins synthesised in insect cells, Eur. J. Biochem. 230:854–459Google Scholar
  74. Kozaki, S., Kamata, Y., Nishiki, T.-I., and Takahashi, M., 1998, Molecular mechanisms of the action of clostridium botulinum type B neurotoxin, in “Secretory systems and toxins”, Vol. 2. (M. Linial, A. Grasso, and P. Lazarovici, eds.), pp. 173–184, Harwood Academic Publishers, Amsterdam.Google Scholar
  75. Krasnoperov, V. G., Bittner, M. A., Beavis, R., Kuang, Y., Salnikow, K.V., Chepumy, 0. G., Little, A. R., Plotnikov, A. N., Wu, D., Holz, R. W., and Petrenko, A. G., 1997, a-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor, Neuron 18:925–937.Google Scholar
  76. Lang, J., Ushkaryov, Y., Grasso, A., and Wollheim, C. B., 1998, Ca2+-independent insulin exocytosis induced by alpha-latrotoxin requires latrophilin, a G protein-coupled receptor, EMBOJ. 17:648–657.Google Scholar
  77. Lawrence, G. W., Weller, U., and Dolly, J. O., 1994, Botulinum A and the light chain of tetanus toxins inhibit distinct stages of Mg.ATP-dependent catecholamine exocytosis from permeabilised chromaffin cells, Eur. J. Biochem. 222:325–333.Google Scholar
  78. Lazarovici, P., 1990, Characterization and visualization of tetanus toxin acceptors on adrenal chromaffin granules,J. Physiol. (Paris) 84:197–205.Google Scholar
  79. Lelianova, V. G., Davletov, B. A., Sterling, A., Rahman, M. A., Grishin, E. V., Totty, N. F., and Ushkaryov, Y. A., 1997, Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors, J. Biol. Chem. 272:21504–21508.Google Scholar
  80. Li, C., Ullrich, B., Zhang, J. Z., Anderson, R. G., Brose, N., and Sudhof, T. C., 1995, Ca2+-dependent and-independent activities of neural and non-neural synaptotagmins, Nature 375:594–599.Google Scholar
  81. Li, Y., Foran, P., Fairweather, N. F., de, P. A., Weller, U., Dougan, G., and Dolly, J. O., 1994, A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain, Biochemistry 33:7014–7020.Google Scholar
  82. Lin, R. C., and Scheller, R. H., 1997, Structural organization of the synaptic exocytosis core complex, Neuron 19:1087–1094.Google Scholar
  83. Linial, M., 1997, SNARE proteins-Whyso many ?Why so few?, J. Neurochem. 69:1781–1792.Google Scholar
  84. Linial, M., 1998, Neurotoxins and the safety-latches of the secretory process, in “Secretory systems and toxins”, Vol. 2. (M. Linial, A. Grasso, and P. Lazarovici, eds.), pp. 215–242, HarwoodAcademicPublishers, Amsterdam.Google Scholar
  85. Linial, M., Ilouz, N., and Feinstein, N., 1995, α-Latrotoxin is a potent inducer of neurotransmitter release in Torpedo electric organ-functional and morphological characterization, Eur.J. Neurosci. 7:742–752.Google Scholar
  86. Linial, M., Ilouz, N., and Parnas, H., 1997, Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery, J.Physiol.(Lond) 504:251–258.Google Scholar
  87. Linial, M., and Pamas, D., 1996, Deciphering neuronal secretion: tools of the trade., Biochim. Biophys.Acta. 1286:117–152.Google Scholar
  88. Link, E., Blasi, J., Chapman, E. R., Edelmann, L., Baumeister, A., Binz, T., Yamasaki, S., Niemann, H., and Jahn, R., 1994, Tetanus and botulinal neurotoxins. Tools to understand exocytosis in neurons, Adv. Second Messenger Phosphoprotein Res. 29:47–58.Google Scholar
  89. Link, E., Edelmann, L., Chou, J. H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., Sudhof, T. C., Niemann, H., and Jahn, R., 1992, Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis, Biochem. Biophys. Res. Commun. 189: 1017–1023.Google Scholar
  90. Littleton, J.T., and Bellen, H. J., 1995, Presynaptic proteins involved in exocytosis in Drosophila melanogaster: a genetic analysis, Invert Neurosci. 1:3–13.Google Scholar
  91. Littleton, J. T., Chapman, E. R., Kreber, R., Garment, M. B., Carlson, S. D., and Ganetzky, B., 1998, Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly, Neuron 21:401–413.Google Scholar
  92. Liu, J., and Misler, S., 1998, α-Latrotoxin alters spontaneous and depolarization-evoked quantal release from rat adrenal chromaffin cells: evidence for multiple modes of action, J.Neurosci. 18:6113–6125.Google Scholar
  93. Martin, M. N., Charvin, N., Leveque, C., Sato, K., Nishiki, T., Kozaki, S., Takahashi, M., and Seagar, M., 1996, Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes, J. Biol. Chem. 271:6567–6570.Google Scholar
  94. McMahon, H.T., Missler, M., Li, C., and Sudhof, T. C., 1995, Complexins: cytosolic proteins that regulate SNAP receptor function, Cell 83:111–119.Google Scholar
  95. Meldolesi, J., 1982, Studies on alpha-latrotoxin receptors in rat brain synaptosomes: correlation between toxin binding and stimulation of transmitter release, J. Neurochem. 38:1559–1569.Google Scholar
  96. Montecucco, C., and Schiavo, G., 1993, Tetanus and botulism neurotoxins: a new group of zinc proteases, Trends. Biochem. Sci. 18:324–327.Google Scholar
  97. Montecucco, C., and Schiavo, G., 1994, Mechanism of action of tetanus and botulinum neurotoxins, Mol. Microbiol. l3:1–8.Google Scholar
  98. Montecucco, C., and Schiavo, G., 1995, Structure and function of tetanus and botulinum neurotoxins, Q. Rev. Biophys. 28:423–472.Google Scholar
  99. Nemoz-Gaillard, E., Bosshard, A., Regazzi, R., Bernard, C., Cuber, J.C., Takahashi, M., Catsicas, S., Chayvialle, J. A., and Abello, J., 1998, Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release, FEBS Lett. 425:66–70.Google Scholar
  100. Nichols, B. J., and Pelham, H. R. B., 1998, SNAREs and membrane fusion in the golgi apparatus, Biochim. Biophys. Acta. 1404:9–31.Google Scholar
  101. Nielander, H. B., Onofri, F., Valtorta, F., Schiavo, G., Montecucco, C., Greengard, P., and Benfenati, F., 1995, Phosphorylation of VAMP/synaptobrevin in synaptic vesicles by endogenous protein kinases, J. Neurochem 65:1712–1720.Google Scholar
  102. Nonet, M. L., Grundahl, K., Meyer, B. J., and Rand, J. B., 1993, Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin, Cell 73:1291–1305.Google Scholar
  103. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B., and Wei, L., 1998, Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J. Neurosci. 18:70–80.Google Scholar
  104. O’Connor, V., Heuss, C., De Bello, W. M., Dresbach, T., Charlton, M. P., Hunt, J. H., Pellegrini, L. L., Hodel, A., Burger, M. M., Betz, H., Augustine, G. J., and Schafer, T., 1997, Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion, Proc. Natl. Acad. Sci. USA 94:12186–12191.Google Scholar
  105. Ohara-Imaizumi, M., Kameyama, K., Kawae, N., Takeda, K., Muramatsu, S., and Kumakura, K., 1992, Regulatory role of the GTP-binding protein, G(o), in the mechanism of exocytosis in adrenal chromaffin cells, J. Neurochem. 58:2275–2284.Google Scholar
  106. Otto, H., Hanson, P. I., Chapman, E. R., Blasi, J., and Jahn, R., 1995, Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex, Biochem. Biophys. Res. Commun. 212:945–952.Google Scholar
  107. Pang, D. T., Wang, J. K. T., Valtorta, F., Benfenati, F., and Greengard, P., 1988, Protein tyrosine phosphorylation in synaptic vesicles, Proc. Natl. Acad. Sci. USA 85:762–766.Google Scholar
  108. Pashkov, V., Grico, N., Tsurupa, G., Storchak, L., Shatursky, O., Himmerlreich, N., and Grishin, E., 1993, Monoclonal antibodies canuncouple the main alpha-latrotoxin effects: toxin-induced Ca2+ influx and stimulated neurotransmitter release, Neuroscience 56:695–701.Google Scholar
  109. Pellegrini, L. L., O’Connor, V., and Betz, H., 1994, Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain, FEBS Lett. 353:319–323.Google Scholar
  110. Pellegrini, L. L., O’Connor, V., Lottspeich, F., and Betz, H., 1995, Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion, EMBO J. 14:4705–4713.Google Scholar
  111. Pellizzari, R., Rossetto, O., Lozzi, L., Giovedi, S., Johnson, E., Shone, C. C., and Montecucco, C., 1996, Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins, J. Biol. Chem. 271:20353–20358.Google Scholar
  112. Petrenko, A. G., 1993, a-Latrotoxin receptor. Implications in nerve terminal function, FEBS Lett. 325:81–85.Google Scholar
  113. Pevsner, J., Hsu, S. C., Braun, J. E., Calakos, N., Ting, A. E., Bennett, M. K., and Scheller, R. H., 1994, Specificity and regulation of a synaptic vesicledocking complex, Neuron 13:353–361.Google Scholar
  114. Pevsner, J., and Scheller, R. H., 1994, Mechanisms of vesicle docking and fusion: insights from the nervous system, Curr. Opin. Cell Biol. 6:555–560.Google Scholar
  115. Poirier, M. A., Xiao, W., Macosko, J. C., Chan, C., Shin, Y. K., and Bennett, M. K., 1998, The synaptic SNARE complexisa parallel four-strandedhelical bundle, Nut. Struct. Biol. 5:765–769.Google Scholar
  116. Popov, S. V., and Poo, M. M., 1993, Synaptotagmin: a calcium-sensitive inhibitor of exocytosis?, Cell 73:1247–1249.Google Scholar
  117. Poulain, B., De, P. A., Deloye, F., Doussau, F., Tauc, L., Weller, U., and Dolly, J. O., 1996, Differences in the multiple step process of inhibition of neurotransmitter release induced by tetanus toxin and botulinum neurotoxins type A and B at Aplysia synapses, Neuroscience 70:567–576.Google Scholar
  118. Regazzi, R., Wollheim, C. B., Lang, J., Theler, J. M., Rossetto, O., Montecucco, C., Sadoul, K., Weller, U., Palmer, M., and Thorens, B., 1995, VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca2+-but not for GTPγS-induced insulin secretion, EMBO J. 14:2723–2730.Google Scholar
  119. Rosales, R. L., Arimura, K., Takenaga, S., and Osame, M., 1996, Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection, Muscle. Nerve. 19:488–496.Google Scholar
  120. Rosenthal, L., Zacchetti, D., Madeddu, L., and Meldolesi, J., 1990, Mode of action ofalphalatrotoxin: role of divalent cationsin Ca2+-dependent and Ca2+-independent effects mediated by the toxin, Mol. Pharmacol. 38:917–923.Google Scholar
  121. Rossetto, O., Schiavo, G., Montecucco, C., Poulain, B., Deloye, F., Lozzi, L., and Shone, C. C., 1994, SNARE motif and neurotoxins, Nature 372:415–416.Google Scholar
  122. Rossi, G., Salminen, A., Rice, L. M., Brunger, A.T., and Brennwald, P., 1997, Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9, J.Biol.Chem. 272:16610–16617.Google Scholar
  123. Rothman, J. E., 1994, Mechanisms of intracellular protein transport, Nature 372:55–63.Google Scholar
  124. Sanders, D., and Habermann, E., 1992, Evidence for a link between specific proteolysis and inhibition of [3H]-noradrenaline release by the light chain of tetanus toxin, Naunyn. Schmiedebergs. Arch. Pharmacol. 346:358–361.Google Scholar
  125. Scheer, H., Prestipino, G., and Meldolesi, J., 1986, Reconstitution of the purified alphalatrotoxin receptor in liposomes and planar lipid membranes. Clues to the mechanism of toxin action, EMBO J. 5:2643–2648.Google Scholar
  126. Scheller, R.H., 1995, Membrane trafficking in the presynaptic nerve terminal, Neuron 14:893–897.Google Scholar
  127. Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino, d. L. P., DasGupta, B. R., and Montecucco, C., 1992, Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin, Nature 359:832–835.Google Scholar
  128. Schiavo, G., Gu, Q. M., Prestwich, G. D., Sollner, T. H., and Rothman, J. E., 1996, Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin., Proc. Natl. Acad. Sci. USA 93:13327–13332.Google Scholar
  129. Schiavo, G., Malizio, C., Trimble, W. S., Polverino, d. L. P., Milan, G., Sugiyama, H., Johnson, E. A., and Montecucco, C., 1994a, Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond, J. Biol. Chem. 269:20213–20216.Google Scholar
  130. Schiavo, G., Rossetto, O., Benfenati, F., Poulain, B., and Montecucco, C., 1994b, Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus, Ann. N. Y. Acad. Sci. 710:65–75.Google Scholar
  131. Schiavo, G., Rossetto, O., Catsicas, S., Polverino, d. L. P., DasGupta, B. R., Benfenati, F., and Montecucco, C., 1993, Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E, J. Biol. Chem. 268:23784–23787.Google Scholar
  132. Schiavo, G., Stenbeck, G., Rothman, J. E., and Sollner, T. H., 1997, Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses, Proc. Natl. Acad. Sci. USA 94:997–1001.Google Scholar
  133. Shimazaki, Y., Nishiki, T., Omori, A,, Sekiguchi, M., Kamata, Y., Kozaki, S., and Takahashi, M., 1996, Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release, J. Biol. Chem. 271:14548–14553.Google Scholar
  134. Shoji-Kasai, Y., Yoshida, A., Ogura, A., Kuwahara, R., Grasso, A., and Takahashi, M., 1994, Synaptotagmin I is essential for Ca2+-independent release of neurotransmitter induced by α-latrotoxin, FEBS Lett. 353:315–318.Google Scholar
  135. Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H., and Rothman, J. E., 1993a, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell 75:409–418.Google Scholar
  136. Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument, B. H., Geromanos, S., Tempst, P., and Rothman, J. E., 1993b, SNAP receptors implicated in vesicle targeting and fusion, Nature 362:318–324.Google Scholar
  137. Stanley, E. F., and Mirotznik, R. R., 1997, Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels, Nature 385:340–343.Google Scholar
  138. Stecher, B., Ahnert-Hilger, G., Weller, U., Kemmer, T. P., and Gratzl, M., 1992, Amylase release from streptolysin o-permeabilized pancreatic acinar cells. Effects of Ca2+, guanosine 5′-[γ-S]triphosphate, cyclic AMP, tetanus toxin and botulinum Atoxin, Biochem.J. 283:899–904.Google Scholar
  139. Sudhof, T. C., 1995, The synaptic vesicle cycle: a cascade of protein-protein interactions, Nature 375: 645–653.Google Scholar
  140. Sudhof, T. C., and Rizo, J., 1996, Synaptotagmins: C2-domain proteins that regulate membrane traffic, Neuron 7:379–388.Google Scholar
  141. Sutton, R. B., Fasshauer, D., Jahn, R., and Brunger, A. T., 1998, Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution, Nature 395:347–353.Google Scholar
  142. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., and O’Kane, C. J.,1995, Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects, Neuron 14:341–351.Google Scholar
  143. Tim, R., and Massey, J. M., 1992, Botulinum toxin therapy for neurologic disorders, Postgrad. Med. 91:327–332.Google Scholar
  144. Van der Merwe, P. A., Millar, R. P., Wakefield, I. K., and Davidson, J. S., 1989, Mechanisms of luteinizing-hormone exocytosis in Staphylococcus aureus-alpha-toxin-permeabilized sheep gonadotropes, Biochem. J. 264:901–908.Google Scholar
  145. Washbourne, P., Pellizzari, R., Baldini, G., Wilson, M. C., and Montecucco, C., 1997, Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis, FEBS Lett. 418:1–5.Google Scholar
  146. Washbourne, P., Pellizzari, R., Rossetto, O., Bortoletto, N., Tbgnoli, V., De Grandis, D., Eleopra, R., and Montecucco, C., 1998, On the action of botulinum neurotoxins A and E at cholin-ergic terminals, J. Physiol. (Paris) 92:135–139.Google Scholar
  147. Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T. H., and Rothman, J. E., 1998, SNAREpins: minimal machinery for membrane fusion, Cell 92:759–772.Google Scholar
  148. Weir, M. L., Klip, A., and Trimble, W. S., 1998, Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP, Biochem. J. 333:247–251.Google Scholar
  149. Williamson, L. C., and Neale, E. A., 1998, Syntaxin and 25-kDa synaptosomal-associated protein: differential effects of botulinum neurotoxins, J. Neurosci. Res. 52:569–583.Google Scholar
  150. Yamasaki, S., Baumeister, A., Binz, T., Blasi, J., Link, E., Cornille, F., Roques, B., Fykse, E. M., Sudhof, T.C., Jahn, R., and et, a. l., 1994a, Cleavage of members of the Synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin, J. Bioi. Chem. 269:12764–12772.Google Scholar
  151. Yamasaki, S., Binz, T., Hayashi, T., Szabo, E., Yamasaki, N., Eklund, M., Jahn, R., and Niemann, H., 1994b, Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2, Biochem. Biophys. Res. Commun. 200:829–835.Google Scholar
  152. Yamasaki, S., Hu, Y., Binz, T., Kalkuhl, A., Kurazono, H., Tamura, T., Jahn, R., Kandel, E., and Niemann, H., 1994c, Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F, Proc. Natl. Acad. Sci. USA. 91:4688–4692.Google Scholar
  153. Yamasaki, S., Hu, Y., Binz, T., Kalkuhl, A., Kurazono, H., Tamura, T., Jahn, R., Kandel, E., and Niemann, H., 1994d, Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F, Proc. Natl. Acad. Sci. USA 91:4688–4692.Google Scholar
  154. Zhang, J. Z., Davletov, B. A., Sudhof, T. C., and Anderson, R. G., 1994, Synaptotagmin I is a high affinity receptor for clathrin AP-2: pimplications for membrane recycling, Cell 78:751–760.Google Scholar
  155. Zheng, X., and Bobich, J. A., 1998a, MgATP-Dependent and MgATP-Independent [3H)Noradrenaline Release from Perforated Synaptosomes Both Use N-Ethylmaleimide-Sensitive Fusion Protein, Biochemistry 37:12569–12575.Google Scholar
  156. Zheng, X., and Bobich, J. A., 1998b, A sequential view of neurotransmitter release, Brain Res. Bull. 47:117–128.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michal Linial
    • 1
  1. 1.Department of Biological Chemistry, The Alexander Silberman Institute of Life SciencesThe Hebrew UniversityJerusalemIsrael

Personalised recommendations