A New Generation of Antiviral Therapeutics Designed to Prevent the Use of Chemokine Receptors for Entry by HIV-1

  • Benjamin J. Doranz
  • Robert W. Doms
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Chemokine Receptor Acquire Immune Deficiency Syndrome Viral Coreceptors Multicenter Acquire Immune Deficiency Syndrome Cohort Study Chemokine Receptor Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Sang, M. S., and Shaw, G. M., 1995, Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373:117–122.CrossRefPubMedGoogle Scholar
  2. 2.
    Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M., 1995, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373:123–126.CrossRefPubMedGoogle Scholar
  3. 3.
    Gazzard, B., 1996, What we know so far, AIDS 10 (Suppl. 1):S3–S7.PubMedGoogle Scholar
  4. 4.
    Maddon, P.J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R., 1986, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Call 47:333–348.Google Scholar
  5. 5.
    Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J. C., and Montagnier, L., 1984, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312:767–768.CrossRefPubMedGoogle Scholar
  6. 6.
    Dalgleish, A. G., Beverley, P. C., Clapham, P. R., Crawford, D. H., Greeves, M. F., and Weiss, R. A., 1984, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature 312:763–767.CrossRefPubMedGoogle Scholar
  7. 7.
    Dragic, T., Charneau, P., Clavel, F., and Alizon, M., 1992, Complementation of murine cells for human immunodeficiency virus envelope/CD4-mediated fusion in human/murine heterokaryons, J. Virol. 66:4794–4802.PubMedGoogle Scholar
  8. 8.
    Broder, C. C., Dimitrov, D. S., Blumenthal, R., and Berger, E. A., 1993, The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s), Virology 193:483–491.CrossRefPubMedGoogle Scholar
  9. 9.
    Miedema, F., Meyaard, L., Koot, M., Klein, M. R., Roos, M. T. L., Groenink, M., Fouchier, R. A. M., Van’tWout, A. B., Tersmette, M., Schellekens, P. T. A., and Schuitemaker, H., 1994, Changing virus-hostinteractions inthecourseof HIV-1infection, Immunol. Rev. 140:35–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Collman, R., Balliet, J. W., Gregory, S. A., Friedman, H., Kolson, D. L., Nathanson, N., and Srinivasan, A., 1992, An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1, J. Virol. 66:7517–7521.PubMedGoogle Scholar
  11. 11.
    O’Brien, W. A., Koyanagi, Y., Namazie, A., Zhao, J. Q., Diagne, A., Idler, K, Zack, J. A., and Chen, I. S. Y., 1990, HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain, Nature 348:69–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Hwang, S. S., Boyle, T. J., Lyerly, H. K., and Cullen, B. R., 1991, Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1, Science 253:71–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Shioda, T., Levy, J. A., and Cheng-Meyer, C., 1991, Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene, Nature 349:167–169.CrossRefPubMedGoogle Scholar
  14. 14.
    Van’t Wout, A. B., Kootstra, N. A., Mulder-Kampinga, G. A., Albrecht van Lent, N., Scherp bier, H. J., Veenstra, J., Boer, K., Coutinho, R. A., Miedema, F., and Schuitemaker, H., 1994, Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission, J. Clin. Invest. 94:2060–2067.CrossRefGoogle Scholar
  15. 15.
    Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P.W., Weiss, R.A., and Clapham, P. R., 1996, Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry, J. Virol. 70:8355–8360.PubMedGoogle Scholar
  16. 16.
    Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., and Landau, N. R., 1997, Change in coreceptor use correlates with disease progression in HlV-1 infected individuals, J. Exp. Med. 185:621–628.CrossRefPubMedGoogle Scholar
  17. 17.
    Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A., 1996, HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G proteinzoupled receptor, Science 272:872–877.PubMedCrossRefGoogle Scholar
  18. 18.
    Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T. A., 1996, The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry, Nature 382:829–833.CrossRefPubMedGoogle Scholar
  19. 19.
    Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J. L., Aarenzana-Seisdedos, F., Schwartz, O., Heard, J. M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B., 1996, The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1, Nature 382:833435.CrossRefGoogle Scholar
  20. 20.
    Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J., 1996, The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates, Cell 85:1135–1148.CrossRefPubMedGoogle Scholar
  21. 21.
    Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., DiMarzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R., 1996, Identification of a major co-receptor for primary isolates of HIV-1, Nature 381:661–666.CrossRefPubMedGoogle Scholar
  22. 22.
    Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W., 1996, A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors, Cell 85:1149–1158.CrossRefPubMedGoogle Scholar
  23. 23.
    Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A., 1996, CC CKR5: A RANTES, MIP-1a, MIP-1α receptor as a fusion cofactor for macrophage-tropic HIV-1, Science 272:1955–1958.PubMedCrossRefGoogle Scholar
  24. 24.
    Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A., 1996, HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5, Nature 381:667–673.CrossRefPubMedGoogle Scholar
  25. 25.
    Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P., 1995, Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells, Science 270:1811–1815.PubMedCrossRefGoogle Scholar
  26. 26.
    Samson, M., Labbe, O., Mollereau, C., Vassart, G., and Parmentier, M., 1996, Molecular cloning and functional expression of a new human CC-chemokine receptor gene, Biochemistry 35:3362–3367.CrossRefPubMedGoogle Scholar
  27. 27.
    Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., Cheng-Mayer, C., Robinson, J., Maddon, P. J., and Moore, J. P., 1996, CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5, Nature 384184-187.Google Scholar
  28. 28.
    Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C., and Sodroski, J., 1996, CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5, Nature 384:184–187.CrossRefGoogle Scholar
  29. 29.
    Lapham, C. K., Ouyang, J., Chandrasekhar, B., Nguyen, N.Y., Dimitrov, D. S., and Golding, H., 1996, Evidence for cell-surface association between fusin and the CD4-gp120 complex in human cell lines, Science 274:602–605.PubMedCrossRefGoogle Scholar
  30. 30.
    Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., Saragosti, S., Lapouméroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G., and Parmentier, M., 1996, Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene, Nature 382:722–725.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhlmann, H., Koup, R. A., and Landau, N. R., 1996, Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiplyexposed individuals to HIV-1 infection, Cell 86:367–377.PubMedCrossRefGoogle Scholar
  32. 32.
    Biti, R., French, R., Young, J., Bennetts, B., and Stewart, G., 1997, HIV-1 infection in an individual homozygous for the CCR5 deletion allele, Nature Med. 3:252–253.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Brien, T. R., Winkler, C., Dean, M., Nelson, J. A. E., Carrington, M., Michael, N. L., and White, 11, G. C., 1997, HIV-1 infection in a man homozygous for CCR5Δ32, Lancet 349:1219.PubMedCrossRefGoogle Scholar
  34. 34.
    Theodorou, I., Meyer, L., Magierowska, M., Katlama, C., Rouzioux, C., and the Seroco Study Group, 1997, HIV-1 infection in an individual homozygous for CCR5Δ32, Lancet 349:1219–1220.CrossRefPubMedGoogle Scholar
  35. 35.
    Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study, and O’Brien, S. J., 1996, Genetic resistance of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene, Science 273:1856–1862.PubMedCrossRefGoogle Scholar
  36. 36.
    Michael, N. L., Chang, G., Louie, L. G., Mascola, J. R., Dondero, D., Birx, D. L., and Sheppard, H. W., 1997, The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression, Nature Med. 3:338–340.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang, Y., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L., He, T., Kang, S., Ceradini, D., Jin, Z., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D., and Koup, R. A., 1996, The role of a mutant CCR5 allele in HIV-1 transmission and disease progression, Nature Med. 2:1240–1243.PubMedCrossRefGoogle Scholar
  38. 38.
    Ansari-Lari, M. A., Liu, X. M., Metzker, M. L., Rut, A. R., and Gibbs, R. A,, 1997, The extent of genetic variation in the CCR5 gene, Nature Genet. 16:221–222.CrossRefPubMedGoogle Scholar
  39. 39.
    Doranz, B. J., Lu, Z., Rucker, J., Zhang, T., Sharron, M., Cen, Y., Wang, Z., Guo, H., Du, J., Accavitti, M. A., Doms, R. W., and Peiper, S. C., 1997, Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1, J. Virol. 71:6305–6314.PubMedGoogle Scholar
  40. 40.
    Farzan, M., Choe, H., Martin, K. A., Sun, Y., Sidelko, M., Mackay, C. R., Gerard, N. P., Sodroski, J., and Gerard, C., 1997, HIV-1 entry and macrophage inflammatory protein-lbmediated signaling are independent functions of the chemokine receptor CCR5, J. Biol. Chem. 272:6854–6857.PubMedCrossRefGoogle Scholar
  41. 41.
    Gosling, J., Monteclaro, F. S., Atchison, R. E., Arai, H., Tsou, C., Goldsmith, M. A., and Charo, I. F., 1997, Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction for HIV-1 coreceptor activity, Proc. Natl. Acad. Sci. USA 94:5061–5066.CrossRefPubMedGoogle Scholar
  42. 42.
    Alkhatib, G., Locati, M., Kennedy, P. E., Murphy, P. M., and Berger, E. A., 1997, HIV-1 coreceptor activity of CCR.5 and its inhibition by chemokines: Independence from G protein signaling and importance of coreceptor downmodulation, Virology 234:340–348.CrossRefPubMedGoogle Scholar
  43. 43.
    Smith, M. W., Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Lomb, D. A., Goedert, J.J., O’Brien, T. R., Jacobson, L. P., Kaslow, R., Buchbinder, S., Vittinghoff, E., Vlahov, D., Hoots, K., Hilgartner, M. W., Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study, and O’Brien, S. J., 1997, Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression, Science 277:959–965.PubMedCrossRefGoogle Scholar
  44. 44.
    He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., Busciglio, J., Yang, X., Hofmann, W., Newman, W., Mackay, C. R., Sodroski, J., and Gabuzda, D., 1997, CCR3 and CCR5 are co-receptors for HlV-1 infection of microglia, Nature 385:645–649.PubMedCrossRefGoogle Scholar
  45. 45.
    Premack, B. A., and Schall, T. J., 1996, Chemokine receptors: Gateways to inflammation and infection, Nature Med. 2:1174–1178.PubMedCrossRefGoogle Scholar
  46. 46.
    Trkola, A., Paxton, W. A., Monard, S. P., Hoxie, J. A., Siani, M. A., Thompson, D. A., Wu, L., Mackay, C. R., Horuk, R., and Moore, J. P., 1998, Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC-chemokines, J. Virol. 72:396–404.PubMedGoogle Scholar
  47. 47.
    Amara, A., Le Gall, S., Schwartz, O., Salamero, J., Montes, M., Loetscher, P., Baggiolini, M., Virelzier, J.-L., and Arenzana-Seisdedos, F., 1997, HIV coreceptor downregulation as antiviral principle: SDF-1α-dependentinternalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication, J. Exp. Med. 186:139–146.CrossRefPubMedGoogle Scholar
  48. 48.
    Frade, J. M. R., Liorente, M., Mellado, M., Alcami, J., Gutierrez-Ramos, J. C., Zaballos, A., del Real, G., and Martinez-A, C., 1997, The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection, J. Clin. Invest. 100:497–502.PubMedCrossRefGoogle Scholar
  49. 49.
    Pal, R, Garzino-Demo, A., Markham, P. D., Burns, J., Brown, M., Gallo, R. C., and DeVico, A. L., 1997, Inhibition of HIV-1 infection by the β-chemokine MDC, Science 278:595–698.CrossRefGoogle Scholar
  50. 50.
    Schmidtmayerova, H., Sherry, B., and Bukrinsky, M., 1996, Chemokines and HIV replication, Nature 382:767.CrossRefPubMedGoogle Scholar
  51. 51.
    Weissman, D., Rabin, R. L., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., Venkatesan, S., Farber, J. M., and Fauci, A. S., 1997, Macrophage-tropic HIV and SIV envelope induce a signal through the CCR5 chemokine receptor, Nature 389:981–985.CrossRefPubMedGoogle Scholar
  52. 52.
    Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J., and Littman, D. R., 1997, Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5, J. Exp. Med. 186:1793–1798.CrossRefPubMedGoogle Scholar
  53. 53.
    Simmons, G., Clapham, P. R., Picard, L., Offord, R. E., Rosenkilde, M. M., Schwartz, T. W., Buser, R., Wells, T. N. C., and Proudfoot, A. E. I., 1997, Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist, Science 276:276–279.CrossRefPubMedGoogle Scholar
  54. 54.
    Boshoff, C., Endo, Y., Collins, P. D., Takeuchi, Y., Reeves, J. D., Schweickart, V. L., Siani, M. A., Sasaki, T., Williams, T. J., Gray, P. W., Moore, P. S., Chang, Y., and Weiss, R. A., 1937, Angiogenic and HIV inhibitory functions of KSHV-encoded chemokines, Science 278:290–294.CrossRefGoogle Scholar
  55. 55.
    Kledal, T. N., Rosenkilde, M. M., Coulin, F., Simmons, G., Johnsen, A. H., Alouani, S., Power, C. A., Ltittichau, H. R., Gerstoft, J., Clapham, P. R., Clark-Lewis, I., Wells, T. N. C., and Schwartz, T. W., 1997, A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus, Science 277:1656–1659.CrossRefPubMedGoogle Scholar
  56. 56.
    Marshall, E., Woolford, L. B., and Lord, B. I., 1997, Continuous infusion of macrophage inflammatory protein MIP-1a enhances leucocyte recovery and haemopoietic progenitor cell mobilization after cyclophosphamide, J. Cancer 75:1715–1720.Google Scholar
  57. 57.
    Lord, B. I., Woolford, L. B., Wood, L. M., Czaplewski, L. G., McCourt, M., Hunter, M. G., and Edwards, R. M., 1995, Mobilization of early hematopoetic progenitor cells with BB-10010: A genetically engineered variant of human macrophage inflammatory protein-la, Blood 12:3412–3415.Google Scholar
  58. 58.
    Owen-Lynch, P. J., Adams, J. A., Brereton, M. L., Czaplewski, L. G., Whetton, A. D., and Yin, J. A. L., 1996, The effect of the chemokine rhMIP-1α, and a non-aggregating variant BB-10010, on blast cells from patients with acute myeloid leukaemia, Br. J. Haematol. 95:77–84.CrossRefPubMedGoogle Scholar
  59. 59.
    Gordon, M. S., McCaskill-Stevens, W. J., Broxmeyer, H. E., Battiato, L. A., Harrison-Mann, B., Kovalsky, M., Rasmussen, H. S., and Sledge, G. W., 1996, A phase I trial of subcutaneous BB-10010 in breast-cancer patients receiving high-dose cyclophosphamide, Exp. Hematol. 24:1104.Google Scholar
  60. 60.
    Czaplewski, L. G., 1997, Preclinical and clinical evaluation of the therapeutic potential of hMIP-1 alpha, hMIP-1 beta, and Rantes, Presented at the IBC Conference on HIV Coreceptors. Baltimore, Maryland.Google Scholar
  61. 61.
    Van’t Wout, A. B., De Jong, M. D., Kootstra, N. A., Veenstra, J., Lange, J. M. A., Boucher, C. A. B., and Schuitemaker, H., 1996, Changes in cellular virus load and zidovudine resistance of syncytium-inducing and non-syncytium-inducing human immunodeficiency virus populations under zidovudine pressure: A clonal analysis, J. Infect. Dis. 174:845–849.Google Scholar
  62. 62.
    Delforge, M. L., Liesnard, C., Debaisieux, L., Tchetcheroff, M., Farber, C. M., and Van Vooren, J. P., 1995, In vivo inhibition of syncytium-inducing variants of HIV in patients treated with didanosine, AIDS 9:89–90.PubMedCrossRefGoogle Scholar
  63. 63.
    Zheng, N. N., McQueen, P. W., Hurren, L., Evans, L. A., Law, M. G., Forde, S., Barker, S., Cooper, D. A., and Delaney, S. F., 1996, Changes in biologic phenotype ofhuman immunodeficiency virus during treatment of patients with didanosine, J. Infect. Dis. 173:1092–1096.PubMedGoogle Scholar
  64. 64.
    Van’t Wout, A. B., Ran, L. J., de Jong, M. D., Bakker, M., van Leeuwen, R., Notermans, D. W., Loeliger, A. E., de Wolf, F., Danner, S. A., Reiss, P., Boucher, C. A. B., Lange, J. M. A., and Schuitemaker, H., 1997, Selective inhibition of syncytium-inducing and non-syncytiuminducing HIV-1 variants in individuals receiving didanosine or zidovudine, respectively, J. Clin. Infect. 100:2325–2332.Google Scholar
  65. 65.
    Chen, J. D., Bai, X., Yang, A. G., Cong, Y., and Chen, S. Y., 1997, Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy, Nature Med. 3:1110–1116.PubMedCrossRefGoogle Scholar
  66. 66.
    Yang, A. G., Bai, X., Huang, X. F., Yao, C., and Chen, S. Y., 1997, Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection, Proc. Natl. Acad. Sci. USA 94:11567–11572.PubMedCrossRefGoogle Scholar
  67. 67.
    Mebatsion, T., Finke, S., Weiland, F., and Conzelmann, K. K., 1997, A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells, Cell 90:841–847.CrossRefPubMedGoogle Scholar
  68. 68.
    Schnell, M.J., Johnson, J. E., Buonocore, L., and Rose, J. K., 1997, Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection, Cell 90:849–857.CrossRefPubMedGoogle Scholar
  69. 69.
    Endres, M. J., Jaffer, S., Haggarty, B., Turner, J. D., Doranz, B. J., O’Brien, P. J., Kolson, D. L., and Hoxie, J. A., 1997, Targeting of HIV-and SIV-infected cells by CD4-chemokine receptor pseudotypes, Science 278:1462–1464.CrossRefPubMedGoogle Scholar
  70. 70.
    Doranz, B. J., Grovit-Ferbas, K, Sharron, M. P., Mao, S., Goetz, M. B., Daar, E. S., Doms, R. W., and O’Brien, W. A., 1997, A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor, J. Exp. Med. 186:1395–1400.CrossRefPubMedGoogle Scholar
  71. 71.
    Murakami, T., Nakajima, T., Koyanagi, Y., Tachibana, K, Fujii, N., Tamamura, H., Yoshida, N., Waki, M., Matsumoto, A., Yoshie, O., Kishimoto, T., Yamamoto, N., and Nagasawa, T., 1997, A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection, J. Exp. Med. 186:1389–1393.CrossRefPubMedGoogle Scholar
  72. 72.
    Schols, D., Struyf, S., Van Damme, J., Esté, J. A., Henson, G., and De Clerq, E., 1997, Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4, J. Exp. Med. 186:1383–1388.CrossRefPubMedGoogle Scholar
  73. 73.
    Donzella, G. A., Schols, D., Lin, S. W., Esté, J. A., Nagashima, K. A., Maddon, P.J., Allaway, G. P., Sakmar, T. P., Henson, G., De Clerq, E., and Moore, J. P., 1998, AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor, Nature Med. 472–77.Google Scholar
  74. 74.
    Nakashima, H., Masuda, M., Murakami, T., Koyanagi, Y., Matsumoto, A., Fujii, N., and Yamamoto, N. Y., 1992, Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7] polyphemusin 11): A possible inhibitor of virus-cell fusion, Antimicrob. Agents Chemother. 36:1249–1255.PubMedGoogle Scholar
  75. 75.
    Tamamura, H., Murakami, T., Masuda, M., Otaka, A., Takada, W., Ibuka, T., Nakashima, H., Waki, M., Matsumoto, A., Yamamoto, N., and Fujii, N., 1994, Structure-activity relationships of an anti-HIV peptide, T22, Biochem. Biophys. Res. Commun. 205:1729–1735.CrossRefPubMedGoogle Scholar
  76. 76.
    Tamamura, H., Kuroda, M., Masuda, M., Otaka, A., Funakoshi, S., Nakashima, H., Yamamoto, N., Waki, M., Matsumoto, A., Lancelin, J. M., Kohda, D., Tate, S., Inagaki, F., and Fujii, N., 1993, A comparative study of the solution structures of tachyplesin I and a novel anti-HIV synthetic peptide, T22 ( [Tyr5,12, Lys7]-polyphemusin II), determined by nuclear magnetic resonance, Biochim. Biophys. Acta 1163:209–216.PubMedGoogle Scholar
  77. 77.
    De Clerq, E., Yamamoto, N., Pauwels, R., Balzarini, J., Witvrouw, M., DeVreese, K., Debyser, Z., Rosenwirth, B., Peichl, P., Datema, R., Thornton, D., Skerlj, R., Gaul, F., Padmanabhan, S., Bridger, G., Henson, G., and Abrams, M., 1994, Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100, Antimimob. Agents Chemother. 38:668–674.Google Scholar
  78. 78.
    De Clerq, E., Yamamoto, N., Pauwels, R., Baba, M., Schols, D., Nakashima, H., Balzarini, J., Debyser, Z., Murrer, B. A., Schwartz, D., Thornton, D., Bridger, G., Fricker, S., Henson, G., Abrams, M., and Picker, D., 1992, Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event, Proc. Natl. Acad. Sci. USA 89:5286–5290.CrossRefGoogle Scholar
  79. 79.
    De Vreese, K., Kofler-Mongold, V., Leutger, C., Weber, V., Vermeire, K, Schacht, S., Anne, J., De Clerq, E., Datema, R, and Werner, G., 1996, The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication, J. Virol. 70:689–696.PubMedGoogle Scholar
  80. 80.
    Datema, R., Rabin, L., Hincenbergs, M., Moreno, M. B., Warren, S., Linquist, V., Rosenwirth, B., Seifert, J., and McCune, J. M., 1996, Antiviral efficacy in vivo of the anti-human immunodeficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry, Antimimob. Agents Chemother. 40:750–754.Google Scholar
  81. 81.
    O’Brien, W. A., Sumner-Smith, M., Mao, S., Sadeghi, S., Zhao, J., and Chen, I. Y., 1996, Antihuman immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions, J. Virol. 70:2825–2831.PubMedGoogle Scholar
  82. 82.
    Sumner-Smith, M., Zheng, Y., Zhang, Y. P., Twist, E. M., and Climie, S. C., 1995, Antiherpetic activities of N-α-acetyl-nona-d-arginine amide acetate, Drugs Exp. Clin. Res. 21:1–6.PubMedGoogle Scholar
  83. 83.
    “35th Interscience Conference Unveils Results from Several Important Clinical Studies,”, in: TAGline [database online] Volume 2,Issue 11, November 1995.Google Scholar
  84. 84.
    “Allelix Refocuses Its Transcription Therapeutics Program”, in: Businesswire [database online] San Francisco: Business Wire, January 20, 1997, 10:30:00-0500.Google Scholar
  85. 85.
    Nagasaw, T., Hirota, S., Tachibana, K, Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T., 1996, Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1, Nature 382:635–638.CrossRefGoogle Scholar
  86. 86.
    Dummett, B., “Allelix Supports AIDS Drug Despite Poor Test Results”, in: HIV-News [electronic bulletin board], 19 December 1996, 14:45:00-0600 [cited 21 January 1997].Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Benjamin J. Doranz
    • 1
  • Robert W. Doms
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphia

Personalised recommendations