Specific Roles for Lipids in Virus Fusion and Exit Examples from the Alphaviruses

  • Margaret Kielian
  • Prodyot K. Chatterjee
  • Don L. Gibbons
  • Yanping E. Lu
Part of the Subcellular Biochemistry book series (SCBI, volume 34)


Membrane Fusion Fusion Peptide Target Membrane African Swine Fever Virus Sendai Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, A., Klimjack, M., Chatterjee, P. K., and Kielian, M., 1999a, Mapping an epitope of the Semliki Forest virus fusion protein exposed during virus-membrane fusion, Unpublished results.Google Scholar
  2. Ahn, A., Schoepp, R. J., Sternberg, D., and Kielian, M., 1999b, Growth and stability of a cholesterol-independent Semliki Forest virus mutant in mosquitoes, Unpublished results.Google Scholar
  3. Alcami, A., Carrascosa, A. L., and Vinuela, E., 1989, The entry of African swine fever virus into Vero cells Virol. 171:68–75.Google Scholar
  4. Allison, S. L., Schalish, J., Stiasny, K., Mandl, C. W., Kunz, C., and Heinz, F. X., 1995, Oligomeric rearrangementof tick-borneencephatitisvirusenvelopeproteinsinducedbyanacidic pH, J. Virol. 69:695–700.Google Scholar
  5. Aloia, R. C., Jensen, F. C., Curtain, C. C., Mobley, P. W., and Gordon, L. M., 1988, Lipid composition and fluidity of the human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 85:900–904.Google Scholar
  6. Aloia, R. C., Tian, H., and Jensen, F. C., 1993, Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes, Proc. Natl. Acad. Sci. USA 90:15181–5185.Google Scholar
  7. Alouf, J. E., and Geoffroy, C., 1991, Sourcebook of Bacterial Toxins (Alouf, J. E. and Freer, J. H., eds.) Academic Press, London. 147–186.Google Scholar
  8. Andres, G., Simon-Mateo, C., and Vinuela, E., 1997, Assembly of African swine fever virus: role of polyprotein pp220, J. Virol. 71:2331–2341.Google Scholar
  9. 1992, Arboviral diseases-United States, 1991, Morb. Mort. Wk. Rep. 41:545–548.Google Scholar
  10. 1994, Arbovirus disease-United States, 1993, Morb. Mort. Wk. Rep. 43:385–387.Google Scholar
  11. Asano, K., and Asano, A., 1988, Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction, Biochem. 27:1321–1329.Google Scholar
  12. Baker, K. A., Dutch, R. E., Lamb, R. A., and Jardetzky, T. S., 1999, Structural basis for paramyxovirus-mediated membrane fusion, Mol. Cell 3:309–319.Google Scholar
  13. Barth, B. U., Suomalainen, M., Liljeström, P., and Garoff, H., 1992, Alphavirus assembly and entry: Role of the cytoplasmic tail of the El spike subunit, J. Virol. 66:7560–7564.Google Scholar
  14. Barth, B. U., and Garoff, H., 1997, The nucleocapsid-binding spike subunit E2 of Semliki Forest virus requires complex formation with the El subunit for activity, J. Virol. 71:7857–7865.Google Scholar
  15. Basanez, G., Goni, F. M., and Alonso, A., 1998, Effect of single chain lipids on phospholipase c-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion, Biochem. 37:3901–3908.Google Scholar
  16. Bennett, M. K., and Scheller, R. H., 1994, A molecular description of synaptic vesicle membrane trafficking, Annu. Rev. Biochem. 63:63–100.Google Scholar
  17. Bentz, J., 1993, Viral Fusion Mechanisms, CRC Press, Boca Raton, Florida.Google Scholar
  18. Berger, E. A., 1997, HIVentryandtropism: the chemokine receptor connection, AIDS 11(Suppl A):S3-S16.Google Scholar
  19. Bernardes, C., António, A., De Lima, M. C. P., and Valdeira, M. L., 1998, Cholesterol affects African swine fever virus infection, Biochim. Biophys. Acta l393:19–25.Google Scholar
  20. Binley, J., and Moore, J. P., 1997, HIV-cell fusion: The viral mousetrap, Nature 387:346–348.Google Scholar
  21. Blobel, C. P., Wolfsberg, T. G., Turck, C. W., Myles, D. G., Primakoff, P., and White, J. M., 1992, A potential fusion peptide and an integrin ligand domain in a protein active in spermegg fusion, Nature 356:248–252.Google Scholar
  22. Braunwald, J., Nonnenmacher, H., Pereira, C. A., and Kirn, A., 1991, Increased susceptibility to mouse hepatitis virus type 3 (MHV3) infection induced by a hypercholesterolaemic diet with increased adsorption of MHV3 to primary hepatocyte cultures, Res. Virol. 14:25–15.Google Scholar
  23. Bron, R., Wahlberg, J. M., Garoff, H., and Wilschut, J., 1993, Membrane fusion of Semliki Forest virus in a model system: Correlation between fusion kinetics and structural changes in the envelope glycoprotein, EMBO J. 12:693–701.Google Scholar
  24. Brown, D. A., and Rose, J. K., 1992, Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface, Cell 68:533–544.Google Scholar
  25. Brown, D. A., and London, E., 1998, Functions of lipid rafts in biological membranes, Annu. Rev. Cell Dev. Biol. 14:111–136.Google Scholar
  26. Brown, D. T., and Edwards, J., 1992, Structural changes in alphaviruses accompanying the process of membrane penetration, Semin. Virol. 3:519–527.Google Scholar
  27. Brynes, A. P., and Griffin, D. E., 1998, Binding of sindbis virus to cell surface heparan sulfate, J. Virol. 72:7349–7356.Google Scholar
  28. Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C., 1994, Structure of influenza haemagglutinin at the pH of membrane fusion, Nature 371:37–43.Google Scholar
  29. Carr, C. M., and Kim, P. S., 1993, A spring-loaded mechanism for the conformational change of influenza hemagglutinin, Cell 73:823–832.Google Scholar
  30. Carrascosa, J. L., Carazo, J. M., Carrascosa, A. L., Garcia, N., Santisteban, A., and Vinuela, E., 1984, General morphology and capsid fine structure of African swine fever virus particles, Virol. 132:160–172.Google Scholar
  31. Cervin, M., and Anderson, R., 1991, Modulation of coronavirus-mediated cell fusion by homeostatic control of cholesterol and fatty acid metabolism, J. Med. Virol. 35:142–149.Google Scholar
  32. Chatterjee, P. K., and Kielian, M., 1999b, Mechanism of a mutation that controls the cholesterol dependence of the Semliki Forest virus fusion protein, Unpubished results.Google Scholar
  33. Cheetham, J. J., Epand, R. M., Andrews, M., and Flanagan, T. D., 1990, Cholesterol sulfate inhibits the fusion of Sendai virus to biological and model membranes, J. Biol. Chem. 265:12404–12409.Google Scholar
  34. Cheetham, J. J., Nir, S., Johnson, E., Flanagan, T. D., and Epand, R. M., 1994, The effects of membrane physical properties on the fusion of Sendai virus with human erythrocyte ghosts and liposomes. Analysis of kinetics and extent of fusion, J. Biol. Chem. 269:5467–5472.Google Scholar
  35. Chen, Y. A., Scales, S. J., Patel, S. M., Doung, Y.-C., and Scheller, R. H., 1999, SNARE complex formation is triggered by Ca2+ and drives membrane fusion, Cell 97:165–174.Google Scholar
  36. Cheng, R. H., Kuhn, R. J., Olson, N. H., Rossman, M. G., Choi, H.-K., Smith, T. J., and Baker, T. S., 1995, Nucleocapsid and glycoprotein organization in an enveloped virus, Cell 80:621–630.Google Scholar
  37. Chernomordik, L. V., and Zimmerberg, J., 1995, Bending membranes to thetask: structural intermediates in bilayer fusion, Curr. Opinion Struct. Biol. 5:541–547.Google Scholar
  38. Cho, C., Bunch, D. O., Faure, J.-E., Goulding, E. H., Eddy, E. H., Primakoff, P., and Myles, D. G., 1998, Fertilization defects in sperm from mice lacking fertilin B, Science 281:1857–1859.Google Scholar
  39. Citovsky, V., Rottem, S., Nussbaum, O., Laster, Y., Rott, R., and Loyter, A., 1988, Animal viruses are able to fuse with prokaryotic cells, J. Biol. Chem. 263:461–467.Google Scholar
  40. Cleverley, D. Z., Geller, H. M., and Lenard, J., 1997, Characterization of cholesterol-free insect cells infectible by baculoviruses:Effects of cholesterol on VSV fusion and infectivity and on cytotoxicity induced by influenza M2 protein, Exp. Cell Res. 233:288–296.Google Scholar
  41. Corver, J., Moesby, L., Erukulla, R. K., Reddy, K. C., Bittman, R., and Wilschut, J., 1995, Sphingolipid-dependent fusion of Semliki Forest virus with cholesterol-containing liposomes requires both the 3-hydroxylgroup and the double bond of the sphingolipid backbone, J. Virol. 69:3220–3223.Google Scholar
  42. Corver, J., Bron, R., Snippe, H., Kraaijeveld, C., and Wilschut, J., 1997, Membrane fusion activity of Semliki forest virus in a liposomal model system: Specific inhibition by Zn2+ ions, Virol. 238:14–21.Google Scholar
  43. Corver, J., 1998, Membrane fusion activity of Semliki Forest virus, Thesis: 1–164.Google Scholar
  44. Cossart, P., and Mengaud, J., 1989, Listeria monocytogenes: A model system for the molecular study of intracellular parasitism, Mol. Biol. Med. 6:463–474.Google Scholar
  45. Dawidowicz, E. A., 1987, Dynamics of membrane lipid metabolism and turnover, Annu. Rev. Biochem. 56:43–61.Google Scholar
  46. Daya, M., Cervin, M., and Anderson, R., 1988, Cholesterol enhances mouse hepatitis virusmediated cell fusion, Virol. 163:276–283.Google Scholar
  47. decurtis, I., and Simons, K., 1988, Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells, Proc. Natl. Acad. Sci. USA 85:8052–8056.Google Scholar
  48. Demel, R. A., and DeKrijff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109–132.Google Scholar
  49. DeTulleo, L., and Kirchhausen, T., 1998, The clathrin endocytic pathway in viral infection, EMBO J. 17:4585–4593.Google Scholar
  50. Doxsey, S. J., Brodsky, F. M., Blank, G. S., and Helenius, A., 1987, Inhibition of endocytosis by anti-clathrin antibodies, Cell 50:453–463.Google Scholar
  51. Duffus, W. A., Levy-Mintz, P., Klimjack, M. R., and Kielian, M., 1995, Mutations in the putative fusion peptide of Semliki Forest virus affect spike protein oligomerization and virus assembly, J. Virol. 69:2471–2479.Google Scholar
  52. Durrer, P., Galli, C., Hoenke, S., Corti, C., Gluck, R., Vorherr, T., and Brunner, J., 1996, H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region, J. Biol. Chem. 271: 13417–13421.Google Scholar
  53. Eidelman, O., Schlegel, R., Tralka, T. S., and Blumenthal, R., 1984, pH-dependent fusion induced by Vesicular Stomatitis virus glycoprotein reconstituted into phospholipid vesicles, J. Biol. Chem. 259:4622–4628.Google Scholar
  54. Ekstrom, M., Liljeström, P., and Garoff, H., 1994, Membrane protein lateral interactions control Semliki Forest virus budding, EMBO J. 13:1058–1064.Google Scholar
  55. Evans, J. P., 1999, Sperm disintegrins, egg integrins, and other cell adhesion molecules of mammalian gamete plasma membrane interactions, Frontiers in Bioscience 4:114–131.Google Scholar
  56. Falkow, S., Isberg, R. R., and Portnoy, D. A., 1992, The interaction of bacteria with mammalian cells, Annu. Rev. Cell Biol. 8:333–363.Google Scholar
  57. Forsell, K., Griffiths, G., and Garoff, H., 1996, Preformed cytoplasmic nucleocapsids are not necessary for alphavirus budding, EMBO J. 15:6495–6505.Google Scholar
  58. Fuller, S. D., Berriman, J. A., Butcher, S. J., and Gowen, B. E., 1995, Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex, Cell 81: 715–725.Google Scholar
  59. Gaedigk-Nitschko, K., Ding, M., Levy, M. A., and Schlesinger, M. J., 1990, Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure, Virol. 175:282–291.Google Scholar
  60. Gaedigk-Nitschko, K., and Schlesinger, M. J., 1991, Site-directed mutations in Sindbis virus E2 glycoprotein’s cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding, Virol. 183:206–214.Google Scholar
  61. Garoff, H., Wilschut, J., Liljeström, P., Wahlberg, J. M., Bron, R., Suomalainen, M., Smyth, J., Salminen, A., Barth, B. U., and Zhao, H., 1994, Assembly and entry mechanisms of Semliki Forest virus, Arch. Virol. 9:329–338.Google Scholar
  62. Garry, R. F., Bostick, D. A., Schram, R., and Waite, M. F., 1985, The ratio of plasma membrane cholesterol to phospholipid and the inhibition of Sindbis virus maturation by low NaCl medium, J. Gen. Virol. 66:1171–1177.Google Scholar
  63. Gilbert, R. J., Rossjohn, J., Parker, M. W., Tweten, R. K., Morgan, P. J., Mitchell, T. J., Errington, N., Rowe, A. J., Andrew, P. W., and Byron, O., 1998, Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae, J. Mol. Biol. 284:1223–1237.Google Scholar
  64. Glabe, C. G., 1985a, Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. 1. Specific association of bindin with gel-phase phospholipid vesicles, J. Cell Biol. 100:794–799.Google Scholar
  65. Glabe, C. G., 1985b, Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidyl-choline and phosphatidylserine in vitro., J. Cell Biol. 100:800–806.Google Scholar
  66. Glomb-Reinmund, S., and Kielian, M., 1998a, fus-1, a pH-shift mutant of Semliki Forest virus, acts by altering spike subunit interaction svia a mutation in the E2 subunit, J.Virol. 72:14281–4287.Google Scholar
  67. Glomb-Reinmund, S., and Kielian, M., 1998b, The role of low pH and disulfide shuffling in the entry and fusion of Semliki Forest virus and Sindbis virus, Virol. 248:372–381.Google Scholar
  68. Goldstein, J. L., Brown, M. S., Anderson, R. G., Russell, D. W., and Schneider, W. J., 1985, Receptor mediated endocytosis: Concepts emerging from the LDL receptor system, Annu. Rev. Cell Biol. 1:1–39.Google Scholar
  69. Gonzalez-Scarano, F., 1984, La Crosse bunyavirus can mediate pH-dependent fusion from without, Virol. l32:222–225.Google Scholar
  70. Greber, U., Willits, M., Webster, P., and Helenius, A., 1993, Stepwise dismantling of adenovirus 2 during entry into cells, Cell 75:477–486.Google Scholar
  71. Griffin, D. E., 1986, The Togaviridae and Flaviviridae (S. Schlesinger and M. J. Schlesinger, eds.) Plenum Press, New York. 209–249.Google Scholar
  72. Harouse, J. M., Bhat, S., Spitalnik, S. L., Laughlin, M., Stefano, K., Silberberg, D. H., and Gonzalez-Scarano, F., 1991, Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide, Science 253:320–323.Google Scholar
  73. He, L. L., Byun, H.-S., Smit, J., Wilschut, J., and Bittman, R., 1999, Enantioselective synthesis of a novel trans double bond ceramide analogue via catalytic asymmetric dihydroxylation of an enyne. The role of the trans double bond of ceramide in the fusion of Semliki Forest virus with target membranes, J. Amer. Chem. Soc. (in press).Google Scholar
  74. Helenius, A., Morein, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhorst, C., and Strominger, J. L., 1978, Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Natl. Acad. Sci. USA 75:3846–3850.Google Scholar
  75. Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84:404–420.Google Scholar
  76. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G., and White, J. M., 1996, Virus-cell and cell-cell fusion, Annu. Rev. Cell Dev. Biol. 12:627–661.Google Scholar
  77. Hernandez, L. D., Peters, R. J., Delos, S. E., Young, J. A. T., Agard, D. A., and White, J. M., 1997, Activation of a retroviral membrane fusion protein: Soluble receptor-induced liposome binding of the ALSV envelope glycoprotein, J. Cell Biol. 139:9455–1464.Google Scholar
  78. Hsu, M. C., Scheid, A., and Choppin, P. W., 1983, Fusion of Sendai virus with liposomes: Dependence on the viral fusion protein (F) and the lipid composition of liposomes, Virol. 126: 361–369.Google Scholar
  79. Hughson, F, M., 1995, Structural characterization of viral fusion proteins, Curr. Biol. 5:265–274.Google Scholar
  80. Ikonen, E., and Simons, K., 1998, Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells, Semin. Cell Dev. Biol. 9:503–509.Google Scholar
  81. Ivanova, L., and Schlesinger, M. J., 1993, Site-directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding, J. Virol. 67:2546–2551.Google Scholar
  82. Jain, S. K., DeCandido, S., and Kielian, M., 1991, Processing of the p62 envelope precursor protein of Semliki Forest virus, J. Biol. Chem. 266:5156–5161.Google Scholar
  83. Justman, J., Klimjack, M. R., and Kielian, M., 1993, Roleof spike protein conformational changes in fusion of Semliki Forest virus, J. Virol. 67:7597–7607.Google Scholar
  84. Keller, P., and Simons, K., 1998, Cholesterol is required for surface transport of influenza virus hemagglutinin, J. Cell Biol. 140:1357–1367.Google Scholar
  85. Kielian, M., and Helenius, A.. 1985, pH-induced alterations in the fusogenic spike protein of Semliki Forest Virus, J. Cell Biol. 101:2284–2291.Google Scholar
  86. Kielian, M., Jungerwirth, S., Sayad, K. U., and DeCandido, S., 1990, Biosynthesis, maturation, and acid-activation of the Semliki Forest virus fusion protein, J. Virol. 64:614–4624.Google Scholar
  87. Kielian, M., 1993, Viral Fusion Mechanisms (Bentz, J., ed.) CRC Press, Boca Raton, Florida. 385–412.Google Scholar
  88. Kielian, M., 1995, Membrane fusion and the alphavirus life cycle, Adv. Virus Res. 45:113–151.Google Scholar
  89. Kielian, M., Klimjack, M. R., Ghosh, S., and Duffus, W. A., 1996, Mechanisms of mutations inhibiting fusion and infection by Semliki Forest virus, J. Cell Biol. 134:863–872.Google Scholar
  90. Kielian, M. C., and Helenius, A., 1984, The role of cholesterol in the fusion of Semliki Forest virus with membranes, J. Virol. 52:281–283.Google Scholar
  91. Kielian, M. C., Keranen, S., Kaariainen, L., and Helenius, A., 1984, Membrane fusion mutants of Semliki Forest virus, J. Cell Biol. 98:139–145.Google Scholar
  92. Klappe, K., Wilschut, J., Nir, S., and Hoekstra, D., 1986, Parameters affecting fusion between Sendai virus andl iposomes. Role of viral proteins, liposome composition, and pH, Biochem. 25:8252–8260.Google Scholar
  93. Klimjack, M. R., Jeffrey, S., and Kielian, M., 1994, Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein, J. Virol. 68:6940–6946.Google Scholar
  94. Klimstra, W. B., Ryman, K. D., and Johnston, R. E., 1998, Adaptation of sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor, J. Virol. 72:7357–7366.Google Scholar
  95. Kozlov, M. M., and Markin, V. S., 1983, Possible mechanism of membrane fusion, Biofizika 28:255–261.Google Scholar
  96. Kundrot, C. E., Spangler, E. A., Kendall, D. A., MacDonald, R. C., and MacDonald, R. I., 1983, Sendai virus-mediated lysis of liposomes requires cholesterol, Proc. Natl. Acad. Sci. USA 80:1608–1612.Google Scholar
  97. Lamb, R. A., 1993, Paramyxovirus fusion: A hypothesis for changes, Virol. 197:1–11.Google Scholar
  98. Larsen, C. E., Alford, D. R., Young, L. J. T., McGraw, T. P., and Duzgunes, N., 1990, Fusion of simian immunodeficiency virus with liposomes and erythrocyte ghost membranes: effects of lipid composition, pH and calcicum, J. Gen. Virol. 71:1947–1955.Google Scholar
  99. Larsen, C. E., Nir, S., Alford, D. R., Jennings, M., Lee, K.-D., and Duzgunes, N., 1993, Human immunodeficiency virus type 1 (HIV-1) fusion with model membranes: kinetic analysis and the role of lipid composition, pH and divalent cations, Biochim. Biophys. Acta 1147: 223–236.Google Scholar
  100. Lee, S., Owen, K. E., Choi, H.-K., Lee, H., Lu, G., Wengler, G., Brown, D. T., Rossmann, M. G., and Kuhn, R. J., 1996, Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly, Structure 4:531–541.Google Scholar
  101. Lenard, J., 1993, Viral Fusion Mechanisms (Bentz, J., ed.) CRC Press, Boca Raton, Florida. 425–435.Google Scholar
  102. Liljeström, P., Lusa, S., Huylebroeck, D., and Garoff, H., 1991, in vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release, J. Virol. 65:4107–4113.Google Scholar
  103. Lobigs, M., and Garoff, H., 1990, Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62, J. Virol. 64:1233–1240.Google Scholar
  104. Long, D., Berson, J. F., Cook, D. G., and Doms, R. W., 1994, Characterization of human immun-odeficiency virus type 1 gp120 binding to liposomes containing galactosylceramide, J. Virol. 68:5390–5898Google Scholar
  105. Lu, Y. E., Cassese, T., and Kielian, M., 1999, The cholesterol requirement for Sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence, J. Virol. 73:4272–4278.Google Scholar
  106. Marquardt, M. T., Phalen, T., and Kielian, M., 1993, Cholesterol is required in the exit pathway of Semliki Forest virus, J. Cell Biol. 123:57–65.Google Scholar
  107. Marquardt, M. T., and Kielian, M., 1996, Cholesterol-depleted cells that are relatively permissive for Semliki Forest virus infection, Virol. 224:198–205.Google Scholar
  108. Martin, I., and Ruysschaert, J.-M., 1997, Comparison of lipid vesicle fusion induced by the putative fusion peptide of fertilin (a protein active in sperm-egg fusion) and the NH2-terminal domain of the HIV2 gp41, FEBS Lett. 405:351–355.Google Scholar
  109. Martin, I., Epand, R. M., and Ruysschaert, J.-M., 1998, Structural properties of the putative fusion peptide of fertilin, a protein active in sperm-egg fusion, upon interaction with the lipid bilayer, Biochem. 37:17030–17039.Google Scholar
  110. Mcdougal, J. S., Martin, L. S., Cort, S. P., Mozen, M., Heldebrant, C. M., and Evatt, B. L., 1985, Thermal inactivation of the acquired immunodeficiency syndrome virus, human T lymphotropic virus-III/lymphadenopathy-associated virus, with special reference to antihemophilic factor, J. Clin. Invest. 76:875–477.Google Scholar
  111. Melikyan, G. B., and Chernomordik, L. V., 1997, Membrane rearrangements in fusion mediated by viral proteins, Trends in Microbiol. 5:349–355.Google Scholar
  112. Mellman, I., Fuchs, R., and Helenius, A., 1986 Acidification of the endocytic and exocytic path-ways, Annu. Rev. Biochem. 55:663–700.Google Scholar
  113. Moesby, L., Corver, J., Erukulla, R. K., Bittman, R., and Wilschut, J., 1995, Sphingolipids active membrane fusion of Semliki Forest virus in a stereospecific manner, Biochem. 34:10319–10324.Google Scholar
  114. Mooesby, J. J., Dalrymple, J. M., Alving, C. R., and Russell, P. K., 1975, Interaction of Sindbis virus with liposomal model membranes, J. Virol. 15:225–231.Google Scholar
  115. Muga, A., Neugebauer, W., Hirama, T., and Surewicz, W. K., 1994, Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion, Biochem. 33:4444–4448.Google Scholar
  116. Nes, W. R., and McKean, M. L., 1977a, Biochemistry of steroids and other isopentenoids, University Park Press, Baltimore, MD.Google Scholar
  117. Nes, W. R., and McKean, M. L., 1977b, Biochemistry of Steroids and Other Isopentenoids University Park Press, Baltimore. 411–533.Google Scholar
  118. Nieva, J. L., Bron, R., Corver, J., and Wilschut, J., 1994, Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane, EMBO J. 13:2797–2804.Google Scholar
  119. Niidome, T., Kimura, M., Chiba, T., Ohmori, N., Mihara, H., and Aoyagi, H., 1997, Membrane interaction of synthetic peptides related to the putative fusogenic region of PH-30a, a protein in sperm-egg fusion, J. Peptide Res. 49:563–569.Google Scholar
  120. Nonnenmacher, H., Illinger, D., Kuhry, J. G., Kirn, A., and Braunwald, J., 1994, Contrary results onmousehepatitisvirustype3susceptibilityinA/Jmousehepatocytesofphos-phatidylserine treatment and of a hypercholesterolaemic diet: no correlation with membrane fluidity levels, Biochem. Biophys. Res. Comm. 204:1299–1304.Google Scholar
  121. Palmer, M., Vulicevic, I., Saweljew, P., Valeva, A., Kehoe, M., and Bhakdi, S., 1998, Streptolysin O: a proposed model of allosteric interaction between a pore-forming protein and its target lipid bilayer, Biochem. 37:2378–2383.Google Scholar
  122. Paredes, A. M., Heidner, H., Thuman-Commike, P., Prasad, B. V. V., Johnston, R. E., and Chiu, W., 1998, Structural localization of the E3 glycoprotein in attenuated Sindbis virus mutants, J. Virol. 72:1534–1541.Google Scholar
  123. Pereira, F. B., Goni, F. M., Muga, A., and Nieva, J. L., 1997a, Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects, Biophys. J. 73:1977–1986.Google Scholar
  124. Pereira, F. B., Goni, F. M., and Nieva, J. L., 1997b, Membrane fusion induced by the HIV type 1 fusion peptide: modulation of factors affecting glycoprotein 41 activity and potential anti-HIV compounds, AIDS Research and Human Retroviruses 13:1203–1211.Google Scholar
  125. Phalen, T., and Kielian, M., 1991, Cholesterol is required for infection by Semliki Forest virus, J. Cell Biol. 112:3615–4523.Google Scholar
  126. Phalen, T., 1993, Analysis of the Semliki Forest virus requirement for cholesterol during membrane fusion and infection. Thesis.Google Scholar
  127. Pleskoff, O., Seman, M., and Alizon, M., 1995, Amphotericin Bderivative blockshuman immunodeficiency virus type 1 entry after CD4 binding: Effect on virus-cell fusion but not on cell-cell fusion, J. Virol. 69:570–574.Google Scholar
  128. Podbilewicz, B., and White, J. G., 1994, Cell fusions in the developing epithelia of C. elegans, Dev. Biol. 161:408–424.Google Scholar
  129. Portnoy, D. A., Chakraborty, T., Goebel, W., and Cossart, P., 1992, Molecular determinants of Listeria monocytogenes pathogenesis, Infect. Immun. 60:1263–1267.Google Scholar
  130. Puri, A., Hug, P., Jernigan, K., Barchi, J., Kim, H.-Y., Hamilton, J., Wiels, J., Murray, G. J., Brady, R. O., and Blumenthal, R., 1998a, The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein, Proc. Natl. Acad. Sci. USA 95:14435–14440.Google Scholar
  131. Puri, A., Hug, P., Munoz-Barroso, I., and Blumenthal, R., 1998b, Human erythrocyte glycolipids promote HIV-1 envelope glycoprotein-mediated fusion of CD4+ cells, Biochem. Biophys. Res. Comm. 242:219–225.Google Scholar
  132. Pérez, L., and Carrasco, L., 1994, Involvement of, the vacuolar H+-ATPase in animal virus entry, J. Gen. Virol. 75:2595–2606.Google Scholar
  133. Rice, C. M., and Strauss, J. H., 1982, Association of Sindbis virion glycoproteins and their precursors, J. Mol. Biol. 154:325–348.Google Scholar
  134. Rice, C. M., Levis, R., Strauss, J. H., and Huang, H. V., 1987, Production of infectious RNA transcripts from Sindbis virus cDNA clones: Mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants, J. Virol. 61:3809–3819.Google Scholar
  135. Rosenwald, A. G., Machamer, C. E., and Pagano, R.E., 1992, Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway, Biochem. 31:3581–3590.Google Scholar
  136. Rossjohn, J., Feil, S. C., McKinstry, W. J., Tweten, R. K., and Parker, M. W., 1997, Structure of a cholesterol-binding, thiol-activate cytolysin and a model of its membrane form, Cell 89:685–692.Google Scholar
  137. Rossjohn, J., Gilbert, R. J. C., Crane, D., Morgan, P. J., Mitchell, T. J., Rowe, A. J., Andrew, P. W., Paton, J. C., Tweten, R. K., and Parker, M. W., 1998, The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae, J. Mol. Biol. 284:449–461.Google Scholar
  138. Rothman, J. E., and Warren, G., 1994, Implications of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4:220–233.Google Scholar
  139. Rottem, S., Hardegree, M. C., Grabowski, M. W., Fornwald, R., and Barile, M. E, 1976, Interaction between tetanolysin and mycoplasma cell membrane, Biochim. Biophys. Acta 455:876–888.Google Scholar
  140. Ruiz-Argüello, M. B., Goni, F. M., Pereira, F. B., and Nieva, J. L., 1998, Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus, J. Virol. 72:1775–1781.Google Scholar
  141. Salminen, A., Wahlberg, J. M., Lobigs, M., Liljeström, P., and Garoff, H., 1992, Membrane fusion process of Semliki Forest virus II: Cleavage-dependent reorganization of the spike protein complex controls virus entry, J. Cell Biol. 116:349–357.Google Scholar
  142. Scheiffele, P., Roth, M. G., and Simons, K., 1997, Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain, EMBO J. 16:5501–5508.Google Scholar
  143. Scheiffele, P., Rietveld, A., Wilk, T., and Simons, K., 1999, Influenza viruses select ordered lipid domains during budding from the plasma membrane, J. Biol. Chem. 274:2038–2044.Google Scholar
  144. Schlesinger, M. J., and Schlesinger, S., 1986, The Togaviridae and Flaviviridae (Schlesinger, S. and Schlesinger, M. J., eds.) Plenum Press, New York, NY. 121–148.Google Scholar
  145. Shepard, L. A., Heuck, A. P., Hamman, B. D., Rossjohn, J., Parker, M. W., Ryan, K. R., Johnson, A. E., and Tweten, R. K., 1998, Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: An alpha-helical to beta-sheet transition identified by fluorescence spectroscopy., Biochem. 37:14563–14574.Google Scholar
  146. Siegel, D. P., 1993, Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms, Biophys. J. 65:2124–2140.Google Scholar
  147. Silberkang, M., Havel, C. M., Friend, D. S., McCarthy, B. J., and Watson, J. A., 1983, Isoprene synthesis in isolated embryonic Drosophila cells. I. Sterol-deficient eukaryotic cells, J. Biol. Chem. 258:8303–8311.Google Scholar
  148. Skoging, U., Vihinen, M., Nilsson, L., and Liljeström, P., 1996, Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid, Structure 4:519–529.Google Scholar
  149. Snell, W. J., and White, J. M., 1996, The molecules of mammalian fertilization, Cell 85:629–437.Google Scholar
  150. Stegmann, T., Doms, R. W., and Helenius, A., 1989a, Protein-mediated membrane fusion, Annu. Rev. Biophys. Chem. 18:187–211.Google Scholar
  151. Stegmann, T., Nir, S., and Wilschut, J., 1989b, Membrane fusion activity of influenza virus. Effects of gangliosides and negatively charged phospholipids in target liposomes, Biochem. 28:1698–1704.Google Scholar
  152. Stegmann, T., and Helenius, A., 1993, Viral Fusion Mechanisms (Bentz, J., ed.) CRC Press, Boca Raton, Florida. 89–111.Google Scholar
  153. Strauss, J. H., Strauss, E. G., and Kuhn, R. J., 1995, Budding of alphaviruses, Trends in Microbiol. 3:346–350.Google Scholar
  154. Strauss, J. H., and Strauss, E. G., 1994, The alphaviruses: gene expression, replication, and evolution, Microbiol.Rev. 58:491–562.Google Scholar
  155. Suomalainen, M., Liljeström, P., and Garoff, H., 1992, Spike protein-nucleocapsid interactions drive the budding of alphaviruses, J. Virol. 66:4737–4747.Google Scholar
  156. Sutton, R. B., Fasshauer, D., Jahn, R., and Brunger, A. T., 1998, Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution, Nature 395:347–353.Google Scholar
  157. Tahara, M., Coorssen, J. R., Timmers, K., Blank, R S., Whalley, T., Scheller, R. H., and Zimmerberg, J., 1998, Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion, J. Biol. Chem. 273:33667–33673.Google Scholar
  158. Ubol, S., and Griffin, D. E., 1991, Identification of a putative alphavirus receptor on mouse neural cells, J. Virol. 65:1551–1557.Google Scholar
  159. Ulrich, A. S., Otter, M., Glabe, C. G., and Hoekstra, D., 1998, Membrane fusion is induced by a distinct peptide sequence of the sea urchin fertilization protein bindin, J. Biol. Chem. 273:16748–16755.Google Scholar
  160. Ungermann, C., Sato, K., and Wickner, W., 1998, Defining the functions of trans-SNARE pairs, Nature 396:543–548.Google Scholar
  161. Valdeira, M. L., and Geraldes, A., 1985, Morphological study on the entry of African swine fever virus into cells, Biol. Cell 55:35–40.Google Scholar
  162. Vashishtha, M., Phalen, T., Marquardt, M. T., Ryu, J. S., Ng, A. C., and Kielian, M., 1998, A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit, J. Cell Biol. 140:91–99.Google Scholar
  163. Wahlberg, J. M., Boere, W. A. M., and Garoff, H., 1989, The heterodimenc association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation, J. Virol. 63:4991–4997.Google Scholar
  164. Wahlberg, J. M., Bron, R., Wilschut, J., and Garoff, H., 1992, Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein, J. Virol. 66:7309–7318.Google Scholar
  165. Wahlberg, J. M., and Garoff, H., 1992, Membrane fusion process of Semliki Forest virus I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells, J. Cell Biol. 116:339–348.Google Scholar
  166. Wang, K. 4, Kuhn, R. J., Strauss, E. G., Ou, S., and Strauss, J. H., 1992, High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells, J. Virol. 66:4992–5001.Google Scholar
  167. Watson, K. C., and Kerr, E. J. C, 1974, Sterol structural requirements for inhibition of streptolysin O activity, Biochem. J. 140:95–98.Google Scholar
  168. Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T. H., and Rothman, J. E., 1998, SNAREpins: Minimal machinery for membrane fusion, Cell 92:759–772.Google Scholar
  169. Wege, H., Siddell, S., and Ter Meulen, V., 1983, The biology and pathogenesis of coronaviruses, Curr. Topics Microbiol. Immunol. 99:165–200.Google Scholar
  170. Weimbs, T., Low, S. H., Chapin, S. J., and Mostov, K. E., 1997, Apical targeting in polarized epithelial cells: there’s more afloat than rafts, Trends Cell Biol. 7:393–399.Google Scholar
  171. White, J., and Helenius, A., 1980, pH-dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. USA 77:3273–3277.Google Scholar
  172. White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87:264–272.Google Scholar
  173. White, J., Kartenbeck, J., and Helenius, A., 1982, Membrane fusion activity of influenza virus, EMBO J. 1:217–222.Google Scholar
  174. White, J. M., 1992, Membrane fusion, Science 258:917–924.Google Scholar
  175. Wiley, D. C., and Skehel, J. J., 1987, The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annu. Rev. Biochem. 56:365–394.Google Scholar
  176. Wilschut, J., Corver, J., Nieva, J. L., Bron, R., Moesby, L., Reddy, K. C., and Bittman, R., 1995, Fusion of Semliki Forest virus with cholesterol-containing liposomes at low pH: A specific requirement for sphingolipids, Mol. Membrane Biol. 12:143–149.Google Scholar
  177. Wolfsberg, T. G., and White, J. M., 1996, ADAMs in fertilization and development, Dev. Biol. 180:389–401.Google Scholar
  178. Yagami-Hiromasa, T., Sato, T., Kurisake, T., Kamijo, K., Nabeshima, H., and Fujisawa-Sehara, A., 1995, A metalloprotease-disintegrin participating in myoblast fusion, Nature 377:652–656.Google Scholar
  179. Yahi, N., Baghduiguian, S., Moreau, H., and Fantini, J., 1992, Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells, J. Virol. 66:4848–4354.Google Scholar
  180. Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., and Inoue, K., 1998, Lysenin, a novel sphin-gomyelin-specific binding protein, J. Biol. Chem. 273:5300–5306.Google Scholar
  181. Yu, Y. G., King, D. S., and Shin, Y.-K., 1994, Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes, Science 266:274–276.Google Scholar
  182. Zhao, H., and Garoff, H., 1992, Role of cell surface spikes in alphavirus budding, J. Virol. 66:7089–7095.Google Scholar
  183. Zhao, H., Lindqvist, B., Garoff, H., von Bonsdorff, C.-H., and Liljeström, P., 1994, A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding, EMBO J. 13:4204–4211.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Margaret Kielian
    • 1
  • Prodyot K. Chatterjee
    • 1
  • Don L. Gibbons
    • 1
  • Yanping E. Lu
    • 1
  1. 1.Department of Cell BiologyAlbert Einstein College of MedicineBronx

Personalised recommendations