Skip to main content

The Approach of Triple Helix Formation in Control of Gene Expression and The Treatment of Tumors Expressing IGF-I

  • Chapter
  • First Online:
Cancer Gene Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 465))

Conclusion

The triplex-based strategy as the well-known antisense strategy seems to be a pow-erful approach to control gene expression in malignant cells. Few examples of the inhibitory activity of triplex-forming oligonucleotides on target genes involved in tumori-genesis are now available (for reviews see (Chan and Glazer, 1997; Giovannangeli and Hélène, 1997; Maher III, 1996; Vasquez and Wilson, 1998)). Most of the TFOs are tar-geted to polypurine-polypyrimidine sequences located in control regions of the gene of interest and are cell delivered via transaction with various chemical carriers. An alternative way to introduce TFOs in cells is to use a plasmid vector that can drive the synthesis of an RNA triplex-forming oligonucleotide inside the cells. This TFO generated in situ is therefore protected from degradation by nucleases and could reach its DNA target without being trapped in lysosomal vesicles. Obviously, it could be trans-fected in cells via either standard cell transfection procedures or via ways similarly used in virus-based gene therapy. An application of this triplex-based approach has been used for the inhibition of the Insulin-like growth factor I protein which plays a major role in tumorigenesis of glioblastoma and hepatocarcinoma (Shevelev et al., 1997; Upegui-Gonzalez et al., 1998b). The inhibition of IGF-I using antisense or triple-helix tech-nologies in these cells induced an immune response of syngenic animals (Lafarge-Frayssinet et al., 1997; Shevelev et al., 1997; Trojan et al., 1993; Upegui-Gonzalez et al., 1998a; Upegui-Gonzalez et al., 1998b). These results obtained with IGF-I familly may ultimately lead to the use of the antisense and triplex-based approaches in clinical trials for anticancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal, B., Schwarz, L., Hogan, M., and Rando, R., 1996, Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells, Cancer Res, 56:5156–5164.

    PubMed  CAS  Google Scholar 

  • Alunni-Fabbroni, M., Pirulli, D., Manzini, G., and Xodo, L., 1996, (A,G)-oligonucleotides form extraordinary stable triple helices with a critical R.Y sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells, Biochemistry, 35:16361–16369.

    PubMed  CAS  Google Scholar 

  • Anderson, W.F., 1992, Human gene therapy, Science, 256:808–813.

    PubMed  CAS  Google Scholar 

  • Baserga, R., 1995, The insulin-like growth factor I receptor: a key to tumor growth?, Cancer Res, 55:249–252.

    PubMed  CAS  Google Scholar 

  • Chan, P.P., and Glazer, P.M., 1997, Triplex DNA: Fundamentals, advances and potential applications for gene therapy, J Mol Med, 75:267–282.

    PubMed  CAS  Google Scholar 

  • Couture, L.A., and Stinchcomb, D.T., 1996, Anti-gene therapy: the use of ribozymes to inhibit gene function, Trends In Genet, 12:510–515.

    CAS  Google Scholar 

  • Dervan, P., 1992, Reagents for the site-specific cleavage of megabase DNA, Nature, 359:87–88.

    PubMed  CAS  Google Scholar 

  • Dodet, B., 1993, Commercial prospects for gene therapy—a company survey, Trends Biotechnol, 11:182–189.

    PubMed  CAS  Google Scholar 

  • Durland, R., Kessler, D., Gunnell, S., Duvic, M., Pettitt, B., and Hogan, M., 1991, Binding of triple helix forming oligonucleotides to sites in gene promoters, Biochemistry, 30:9246–9255.

    PubMed  CAS  Google Scholar 

  • Duval-Valentin, G., Thuong, N., and Helene, C., 1992, Specific inhibition of transcription by triple helix-forming oligonucleotides, Proc Natl Acad Sci U S A, 89:504–508.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ebbinghaus, S., Gee, J., Rodu, B., Mayfield, C., Sanders, G., and Miller, D., 1993, Triplex formation inhibits HER-2/neu transcription in vitro, J Clin Invest, 92:2433–2439.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Escudé, C., François, J.C., Sun, J.S., Ott, G, Sprinzl, M., Garestier, T., and Hélène, C., 1993, Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies, Nucleic Acids Res, 21:5547–5553.

    PubMed  PubMed Central  Google Scholar 

  • Fedoseyeva, E., Li, Y., Huey, B., Tarn, S., Hunt, C., Benichou, G., and Garovoy, M., 1994, Inhibition of interferon-gamma-mediated immune functions by oligonucleotides. Suppression of human T cell proliferation by downregulation of IFN-gamma-induced ICAM-1 and Fc-receptor on accessory cells, Transplantation, 57:606–612.

    PubMed  CAS  Google Scholar 

  • Francois, J.C., Saison-Behmoaras, T., Barbier, C, Chassignol, M., Thuong, N., and Helene, C., 1989, Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate, Proc Natl Acad Sci U S A, 86: 9702–9706.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Frank-Kamenetskii, M., and Mirkin, S., 1995, Triplex DNA structures, Annu Rev Biochem, 64:65–95.

    PubMed  CAS  Google Scholar 

  • Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Charneau, P., and Hélèlne, C., 1997, Accessibility of nuclear DNA to triplex-forming oligonucleotides: the integrated HIV-1 provirus as a target, Proc Natl Acad Sci U S A, 94:79–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Giovannangeli, C., and Hélène, C., 1997, Progress in developments of triplex-based strategies, Antisense Nucleic Acid Drug Dev, 7:413–421.

    PubMed  CAS  Google Scholar 

  • Giovannangeli, C, Perrouault, L., Escude, C., Gryaznov, S., and Hélène, C., 1996, Efficient inhibition of transcription elongation in vitro by oligonucleotide phosphoramidates targeted to proviral HIV DNA, J Mol Biol, 261:386–398.

    PubMed  CAS  Google Scholar 

  • Good, L., and Nielsen, P.E., 1997, Progress in developping PNA as a gene-targeted drug, Antisense Nucleic Acid Res, 7:431–437.

    CAS  Google Scholar 

  • Grigoriev, M., Praseuth, D., Guieysse, A., Robin, P., Thuong, N.T., Helene, C, and Harel-Bellan, A., 1993, Inhibition of gene expression by triple helix directed DNA cross-linking at specific sites, Proc Natl Acad Sci U S A,90:3501–3505.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grigoriev, M., Praseuth, D., Robin, P., Hemar, A., Saison-Behmoaras, T., Dautry-Varsat, A., Thuong, N.T., Hélène, C., and Harel-Bellan, A., 1992, A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional represser via inhibition of NF kappa B binding to interleukin-2 receptor alpharegulatory sequence, J Biol Chem, 267:3389–3395.

    PubMed  CAS  Google Scholar 

  • Guieysse, A., Praseuth, D., Francois, J., and Hélène, C., 1995, Inhibition of replication initiation by triple helix-forming oligonucleotides, Biochem Biophys Res Commun, 217:186–194.

    PubMed  CAS  Google Scholar 

  • Guo, Y., Wu, M., Chen, H., Wang, X., Liu, G., Li, G., Ma, J., and Sy, M.S., 1994, Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells, Science, 263:518–520.

    PubMed  CAS  Google Scholar 

  • Hacia, J., Dervan, P., and Wold, B., 1994, Inhibition of Klenow fragment DNA polymerase on double-helical templates by oligonucleotide-directed triple-helix formation, Biochemistry, 33:6192–6200.

    PubMed  CAS  Google Scholar 

  • Han, V, and Hill, D., 1992, The insulin-like growth factors: structure and biological functions., In: (P.N. Shofield, Eds.), Oxford University Press, pp. 11–30.

    Google Scholar 

  • Hausheer, F.H., Singh, U., Saxe, J., Flory, J., and Tufto, K., 1992, Thermodynamic and conformational characterization of 5-methylcytosine-versus cytosine-substituted oligomers in DNA triple helices: Ab initio quantum mechanical and free energy perturbation studies, J Am Chem Soc, 114: 6–5362.

    Google Scholar 

  • Havre, P., and Glazer, P., 1993, Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide, J. Virol, 67:7324–7331.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hélène, C., 1993, Sequence-specific recognition and cleavage of double helical DNA, Current opinion in Biotechnology, 4:29–36.

    PubMed  Google Scholar 

  • Hélène, C., 1994, Control of oncogene expression by antisense nucleic acids, Eur J Cancer, 30A:1721–1726.

    PubMed  Google Scholar 

  • Hélène, C., Garestier, T., Giovannangeli, C., and Sun, J.S., 1998, Sequence-specific control of gene expression by antigene and clamp oligonucleotides, Gene Therapy and Molecular Biology, 1:467–474.

    Google Scholar 

  • Hobbs, C.A., and Yoon, K., 1994, Differential regulation of gene expression in vivo by triple helix-forming oligonucleotides as detected by a reporter enzyme, Antisense Res Dev, 4:1–8.

    PubMed  CAS  Google Scholar 

  • Huang, Y., Snyder, R., Kligshteyn, M., and Wickstrom, E., 1995, Prevention of tumor formation in a mouse model of Burkitt’s lymphoma by 6 weeks of treatment with anti-c-myc DNA phosphorothioate, Mol Med, 1:647–658.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ido, A., Nakata, K., Kato, Y., Nakao, K., Murata, K., Fujita, M., Ishii, N., Tamaoki, T., Shiku, H., and Nagataki, S., 1995, Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter, Cancer Res, 55:3105–3109.

    PubMed  CAS  Google Scholar 

  • Imagawa, S., Izumi, T., and Miura, Y, 1994, Positive and negative regulation of the erythropoietin gene, J Biol Chem, 269:9038–9044.

    PubMed  CAS  Google Scholar 

  • Ing, N.H., Beekman, J.M., Kessler, D.J., Murphy, M., Jayaraman, K., Zendegui, J.G., Hogan, M.E., O’Malley, B.W., and Tsai, M.J., 1993, In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide, Nucleic Acids Res, 21:2789–2796.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph, J., Kandala, J.C., Veerapanane, D., Weber, K.T., and Guntaka, R.V., 1997, Antiparallel polypurine phosphorothioate oligonucleotides form stable triplexes with the rat alpha 1(1) collagen gene promoter and inhibit transcription in cultured rat fibroblasts. Nucleic Acids Res, 25:182–88.

    Google Scholar 

  • Kiess, W., Lee, L., Graham, D.E., Greenstein, L., Tseng, L.Y., Rechler, M.M., and Nissley, S.P., 1989, Rat C6 glial cells synthesize insulin-like growth factor I (IGF-I) and express IGF-I receptors and IGF-II/mannose 6-phosphate receptors, Endocrinology, 124:1727–1736.

    PubMed  CAS  Google Scholar 

  • Kim, H.G., and Miller, D.M., 1998, A novel triplex-forming oligonucleotide targeted to human cyclin D1 (bcl-1, proto-oncogene) promoter inhibits transcription in Hela cells, Biochemistry, 37:2666–2672.

    PubMed  CAS  Google Scholar 

  • Kim, H.G., Reddoch, J.F., Mayfield, C., Ebbinghaus, S., Vigneswaran, N., Thomas, S., Jones, D.E., and Miller, D.M., 1998, Inhibition of transcription of the human c-myc protooncogene by intermolecular triplex, Biochemistry, 37:2299–2304.

    PubMed  CAS  Google Scholar 

  • Kool, E.T., 1996, Topological modification of oligonucleotides for potential inhibition of gene expression, In: Antisense therapeutics: Progress and prospects, 4, (G. Trainor, Eds.), pp. 61–75.

    Google Scholar 

  • Kovacs, A., Kandala, J., Weber, K., and Guntaka, R., 1996, Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha1(I) collagen promoter specifically inhibits factor binding and transcription, J Biol Chem, 271:1805–1812.

    PubMed  CAS  Google Scholar 

  • Krasilnikov, A., Panyutin, I., Samadashwily, G., Cox, R., Lazurkin, Y., and Mirkin, S., 1997, Mechanisms of triplex-caused polymerization arrest, Nucleic Acids Res., 25:1339–1346.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lafarge-Frayssinet, C., Duc, H.T., Frayssinet, C., Sarasin, A., Anthony, D., Guo, Y., and Trojan, J., 1997, Anti-sense IGF-1 transfer into a rat hepatoma cell line inhibits tumorigenesis by modulating MHC-I cell surface expression, Cancer Gene Therapy, 5:276–285.

    Google Scholar 

  • Leonetti, C., D’Agnano, I., Lozupone, F., Valentini, A., Geiser, T, Zon, G., Calabretta, B., Citro, G.C., and Zupi, G, 1996, Antitumor effect of c-myc antisense phosphorothioate oligodeoxynucleotides on human melanoma cells in vitro and and in mice, J Natl Cancer Inst, 88:419–429.

    PubMed  CAS  Google Scholar 

  • Maher III, L.J., 1992, Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression, Biochemistry, 31:7587–7594.

    PubMed  CAS  Google Scholar 

  • Maher III, L.J., 1996, Prospects for the therapeutic use of antigene oligonucleotides, Cancer Investigation, 14:66–82.

    PubMed  CAS  Google Scholar 

  • Maher III, L.J., Dervan, P.B., and Wold, B., 1992, Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system, Biochemistry, 31:70–81.

    PubMed  CAS  Google Scholar 

  • Mayfleld, C., Ebbinghaus, S., Gee, J., Jones, D., Rodu, B., Squibb, M., and Miller, D., 1994, Triplex formation by the human Ha-ras promoter inhibits Spl binding and in vitro transcription, J Biol Chem, 269:18232–18238.

    Google Scholar 

  • Mergny, J., Sun, J., Rougee, M., Montenay-Garestier, T, Barcelo, F., Chomilier, J., and Hélène, C., 1991, Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability, Biochemistry, 30:9791–9798.

    PubMed  CAS  Google Scholar 

  • Miller, A.D., 1992, Human gene therapy comes of age. Nature, 357:455–460.

    PubMed  CAS  Google Scholar 

  • Morishita, R., Higaki, J., Tomita, N., and Ogihara, T, 1998, Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease, Circ Res, 82:1023–1028.

    PubMed  CAS  Google Scholar 

  • Moser, H., and Dervan, P., 1987, Sequence-specific cleavage of double helical DNA by triple helix formation, Science, 238:645–650.

    PubMed  CAS  Google Scholar 

  • Musso, M., Nelson, L., and Van Dyke, M., 1998, Characterization of purine-motif triplex DNA-binding proteins in HeLa extracts, Biochemistry, 37:3086–3095.

    PubMed  CAS  Google Scholar 

  • Okabe, M., Kunieda, Y, Miyagishima, T., Kobayashi, M., Kurosawa, M., Itaya, T, and Miyazaki, T., 1993, BCR/ABL oncoprotein-targeted antitumor activity of antisense oligodeoxynucleotides complementary to bcr/abl mRNA and herbimycin A, an antagonist of protein tyrosine kinase: inhibitory effects on in vitro growth of Ph1-positive leukemia cells and BCR/ABL oncoprotein-associated transformed cells, Leuk Lymphoma, 10:307–316.

    PubMed  CAS  Google Scholar 

  • Porumb, H., Gousset, H., Letellier, R., Salle, V, Briane, D., Vassy, J., Amor-Gueret, M., Israel, L., and Taillandier, E., 1996, Temporary ex vivo inhibition of the expression of the human oncogene HER2 (NEU) by a triple helix-forming oligonucleotide, Cancer Res, 56:515–522.

    PubMed  CAS  Google Scholar 

  • Postel, E.H., Flint, S.J., Kessler, D.J., and Hogan, M.E., 1991, Evidence that a triplex-forming oligodeoxyri-bonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels, Proc Natl Acad Sci U S A, 88:8227–8231.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rininsland, F., Johnson, T., Chernicky, C., Schulze, E., Burfeind, P., and Ilan, J., 1997, Suppression of insulin-like growth factor type I receptor by a triple-helix strategy inhibits IGF-I transcription and tumorigenic potential of rat C6 glioblastoma cells, Proc Natl Acad Sci U S A, 94:5854–5859.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ririe, S., and Guntaka, R., 1998, An RNA oligonucleotide corresponding to the polypyrimidine region of the rat alpha 1(I) procollagen promoter forms a stable triplex and inhibits transcription, Biochem Biophys Res Commun, 249:218–221.

    PubMed  CAS  Google Scholar 

  • Roy, C., 1994, Triple-helix formation interferes with the transcription and hinged DNA structure of the interferon-inducible 6-16 gene promoter, Eur J Biochem, 220:493–503.

    PubMed  CAS  Google Scholar 

  • Samadashwily, G., Dayn, A., and Mirkin, S., 1993, Suicidal nucleotide sequences for DNA polymerization, EMBO J, 12:4975–4983.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Samadashwily, G., and Mirkin, S., 1994, Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides, Gene, 149:127–136.

    PubMed  CAS  Google Scholar 

  • Sandor, Z., and Bredberg, A., 1994, Repair of triple helix directed psoralen adducts in human cells, Nucleic Acids Res, 22:2051–2056.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scaggiante, B., Morassutti, C.. Tolazzi, G., Michelutti, A., Baccarani, M., and Quadrifoglio, F., 1994, Effect of unmodified triple helix-forming oligodeoxyribonucleotide targeted to human multidrug-resistance gene mdrl in MDR cancer cells, FEBS Lett, 352:380–384.

    PubMed  CAS  Google Scholar 

  • Semerad, C., and Maher, L.E., 1994, Exclusion of RNA strands from a purine motif triple helix. Nucleic Acids Res, 22:5321–5325.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shevelev, A., Burfeind, P., Schulze, E., Rininsland, F., Johnson, T., Trojan, J., Chernicky, C., Helene, C., Ilan, J., and Ilan, J., 1997, Potential triple helix-mediated inhibition of IGF-I gene expression significantly reduces tumorigenicity of glioblastoma in an animal model, Cancer Gene Ther, 4: 105–112.

    PubMed  CAS  Google Scholar 

  • Skoog, J., and Maher III, L.J., I993a, Relief of triple-helix-mediated promoter inhibition by elongating RNA polymerases, Nucleic Acids Res, 21:4055–4058.

    Google Scholar 

  • Skoog, J., and Maher III, L.J., 1993b, Repression of bacteriophage promoters by DNA and RNA oligonucleotides, Nucleic Acids Res, 21:2131–2138.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Skorski, T., Nieborowska-Skorska, M., Campbell, K., Iozzo, R., Zon, G., Darzynkiewicz, Z., and Calabretta, B., 1995, Leukemia treatment in severe combined immunodeficiency mice by antisense oligodeoxynu-cleotides targeting cooperating oncogenes, J Exp Med, 182:1645–1653.

    PubMed  CAS  Google Scholar 

  • Sokol, D.L., and Gewirtz, A.M., 1996, Gene therapy: basic concepts and recent advances, Crit Rev in Eukaryotic gene expression, 6:29–57.

    CAS  Google Scholar 

  • Song, C., Jung, M., Supakar, P., Chen, S., Vellanoweth, R., Chatterjee, B., and Roy, A., 1995, Regulation of androgen action by receptor gene inhibition, Ann N Y Acad Sci, 761:97–108.

    PubMed  CAS  Google Scholar 

  • Stein, C.A., 1996, Exploiting the potential of antisense:beyond phosphorothioate oligodeoxynucleotides. Chemistry & Biology, 3:319–323.

    CAS  Google Scholar 

  • Strobel, S.A., and Dervan, P.B., 1990, Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation, Science, 249:73–75.

    PubMed  CAS  Google Scholar 

  • Strobel, S.A., Doucette-Stamm, L., Riba, L., Housman, D.E., and Dervan, P.B., 1991, Site-specific cleavage of human chromosome 4 mediated by triple-helix formation. Science, 254:1639–1642.

    PubMed  CAS  Google Scholar 

  • Svinarchuk, F., Debin, A., Bertrand, J., and Malvy, C., 1996, Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 protooncogene promotor, Nucleic Acids Res, 24:295–302.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas, T, Faaland, C., Gallo, M., and Thomas, T., 1995, Suppression of c-myc oncogene expression by a polyamine-complexed triplex forming oligonucleotide in MCF-7 breast cancer cells, Nucleic Acids Res, 23:3594–3599.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trojan, J., Blossey, B., Johnson, T., Rudin, S., Tykocinski, M., Ilan, J., and Ilan, J., 1992, Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I, Proc Natl Acad Sci U S A, 89:4874–4878.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trojan, J., Duc, H., Upegui-Gonzalez, L., Hor, F., Guo, Y, Anthony, D., and Ilan, J., 1996, Presence of MHC-I and B-7 molecules in rat and human glioma cells expressing antisense IGF-1 mRNA, Neurosri Lett, 212:9–12.

    CAS  Google Scholar 

  • Trojan, J., Johnson, T.R., Rudin, S.D., Blossey, B.K., Kelley, K.M., Shevelev, A., Abdul-Karim, F.W., Anthony, D.D., Tykocinski, M.L., Ilan, J., and Ilan, J., 1994, Gene therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in immunogenicity and differentiation, Proc Natl Acad Sci U S A, 91:6088–6092.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trojan, J., Johnson, T.R., Rudin, S.D., Ilan, J., Tykocinski, M.L., and Ilan, J., 1993, Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA, Science, 259:94–97.

    PubMed  CAS  Google Scholar 

  • Tu, G., Cao, Q., and Israel, Y., 1995, Inhibition of gene expression by triple helix formation in hepatoma cells. J Biol Chem, 270:28402–28407.

    PubMed  CAS  Google Scholar 

  • Upegui-Gonzalez, L.C., Duc, H.T., Buisson, Y., Arborio, M., Lafarge-Frayssinet, C., Jasmin, C., Guoa, Y., and Trojan, J., 1998a, Use of the IGF-I antisense strategy in the treatment of the hepatocarcinoma, In: Proceeding of Gene therapy of cancer 1997, 6, (P. Walden, Eds.), pp. 35–44, Plenum PCL, London.

    Google Scholar 

  • Upegui-Gonzalez, L.C., Duc, H.T., Swiercz, B., Ly, A., Hor, F., Arborio, M., Buisson, Y., Jasmin, C., Pan, Y., Anthony, D., Hénin, D., and Trojan, J., 1998b, IGF-I antisense and triple helix treatment in hepatoma treatment, Front Biosci., in press.

    Google Scholar 

  • Vasquez, K.M., and Wilson, J.H., 1998, Triplex-directed modification of genes and gene activity, Trends In Biochem. Sci., 23:4–9.

    CAS  Google Scholar 

  • Wang, G., Levy, D., Seidman, M., and Glazer, P., 1995, Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation, Mol Cell Biol, 15:1759–1768.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Young, S., Krawczyk, S., Matteucci, M., and Toole, J., 1991, Triple helix formation inhibits transcription elongation in vitro, Proc Natl Acad Sci U S A, 88:10023–10026.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Upegui-Gonzalez, L.C., François, JC., Ly, A., Trojan, J. (2002). The Approach of Triple Helix Formation in Control of Gene Expression and The Treatment of Tumors Expressing IGF-I. In: Habib, N.A. (eds) Cancer Gene Therapy. Advances in Experimental Medicine and Biology, vol 465. Springer, New York, NY. https://doi.org/10.1007/0-306-46817-4_27

Download citation

  • DOI: https://doi.org/10.1007/0-306-46817-4_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-306-46191-0

  • Online ISBN: 978-0-306-46817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics