Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altar, C. A., Marien, M. R., and Marshall, J. F, 1987, Time course of adaptations in dopamine biosynthesis, metabolism, and release following nigrostriatal lesions: Implications for behavioral recovery from brain injury, J. Neurochem. 48:390–399.

    CAS  PubMed  Google Scholar 

  • Ames, B. N., Shigenaga, M. K., and Hagen, T. M., 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90:7915–7922.

    CAS  PubMed  Google Scholar 

  • Anden, N. K., Fuxe, K., Hamberger, B., and Hokfelt, T., 1966, A quantitative study of the nigro-neostriatal dopamine neuron system in the rat, Acta Physiol. Scand. 67:306–312.

    CAS  PubMed  Google Scholar 

  • Basma, A. N., Morris, E. J., Nicklas, W. J., and Geller, H. M., 1995, L-DOPA cytotoxicity to PC12 cells in culture is via its autoxidation, J. Neurochem. 64:825–832.

    CAS  PubMed  Google Scholar 

  • Beal, M. F, 1995. Aging and oxidative stress in neurodegenerative disease, Ann. Neurol. 38:357–366.

    Article  CAS  PubMed  Google Scholar 

  • Blunt, S. B., Jenner, P., and Marsden, C. D., 1993, Suppressive effect of L-DOPA on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine, Move. Disord. 8:129–133.

    CAS  Google Scholar 

  • Burns, R. S., Chiueh, C. C., Markey, S. P, Ebert, M. P., Jacobowitz, D. M., and Kopin, I. J., 1983, A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyI-4-phenyl-l,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. USA 80:4546–4550.

    CAS  PubMed  Google Scholar 

  • Carstam, R., Brinck, C., Hindemith-Augustsson, H., Rorsman, H., and Rosengren, E., 1992, The neuromelanin of the human substantia nigra, Biochim. Biophys. Acta 1097:152–160.

    Google Scholar 

  • Chiba, K., Trevor, A., and Castagnoli, N., Jr., 1984, Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase, Biochem. Biophys. Res. Commun. 120:574–578.

    Article  CAS  PubMed  Google Scholar 

  • Chiueh, C. C., Krishna, G., Tulsi, P., Obata, T., Lang, K., Huang, S. J., and Murphy, D. L., 1992, Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autoxidation in the caudate nucleus: Effects of MPP+, Free Radical Biol. Med. 13:581–583.

    Article  CAS  Google Scholar 

  • Cleeter, M. W. J., Cooper, J. M., and Schapira, A. H. V., 1992, Irreversible inhibition of mitochondrial complex 1 by l-methyl-4-phenylpyridinium: Evidence for free radical involvement, J. Neurochem. 58:786–789.

    CAS  PubMed  Google Scholar 

  • Cohen, G., 1983, The pathobiology of Parkinson’s disease: Biochemical aspects of dopamine neuron senescence, J. Neural Transm. Suppl. 19:89–103.

    CAS  PubMed  Google Scholar 

  • Cohen, G., 1986, Monoamine oxidase, hydrogen peroxide, and Parkinson’s disease, Adv. Neurol. 45:119–125.

    Google Scholar 

  • Cohen, G., 1994, Editorial: The brain on fire? Ann. Neurol. 36:333–334.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G., and Heikkila, R. E., 1974, The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents, J. Biol. Chem. 249:2447–2452.

    CAS  PubMed  Google Scholar 

  • Cohen, G., and Heikkila, R. E., 1977, In vivo scavenging of superoxide radicals by catecholamines, in Superoxide and Superoxide. Dismutases (M. Michelson, J. M. McCord, and I. Fridovich, eds.), pp. 351–365, Academic Press, New York.

    Google Scholar 

  • Cohen, G., and Werner, P., 1994, Free radicals, oxidative stress, and neurodegeneration, in Neurodegenerative Disorders (D. Calne, ed.), pp. 139–162, Academic Press, New York.

    Google Scholar 

  • Cohen, G., Heikkila, R. E., Allis, B., Cabbat, F., Dembiec, D., MacNamee, D., Mytilineou, C., and Winston, B., 1976, Destruction of sympathetic nerve terminals by 6-hydroxydopamine: Protection by l-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol and n-butanol, J. Pharmacol. Exp. Ther. 199:336–352.

    CAS  PubMed  Google Scholar 

  • Cohen, G., Pasik, P., Cohen, B., Leist, A., Mytilineou, C., and Yahr, M. D., 1984, Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in monkeys, Eur. J. Pharmacol. 106:209–210.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G., Farooqui, R., and Kesler, N., 1997, Parkinson’s disease: A new link between monoamine oxidase and mitochondrial electron flow, Proc. Natl. Acad. Sci. USA 94:4890–4894.

    CAS  PubMed  Google Scholar 

  • Colton, C. A., Pagan, F., Snell, J., Colton, J. S., Cummins, A., and Gilbert, D. L., 1995, Protection from oxidation enhances the survival of cultured mesencephalic neurons, Exp. Neurol. 132:54–61.

    Article  CAS  PubMed  Google Scholar 

  • Corrodi, H., and Jonsson, G., 1967, The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review on the methodology, J. Histochem. Cytochem. 15:65–78.

    CAS  Google Scholar 

  • Coyle, J. T, and Puttfarcken, P., 1993, Oxidative stress, glutamate, and neurodegenerative disorders, Science 262:689–695.

    CAS  PubMed  Google Scholar 

  • Davis, G. C, Williams, A. C., Markey, S. P., Ebert, M. H., Caine, E. D., Reichert, C. M., and Kopin, I. J., 1979, Chronic parkinsonism secondary to intravenous injection of meperidine analogues, Psychiatry Res. 1:249–254.

    CAS  PubMed  Google Scholar 

  • Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, E, Agid, Y, Lees, A., Jenner, P., and Marsden, C. D., 1989, Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease, J. Neurochem. 52:381–389.

    CAS  PubMed  Google Scholar 

  • Dexter, D. T., Holley, A. E., Flitter, W. D., Slater, T. F, Wells, F. R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D., 1994, Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study, Move. Disord. 9:92–97.

    CAS  Google Scholar 

  • Evans, J. M., and Cohen, G., 1989, Studies on the formation of 6-hydroxydopamine in mouse brain after administration of 6-hydroxydopa, J. Neurochem. 52:1461–1467.

    CAS  PubMed  Google Scholar 

  • Evans, J. M., and Cohen, G., 1993, Catecholamine uptake inhibitors elevate 6-hydroxydopamine in brain after administration of 6-hydroxydopa, Eur. J. Pharmacol. 232:241–245.

    Article  CAS  PubMed  Google Scholar 

  • Fahn, S., and Cohen, G., 1992, The oxidant stress hypothesis in Parkinson’s disease: Evidence supporting it, Ann. Neurol. 32:804–812.

    Article  CAS  PubMed  Google Scholar 

  • Good, P. F., Olanow, C. W., and Perl, D. P., 1992, Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: A LAMMA study, Brain Res. 593:343–346.

    Article  CAS  PubMed  Google Scholar 

  • Gorrell, J. M., DiMonte, D., and Graham, D., 1996, The role of the environment in Parkinson’s disease, Environ. Health Perspect. 104:652–654.

    CAS  PubMed  Google Scholar 

  • Graham, D. G., 1978, Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol. Pharmacol. 14:633–643.

    CAS  PubMed  Google Scholar 

  • Graham, D. G., Tiffany, S. M., Bell, W. R., and Gutknecht, W. F, 1978, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C-1300 neuroblastoma cells in vitro, Mol. Pharmacol. 14:644–653.

    CAS  PubMed  Google Scholar 

  • Hallman, H., Lange, J., Olson, L., Stromberg, I., and Jonsson, G., 1985, Neurochemical and histochemical characterization of the effects of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse, J. Neurochem. 44:117–127.

    CAS  PubMed  Google Scholar 

  • Han, S.-K., Mylilineou, C., and Cohen, G., 1996, L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress, J. Neurochem. 66:501–520.

    CAS  PubMed  Google Scholar 

  • Hefti, F., Melamed, E., and Wurtman, R. J., 1980, Partial lesions of the dopaminergic nigrostriatal system: Biochemical characterization. Brain Res. 195:123–137.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila, R. E., and Cohen, G., 1971, Inhibition of biogenic amine uptake by hydrogen peroxide: A mechanism for toxic effects of 6-hydroxydopamine, Science 172:1257–1258.

    CAS  PubMed  Google Scholar 

  • Heikkila, R. E., and Cohen, G., 1972, Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine: Potentiation by ascorbic acid, Mol. Pharmacol. 8:241–248.

    CAS  PubMed  Google Scholar 

  • Heikkila, R. E., and Cohen, G., 1973, 6-Hydroxydopamine: Evidence for superoxide radical as an oxidative intermediate, Science 181:456–457.

    CAS  PubMed  Google Scholar 

  • Heikkila, R. E., Mytilineou, C., Cote, L. J., and Cohen, G., 1973, Evidence for degeneration of sympathetic nerve terminals caused by the ortho and para-quinones of 6-hydroxydopamine, J. Neurochem. 20:1345–1350.

    CAS  PubMed  Google Scholar 

  • Heikkila, R. E., Hess, A., and Duvoisin, R., 1984, Dopaminergic neurotoxicity of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine in mice, Science 224:1451–1453.

    CAS  PubMed  Google Scholar 

  • Hornykiewicz, O., and Kish, S. J., 1986, Biochemical pathophysiology of Parkinson’s disease, Adv. Neurol. 45:19–34.

    Google Scholar 

  • Hunot, S., Brugg, B., Ricard, D., Michel, P. P., Muriel, M.-P, Ruerg, M., Faucheux, B. A., Agid, Y., and Hirsch, E. C., 1997, Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson’s disease, Proc. Natl. Acad. Sci. USA 94:7531–7533.

    Article  CAS  PubMed  Google Scholar 

  • Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., and Snyder, S. H., 1985, Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity, Proc. Natl. Acad. Sci. USA 82:2173–2177.

    CAS  PubMed  Google Scholar 

  • Jellinger, K., Paulus, W., Grundke-lqbal, I., Riederer, P., and Youdim, M. B. H., 1990, Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases, J. Neural Transm. Park. Dis. Dement. Sect. 2:327–340.

    CAS  PubMed  Google Scholar 

  • Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., Ben-Shachar, D., and Youdim, M. B. H., 1992, Iron-melanin complex in substantia nigra of parkinsonian brains: An X-ray microanalysi.s, J. Neurochem. 59:1168–1171.

    CAS  PubMed  Google Scholar 

  • Jenner, P., 1991, Oxidative stress as a cause of Parkinson’s disease, Ada Neural. Scand. 84 (Suppl. 136):6–I5.

    Google Scholar 

  • Jonsson, G., 1976, Studies on the mechanisms of 6-hydroxydopaminc cytotoxicity, Med. Biol. 54:406–420.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., and Jacobowitz, D. M., 1974, Pharmacological actions of 6-hydroxydopamine, Pharmacol. Rev. 26:199–288.

    CAS  PubMed  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I., 1983, Chronic parkinsonism in humans due to a product of meperidine-analog synthesis, Science 219:979–980.

    CAS  PubMed  Google Scholar 

  • Langston, J. W., Irwin, I., Langston, E. B., and Forno, L., 1984, Pargyline prevents MPTP-induced parkinsonism in primates, Science 225:1480–1482.

    CAS  PubMed  Google Scholar 

  • Lozoncy, M. F., Davidson, M., and Davis, K. F, 1987, The dopamine hypothesis of schizophrenia, in Psychopharmacology: A Second Generation of Progress (H. Y. Meltzer, ed.), pp. 715–726, Raven Press, New York.

    Google Scholar 

  • Mena, M. A., Pardo, B., Paino, C. L., and de Yebenes, J. G., 1993, Levodopa toxicity in foetal rat midbrain neurones in culture: Modulation by ascorbic acid, NeuroReport 4:438–440.

    CAS  PubMed  Google Scholar 

  • Mizuno, Y, Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Salo, T., Oya, H., Ozawa, T., and Kagawa, Y, 1989, Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease, Biochem. Biophys. Res. Commun. 163:1450–1455.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, Y., Ikebi, S.I., Hattori, N., Nakagawa-Hattori, Y., Mochizuki, H., Tanaka, M., and Ozawa, T., 1995, Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease, Biochim. Biophys. Acta 1271:265–274.

    PubMed  Google Scholar 

  • Mytilineou, C., and Cohen, G., 1984, l-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine destroys dopamine neurons inexplants of rat embryo mesencephalon, Science 225:529–531.

    CAS  PubMed  Google Scholar 

  • Mytilineou, C., Han, S.-K., and Cohen, G.,1993, Toxic and protective effects of L-dopa on mesencephalic cell cultures, J. Neurochem. 61:1470–1478.

    Google Scholar 

  • Nicklas, W. J., Vyas, I., and Heikkila, R. E., 1985, Inhibition of NADH-linked oxidation in brain mitochondria by MPP+, a metabolite of the neurotoxin, MPTP, Life Sci. 36:2503–2508.

    Article  CAS  PubMed  Google Scholar 

  • Olanow, C. W., Cohen, G., Perl, D. P., and Marsden, C. D., (eds.), 1992, Role of Iron and Oxidant Stress in the Normaland Parkinsonian Brain, Ann.Neurol. 32(Suppl.).

    Google Scholar 

  • Olanow, C. W., Hauser, R. A., Gauger, L., Malapira, T., Koller, W., Hubble, J., Bushenbark, K., Lilienfeld, D., and Esterlitz, J., 1995, The effect of deprenyl and levodopa on the progression of Parkinson’s disease, Ann. Neurol. 38:771–777.

    Article  CAS  PubMed  Google Scholar 

  • Olney, J. W., Zorumski, C. F., Stewart, G. R., Price, M. T., Wang, G., and Labruyere, J., 1990, Excitotoxicity of l-DOPA and 6-OH-DOPA: Implications for Parkinson’s and Huntington’s diseases, Exp. Neurol. 108:269–272.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson Study Group, 1989a, DATATOP: A multicenter controlled clinical trial in early Parkinsons disease, Arch. Neurol. 46:1052–1060.

    Google Scholar 

  • Parkinson Study Group, 1989b, Effect of deprenyl on the progression of disability in early Parkinson’s disease, N. Engl. J. Med. 321:1364–1371.

    Google Scholar 

  • Parkinson Study Group, 1993, Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease, N. Engl. J. Med. 328:183.

    Google Scholar 

  • Polymeropoulos, M. H., Levadan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein. J., Boyer, R., Stenroos, E. S., Chandrasekhaprappa, S., Athanassiadou, A., Papetropoulos, T., Johnson, W. G., Lazzarini, A, M., Duvoisin, R. C., Di lorio, G., Golbe, L. I., and Nussbaum, R. L., 1997, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science 276:2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A. B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C. J., and Cadet, J. L., 1992, Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced neurotoxicity, J. Neurosci. 12:1658–1661.

    CAS  PubMed  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V, Muthane, U., Jiang, H., Ferreira, M., Naini, A. B., and Fahn, S., 1993, Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity, Ann. Neurol. 34:715–723.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay, R. R., Salach, J. I., Dadgar, J., and Singer, T. P., 1986, Inhibition of mitochondrial NADH dehydrogenase by pyridme derivatives and its possible relationship to experimental and idiopathic Parkinsonism, Biochem. Biophys. Res. Commun. 135:259–275.

    Article  Google Scholar 

  • Sachs, C., Jonsson, G., Heikkila, R. E., and Cohen, G., 1975, Control of the neurotoxicity of 6-hydroxydopamine by intraneuronal noradrenaline in rat iris, Acta Physiol. Scand. 93:345–351.

    CAS  PubMed  Google Scholar 

  • Sanchez-Ramos, J.R., Overvik, E., and Ames, B.N., 1994, A marker of oxyradical-mediatedDNA damage is increased in nigro-striatum of parkinson’s disease brain, Neurodegeneration 3:197–204.

    Google Scholar 

  • Sandri, G., Panfili, E.. and Ernster, L., 1990, Hydrogen peroxide production by monoamine oxidase in isolated rat-brain mitochondria: Its effect on glutathione levels and Ca2+ efflux, Biochim. Biophys. Acta Gen. Subj. 1035:300–305.

    CAS  Google Scholar 

  • Schapira, A. H. V., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D., 1990, Mitochondrial complex I deficiency in Parkinson’s disease, J. Neurochem. 54:823–827.

    CAS  PubMed  Google Scholar 

  • Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Agid, Y, Javoy-Agid, F, Jenner, P., and Marsden, C. D., 1994, Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting the basal ganglia, Ann. Neurol. 36:348–355.

    CAS  PubMed  Google Scholar 

  • Sofic, E., Paulus, W., Jellinger, K., Riederer, P., and Youdim, M. B. H., 1991, Selective increase of iron in substantia nigra zona compacta of parkinsonian brains, J. Neurochem. 56:978–982.

    CAS  PubMed  Google Scholar 

  • Steece-Collier, K., Collier, T. J., Sladek, C. D., and Sladek, J. R., Jr., 1990, Chronic levodopa impairs morphological development of grafted embryonic dopamine neurons, Exp. Neurol. 110:201–208.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C., and Langston, J. W., 1990, Do environmental toxins cause Parkinson’s disease? A critical review, Neurology 40 (Suppl. 3): 17–30.

    PubMed  Google Scholar 

  • Werner, P., and Cohen, G., 1993, Glutathione disulfide (GSSG) as a marker of oxidative injury to brain mitochondria, Ann. N.Y. Acad. Sci. 679:364–369.

    CAS  PubMed  Google Scholar 

  • Werner, P., Mytilineou, C., Cohen, G., and Yahr, M. D., 1994, Impaired oxidation of pyruvate in human embryonic fibroblasts after exposure to l-dopa, Eur. J. Pharmacol. 263:157–162.

    Article  CAS  PubMed  Google Scholar 

  • Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E. R., and Mizuno, Y, 1996, Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease, Proc. Natl. Acad. Sci. USA 93:2696–2701.

    Article  CAS  PubMed  Google Scholar 

  • Zoccarato, F., Cavallini, L., Deana, R., and Alexandre, A., 1988, Pathways of hydrogen peroxide generation in guinea pig cortex mitochondria, Biochem. Biophys. Res. Commun. 154:727–734.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cohen, G. (2002). Oxidative Stress and Parkinson’s Disease. In: Reactive Oxygen Species in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-46806-9_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-46806-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45756-2

  • Online ISBN: 978-0-306-46806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics