Skip to main content

Pathogenesis of Legionella pneumophila Infection

  • Chapter
Opportunistic Intracellular Bacteria and Immunity

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

Conclusions

We have attempted to present new information on the biology of the legionellae. Most new developments have focused on the events that follow host cell entry and lead to intracellular replication in macrophages or macrophage-like cell lines. However, we have also presented recent findings addressing the early events of invasion of nonphagocytic cells by L.pneumophila and the unusual role that the heat-shock protein Hsp60 may play in these early events. Readers may have grasped the wealth of potential knowledge that could be extracted from using the legionellae to model the pathogenesis and evolution of intracellular bacterial pathogens. In particular, the study of the recently discovered developmental cycle of L.pneumophila offers unique opportunities,as developmental cycles have been basically described only for obligate intracellular pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraser, D. W., Tsai, T. R., Orenstein, W., Parkin, W. E., Beecham, H. J., Sharrar, R. G., Harris, J,, Mallison, G. F., Martin, S. M., McDade, J. E., Shepard, C. C., and Brachman, P. S., 1977, Legionnaires’ disease: Description of an epidemic of pneumonia, N. Engl. J. Med. 297:1189–1197.

    Article  PubMed  CAS  Google Scholar 

  2. Horwitz, M. A., and Silverstein, S. C., 1980, Interaction of the Legionnaires’ disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes, J. Clin. Invest. 66:441–450.

    PubMed  CAS  Google Scholar 

  3. Swanson, M. S., and Isberg, R. R., 1995, Association of Legionella pneumophila with the macro-phage endoplasmic reticulum, Infect. Immun. 63:3609–3620.

    PubMed  CAS  Google Scholar 

  4. Horwitz, M. A., 1983, The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes, J. Exp. Med. 158:2108.

    PubMed  CAS  Google Scholar 

  5. Moulder, J. W., 1985, Comparative biology of intracellular parasitism, Microbiol. Rev. 49:298–337.

    PubMed  CAS  Google Scholar 

  6. Fields, B. S., 1996, The molecular ecology of legionellae, Trends Microbiol. 4:286–290.

    Article  PubMed  CAS  Google Scholar 

  7. Marston, B. J., Lipman, H. B., and Breiman, R. F., 1994, Surveillance for Legionnaires’ disease: Risk factors for morbidity and mortality, Arch. Intern. Med. 154:2417–2422.

    Article  PubMed  CAS  Google Scholar 

  8. Fields, B. S., 1993, Legionella and protozoa: Interaction of a pathogen and its natural host, in: Legionella: Current Status and Emerging Perspectives (J. M. Barbaree, R. F. Breiman, and A. P. Dufour, eds.), American Society for Microbiology Press, Washington, D. C., pp. 129–136.

    Google Scholar 

  9. Joly, J. R., 1993, Monitoring for the presence of Legionella: Where, when and how? In: Legionella: Current Status and Emerging Perspectives (J. M. Barbaree, R. F. Breiman, and A. P. Dufour, eds.) American Society for Microbiology Press, Washington, D. C., pp. 211–216.

    Google Scholar 

  10. Bhardwaj, N., Nash, T. W., and Horwitz, M. A., 1986, Interferon-gamma activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila, J. Immunol. 17:2662–2669.

    Google Scholar 

  11. Skeen, M. J., Miller, M. A., Shinnick, T. M., and Ziegler, H. K., 1996, Regulation of murine macrophage IL-12 production: Activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines, J. Immunol. 156:1196–1206.

    PubMed  CAS  Google Scholar 

  12. Retzlaff, C., Yamamoto, Y., Hoffman, P. S., Friedman, H., and Klein, T. W., 1996, Legionella pneumophila heat-shock protein-induced increase of interleukin-1ß mRNA involves protein kinase C signalling in macrophages, Immunology 89:281–288.

    Article  PubMed  CAS  Google Scholar 

  13. Cirillo, J. D., Falkow, S., and Tompkins, L. S., 1994, Growth of Legionella pneumophila in Acanthamoeba castellanii, Infect. Immun. 62:3254–3261.

    PubMed  CAS  Google Scholar 

  14. Winn, W. C., Jr, 1988, Legionnaires’ disease: Historical perspective, Clin. Microbiol. Rev. 1:60–81.

    PubMed  Google Scholar 

  15. Dowling, J. N., Saha, A. K., and Glew, R. H., 1992, Virulence factors of the family Legionellaceae, Microbiol. Rev. 56:32–60.

    PubMed  CAS  Google Scholar 

  16. Cianciotto, N. Eisenstein, B. I., Engleberg, N. C., and Shuman, H., 1989, Genetics and molecular pathogenesis of Legionella pneumophila, an intracellular parasite of macrophages, Mol. Biol. Med. 6:409–424.

    PubMed  CAS  Google Scholar 

  17. Marra, A., and Shuman, H. A., 1992, Genetics of Legionella pneumophila virulence, Annu. Rev. Genet. 26:51–69.

    PubMed  CAS  Google Scholar 

  18. Adeleke, A., Pruckler, J., Benson, R., Rowbotham, T., Halablab, M., and Fields, B., 1996, Legionella-like amebal pathogens—phylogenetic status and possible role in respiratory disease, Emerg. Infect. Dis. 2:225–230.

    PubMed  CAS  Google Scholar 

  19. Ahn, T. I., Lim, L. T., Leeu, H. K., Lee, J. E., and Jeon, K. W., 1994, A novel strong promoter of the groEx operon of symbiotic bacteria in Amoeba proteus, Gene 128:43–49.

    Google Scholar 

  20. Hoffman, P. S., 1998, Invasion of eukaryotic cells by L. pneumophila: A common strategy for all hosts?, Can. J. Infect. Dis. 8:139–146.

    Google Scholar 

  21. Horwitz, M. A., 1984, Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: Engulfment within a pseudopod coil, Cell 36:27–33.

    Article  PubMed  CAS  Google Scholar 

  22. Horwitz, M. A., 1983, Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes, J. Exp. Med. 158:13–31.

    Google Scholar 

  23. King, C. H., Fields, B. S., Shotts, E. B., Jr., and White, E. H., 1991, Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells, Infect. Immun. 59:758–763.

    PubMed  CAS  Google Scholar 

  24. Abu Kwaik, Y., Fields, B. S., and Engleberg, N. C., 1994, Protein expression by the protozoan Hartmannella vermiformis upon contact with its bacterial parasite Legionella pneumophila, Infect. Immun. 62:1860–1866.

    PubMed  CAS  Google Scholar 

  25. Muller, A., Hacker, J., and Brand, B. C., 1996, Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection, Infect. Immun. 64:4900–4906.

    PubMed  CAS  Google Scholar 

  26. Zahringer, U., Knirel, Y. A., Lindner, B., Helbig, J. H., Sonesson, A., Marre, R., and T. Rietschel, E. T., 1995, The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): Chemical structure and biological significance, Prog. Clin. Biol. Res. 392:113–119.

    PubMed  CAS  Google Scholar 

  27. Sampson, J. S., Plikaytis, B. B., and Wilkinson, H. W., 1986. Immunologic response of patients with legionellosis against major protein-containing antigens of Legionella pneumophila serogroup 1 as shown by immunoblot analysis, J. Clin. Microbiol. 23:92–99.

    PubMed  CAS  Google Scholar 

  28. Weeratna, R., Stamler, D. A., Edelstein, P. H., Ripley, M., Marrie, T. J., Hoskin, D., and Hoffman, P. S., 1994, Human and guinea pig immune responses to Legionella pneumophila protein antigens: Vaccination of guinea pigs with OmpS, but not Hsp60, induces cell-mediated and protective immunity, Infect. Immun. 62:3454–3462.

    PubMed  CAS  Google Scholar 

  29. Keen, M. G., and Hoffman, P. S., 1989, Characterization of a Legionella pneumophila extracellular protease exhibiting hemolytic and cytotoxic activities, Infect. Immun. 57:732–738.

    PubMed  CAS  Google Scholar 

  30. Blander, S. J., and Horwitz, M. A., 1991, Vaccination with the major secretory protein of Legionella induces humoral and cell-mediated immune responses and protective immunity across different serogroups of L. pneumophila and different species of Legionella, J. Immunol. 147:285–291.

    PubMed  CAS  Google Scholar 

  31. Blander, S. J., and Horwitz, M. A., 1993, Major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaires’ disease, J. Clin. Invest. 91:717–723.

    Article  PubMed  CAS  Google Scholar 

  32. Hoffman, P. S., Houston, L., and Butler, C. A., 1990, Legionella pneumophila htpAB heat shock operon: Nucleotide sequence and expression of the 60-kilodalton antigen in L. pneumophila-infected HeLa cells, Infect. Immun. 58:3380–3387.

    PubMed  CAS  Google Scholar 

  33. Fernandez, R. C., Logan, S. M., Lee, S. H. S., and Hoffman, P. S., 1996, Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence, Infect. Immun. 64:1968–1976.

    PubMed  CAS  Google Scholar 

  34. Abu Kwaik, Y., Eisenstein, B. I., and Engleberg, N. C., 1993, Phenotypic modulation by Legionella pneumophila upon infection of macrophages, Infect. Immun. 61:1320–1329.

    PubMed  CAS  Google Scholar 

  35. Bellinger-Kawahara, C. G., and Horwitz, M. A., 1990, Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes, J. Exp. Med. 172:1201–1210.

    Article  PubMed  CAS  Google Scholar 

  36. Husmann, L. K., and Johnson, W., 1992, Adherence of Legionella pneumophila to guinea pig peritoneal macrophages, J774 mouse macrophages, and undifferentiated U937 human monocytes: Role of Fc and complement receptors, Infect. Immun. 60:5212–5218.

    PubMed  CAS  Google Scholar 

  37. Gibson, F. C., Tzianabos, A. O., and Rodgers, F. G., 1994, Adherence of Legionella pneumophila to U-937 cells, guinea pig alveolar macrophages, and MRC-5 cells by a novel, complement-independent binding mechanism, Can. J. Microbiol. 40:865–872.

    Article  PubMed  CAS  Google Scholar 

  38. Horwitz, M. A., and Silverstein, S. C., 1983, Intracellular multiplication of Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin, J. Clin. Invest. 71:15–26.

    PubMed  CAS  Google Scholar 

  39. Garduno, R. A., Quinn, F. D., and Hoffman, P. S., 1998, HeLa cells as a model to study the invasiveness and biology of Legionella pneumophila, Can. J. Microbiol. 44:430–440.

    PubMed  CAS  Google Scholar 

  40. Quinn, F. D., Butler, C. A., and Hoffman, P. S., 1987, Characterization and cloning of the disulfide-cross-linked major outer membrane protein of Legionella pneumophila, J. Cell. Biochem. 115:116.

    Google Scholar 

  41. Cianciotto, N. P., Eisenstein, B. I., Mody, C., and Engleberg, N. C., 1990, A mutation in the mip gene results in attenuation of Legionella pneumophila virulence, J. Infect. Dis. 162: 121–126.

    PubMed  CAS  Google Scholar 

  42. Wintermeyer, E., Ludwig, B., Schmidt, B., Fischer, G., and Hacker, J., 1995, Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells, Infect. Immun. 63:4576–4583.

    PubMed  CAS  Google Scholar 

  43. Dreyfus, L. A., 1987, Virulence associated ingestion of Legionella pneumophila by HeLa cells, Microb. Pathog. 3:45–52.

    Article  PubMed  CAS  Google Scholar 

  44. Gaitanaris, G. A., Vysokanov, A., Hung, S. C., Gottesman, M. E., and Gragerov, A., 1994, Successive action of Escherichia coli chaperones in vivo, Mol. Microbiol. 14:861–869.

    PubMed  CAS  Google Scholar 

  45. Huesca, M., Borgia, S., Hoffman, P. S., and Lingwood, C. A., 1996. Acidic pH changes receptor binding specificity of Helicobacter pylori: A binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization, Infect. Immun. 64:2643–2648.

    PubMed  CAS  Google Scholar 

  46. Hall, B. F., and Joiner, K. A., 1991, Strategies ofobligate intracellular parasites for envading host defenses, Immunol. Today 12:A22–A27.

    Article  PubMed  CAS  Google Scholar 

  47. Morioka, M., Muraoda, H., and Ishikawa, H., 1993, Chaperonin produced by an intracellular symbiont is an energy-coupling protein with phosphotransferase activity, J. Biochem. 114:246–250.

    PubMed  CAS  Google Scholar 

  48. Rechnitzer, C., and Blom, J., 1989, Engulfment of the Philadelphia-1 strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with other Legionella strains and species, APMIS 97:105–114.

    Article  PubMed  CAS  Google Scholar 

  49. Berger, K. H., Merriam, J. J., and Isberg, R. R., 1994, Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene, Mol. Microbiol. 14:809–822.

    PubMed  CAS  Google Scholar 

  50. Brand, B. C., Sadosky, A. B., and Shuman, H. A., 1994, The Legionella pneumophila icm locus; a set of genes required for intracellular multiplication in human macrophages, Mol. Microbiol. 14:797–808.

    PubMed  CAS  Google Scholar 

  51. Roy, C., and Isberg, R. R., 1997. Topology of Legionella pneumophila DotA: An inner membrane protein required for replication in macrophages, Infect. Immun. 65:571–578.

    PubMed  CAS  Google Scholar 

  52. McClain, M. S., Hurley, M. C., Brieland, J. K., and Engleberg, N. C., 1996, The Legionella pneumophila hel locus encodes intracellularly induced homologs of heavy-metal ion transporters of Alcaligenes spp., Infect. Immun. 64:1532–1520.

    PubMed  CAS  Google Scholar 

  53. Swanson, M. S., and Isberg, R. R., 1996, Identification of L. pneumophila mutants that have aberrant intracellular fates, Infect. Immun. 64:2585–2594.

    PubMed  CAS  Google Scholar 

  54. Sadosky, A. B., Wiater, L. A., and Shuman, H. A., 1993, Identification of Legionella pneumophila genes required for growth within and killing of human macrophages, Infect. Immun. 61:5361–5373.

    PubMed  CAS  Google Scholar 

  55. Morioka, M., and Ishikawa, H., 1992, Mutualism based on stress: Selective synthesis and phosphorylation of a stress protein by an intracellular symbiont, J. Biochem. 111:431–435.

    PubMed  CAS  Google Scholar 

  56. Abu Kwaik, Y., and Pederson, L. L., 1996, The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages, Mol. Microbiol. 21:543–556.

    PubMed  CAS  Google Scholar 

  57. Susa, M., Hacker, J., and Marre, R., 1996, De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells, Infect. Immun. 64:1679–1684.

    PubMed  CAS  Google Scholar 

  58. Abu Kwaik, Y., and Engleberg, N. C., 1994, Cloning and molecular characterization of a Legionella pneumophila gene induced by intracellular infection and by various in vitro stress stimuli, Mol. Microbiol. 13:243–251.

    PubMed  CAS  Google Scholar 

  59. Pope, C. D., O’Connell, W. A., and Cianciotto, N. P., 1996, Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection, Infect. Immun. 64:629–636.

    PubMed  CAS  Google Scholar 

  60. Hickey, E. K., and Cianciotto, N. P., 1997, An iron-and Fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases, Infect. Immun. 65: 133–143.

    PubMed  CAS  Google Scholar 

  61. Gress, F. M., Myerowitz, R. L., Pasculle, A. W., Rinaldo, C. R., and Dowling, J. N., 1980, The ultrastructural morphologic features of Pittsburgh pneumonia agent, Am. J. Pathol. 101:63–77.

    PubMed  CAS  Google Scholar 

  62. Bozue, J. A., and Johnson, W., 1996, Interaction of Legionella pneumophila with Acanthamoeba castellanii: Uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion, Infect. Immun. 64:668–673.

    PubMed  CAS  Google Scholar 

  63. Horwitz, M. A., 1988, Phagocytosis and intracellular biology of Legionella pneumophila, in: Bacteria-Host Cell Interaction (M. A. Horwitz, ed.) Alan R. Liss, New York, pp. 283–302.

    Google Scholar 

  64. Oldham, L. J., and Rodgers, F. G., 1985, Adhesion, penetration and intracellular replication of Legionella pneumophila: An in vitro model of pathogenesis, J. Gen. Microbiol. 131:697–706.

    PubMed  CAS  Google Scholar 

  65. Rowbotham, T. J., 1980, Preliminary report of the pathogenicity of Legionella pneumophila for fresh water and soil amoebae, J. Clin. Pathol. 33:1179–1183.

    PubMed  CAS  Google Scholar 

  66. Garduno, R. A., Garduno, E., and Hoffman, P. S., 1998, Surface-associated Hsp60 chaperonin of Legionella pneumophila, mediates invasion in a HeLa cell model, Infect. Immun. 66:4602–4610.

    PubMed  CAS  Google Scholar 

  67. Garduno, R. A., Faulkner, G., Trevors, M. A., Vats, N., and Hoffman, P. S., 1998, Immunolocalization of Hsp60 in Legionella pneumophila, J. Bacteriol. 180:505–513.

    PubMed  CAS  Google Scholar 

  68. Segal, G., Purcell, M., and Shuman, H. A., 1998, Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome, Proc. Natl. Acad. Sci. 95: 1669–1674.

    PubMed  CAS  Google Scholar 

  69. Vogel, J. P., Andrews, H. L., Wong, S. K., and Isberg, R. R., 1998, Conjugative transfer by the virulence system of Legionella pneumophila, Science (Washington, D.C.) 279:873–876.

    CAS  Google Scholar 

  70. Roy, C. R., Berger, K. H., and Isberg, R. R., 1998, Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake, Mol. Microbiol. 28:663–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hoffman, P.S., Garduno, R. (2002). Pathogenesis of Legionella pneumophila Infection. In: Opportunistic Intracellular Bacteria and Immunity. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46809-3_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46809-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45894-1

  • Online ISBN: 978-0-306-46809-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics