Skip to main content

Immunity to Rickettsiae (Redux)

  • Chapter
Rickettsial Infection and Immunity

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

Summary

The obligate intracellular bacteria that we call rickettsiae obviously share many biological traits with the other intracellular bacteria. For example, it has been shown that both L. monocytogenes and R. rickettsii move through the cell cytoplasm and from cell to cell by an identical technique of actin polymerization.69 It is also clear that the intracellular bacteria share many aspects of the immune response, and this is not surprising. From the existing data it can be concluded that immunity to primary rickettsial infections characteristically is a THl-type cellular immunity. Further, IFN-γ is probably the most important cytokine for clearance of the organisms, although clearly not the only cytokine of importance. This statement is apparently true for the members of the genera Rickettsia and Ehrlichia, as well as for C. burnetii. Infection with these organisms has been noted to be associated with an immunosuppression, and this observation is largely unstudied. Perhaps the more important issue is the mechanisms that these organisms use to evade the immune system rather than the mechanisms of immunity that clear the organisms.

Probably the most compelling basic question that can be approached with the use of rickettsial model systems is how the immune system interacts with the vascular endothelium in terms of antigen presentation by the endothelial cell and T-cell interactions with the infected endothelial cell. It is hoped this review of the immune response to rickettsiae will inspire scientists to tackle these and other questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jerrells, T. R., 1988, Mechanisms ofimmunity to Rickettsiaspecies and Coxiella burnetii, in: Biology of Rickettsial Diseases, Volume II (D. H. Walker, ed.), CRC Press, Boca Raton, pp. 79–100.

    Google Scholar 

  2. Kaufmann, S. H. E., 1993, Immunity to intracellular bacteria, in: Annual Review of lmmunology, Volume 11 (W. E. Paul, C. G. Gathman, and H. Metzgar, eds.), Annual Reviews, Palo Alto, pp. 126–163.

    Google Scholar 

  3. Mosmann, T. R., and Coffman, R. L., 1989, Heterogeneity of cytokine secretion patterns and functions of helper T cells, Adv. Immunol. 46: 111–147.

    Article  PubMed  CAS  Google Scholar 

  4. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L., 1986, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol. 136: 2348–2357.

    PubMed  CAS  Google Scholar 

  5. Mosmann, T. R., and Coffman, R. L., 1989, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. 7:145–173.

    Article  PubMed  CAS  Google Scholar 

  6. Cher, D. J., and Mosmann, T. R., 1987, Two types of murine helper T-cell clone. II. Delayedtype hypersensitivity is mediated by TH1 clones, J. Immunol. 138: 3688–3694.

    PubMed  CAS  Google Scholar 

  7. Bancroft, G. J., 1993, The role of natural killer cells in innate resistance to infection, Curr, Opin. Immunol. 5: 503–510.

    Article  CAS  Google Scholar 

  8. Hsieh, C.-S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O’Garra, A., and Murphy, K. M., 1993, Development of TH 1 CD4+T cells through IL-12 produced by Listeria-infected macrophages, Science 260: 547–549.

    PubMed  CAS  Google Scholar 

  9. Manetti, R., Parronchi, P., Giudizi, M. G., Piccinni, M.-P., Maggi, E., Trinchieri, G., and Romagnani, S., 1993, Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specfic immune responses and inhibits the development of IL-4-producing Th cells, J. Exp. Med. 177:1199–1204.

    Article  PubMed  CAS  Google Scholar 

  10. Murphy, E. E., Terres, G., Macatonia, S. E., Hsieh, C.-S., Mattson, J., Lanier, L., Wysocka, M., Trinchieri, G., Murphy, K., and O’Garra, A., 1994, B7 and interleukin 12 cooperate for proliferation and interferon-γ production by mouse T helper clones that are unresponsive to B7 costimulation, J. Exp. Med. 180:223–231.

    Article  PubMed  CAS  Google Scholar 

  11. Scott, P., 1993, IL-12: Initiation cytokine for cell-mediated immunity, Science 260: 496–497.

    PubMed  CAS  Google Scholar 

  12. Trinchieri, G., 1994, Interleukin-12: A cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes, Blood 84: 4008–4027.

    PubMed  CAS  Google Scholar 

  13. Hendrzak, J. A., and Brunda, M. J., 1995, Interleukin-12: Biologic activity, therapeutic utility, and role in disease, Lab. Invest. 72: 619–637.

    PubMed  CAS  Google Scholar 

  14. Heinzel, F. P., Sadick, M. D., Holaday, B. J,, Coffman, R. L., and Locksley, R. M., 1989, Reciprocal expression of interferon-gamma or interleukin-4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets, J. Exp. Med. 196: 59–72.

    Google Scholar 

  15. Sher, A., Fiorentino, D., Caspar, P., Pearce, E., and Mosmann, T. R., 1991, Production of IL-10 by CD4+ T lymphocytes correlates with down-regulation of Thl cytokine synthesis in helminth infection, J. Immunol. 147:2713–2716.

    PubMed  CAS  Google Scholar 

  16. Groves, M. G., and Osterman, J. V., 1978, Host defenses in experimental scrub typhus: Genetics of natural resistance to infection, Infect. Immun. 019: 583–588.

    CAS  Google Scholar 

  17. Rollwagen, F. M., Dasch, G. A., and Jerrells, T. R., 1986, Mechanisms of immunity to rickettsial infection: Characterization of a cytotoxic effector cell, J. Immunol. 136: 1418–1421.

    PubMed  CAS  Google Scholar 

  18. Sasaki, T., Mieno, M., Udono, H., Yamaguchi, K., Usui, T., Hara, K., Shiku, H., and Nakayama, E., 1990, Roles of CD4+ and CD8+ cells, and the effect of administration of recombinant murine interferon-γ in listeria1 infection, J. Exp. Med. 171: 1141–1154.

    Article  PubMed  CAS  Google Scholar 

  19. Hess, J., Ladel, C., Miko, D., and Kaufmann, S. H. E., 1996. Salmonella typhimurium aroA-infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location, J. Immunol. 156:3321–3326.

    PubMed  CAS  Google Scholar 

  20. Ohga, S., Yoshikai, Y., Takeda, Y., Hiromatsu, K., and Nomoto, K., 1990, Sequential appearance of γ-δ and α/β-bearing T cells in the peritoneal cavity during an intraperitoneal infection with Listeria monocytogenes, Eur. J. Immunol. 20:533–538.

    PubMed  CAS  Google Scholar 

  21. Emoto, M., Naito, T., Nakamura, R., and Yoshikai, Y., 1993, Different appearance of γδ T cells during salmonellosis between Ity r and Ity c mice, J. Immunol. 150: 3411–3420.

    PubMed  CAS  Google Scholar 

  22. Shirai, A., Catanzaro, P. J., Phillips, S. M., and Osterman, J. V., 1976, Host defenses in experimental scrub typhus: Role of cellular immunity in heterologous protection, Infect. Immun. 14: 39–46.

    PubMed  CAS  Google Scholar 

  23. Catanzaro, P. J., Shirai, A., Agniel, L. D., Jr., and Osterman, J. V., 1977, Host defenses in experimental scrub typhus: Role of spleen and peritoneal exudate lymphocytes in cellular immunity, Infect. Immun. 18:118–123.

    PubMed  CAS  Google Scholar 

  24. Jerrells, T. R., Palmer, B. A., and MacMillan, J. G., 1984, Cellular mechanisms of innate and acquired immunity to Rickettsiatsutsugamushi, in: Microbiology-1984 (L. Leive and D. Schlessinger, eds.), American Society for Microbiology, Washington, DC, pp. 277–281.

    Google Scholar 

  25. Crist, A. E., Jr., Wisseman, C. L., Jr., and Murphy, J. R., 1984, Characteristics of lymphoid cells that adoptively transfer immunity to Rickettsia mooseri infection in mice, Infect. Immun. 44: 55–60.

    PubMed  Google Scholar 

  26. Jerrells, T. R., and Osterman, J. V., 1982, Host defenses in experimental scrub typhus: Delayed-type hypersensitivity responses of inbred mice, Infect. Immun. 35:117–123.

    PubMed  CAS  Google Scholar 

  27. Jerrells, T. R., and Eisemann, C. S., 1983, Role of T-lymphocytes in production of antibody to antigens of Rickettsia tsutsugamushi and other Rickettsia species, Infect. Immun. 41: 666–674.

    PubMed  CAS  Google Scholar 

  28. Jerrells, T. R., Mallavia, L. P., and Hinrichs, D. J., 1975, Detection of long-term cellular immunity to Coxiella burnetias assayed by lymphocyte transformation, Infect. Immun. 11: 280–286.

    PubMed  CAS  Google Scholar 

  29. Coonrod, J. D., and Shepard, C. C., 1971, Lymphocyte transformation in rickettsioses, J. Immunol. 106: 209–216.

    PubMed  CAS  Google Scholar 

  30. Bourgeois, A. L., Dasch, G. A., and Strong, D. M., 1980, In vitro stimulation of human peripheral blood lymphocytes by soluble and membrane fractions of renogratin-purified typhus group rickettsiae, Infect. Immun. 27: 483–491.

    PubMed  CAS  Google Scholar 

  31. Kenyon, R. H., Ascher, M. S., Kishimoto, R. A., and Pedersen, C. E., Jr., 1977, In vitro guinea pig leukocyte reactions to Rickettsia rickettsii, Infect. Immun. 18: 840–846.

    PubMed  CAS  Google Scholar 

  32. Jerrells, T. R., and Osterman, J. V., 1983, Development of specific and cross-reactive lymphocyte proliferative responses during chronic immunizing infections with Rickettsia tsutsugamushi, Infect. Immun. 40:147–156.

    PubMed  CAS  Google Scholar 

  33. MacMillan, J. G., Rice, R. M., and Jerrells, T. R., 1985, Development of antigen-specific cell-mediated immune responses after infection of cynomolgus monkeys (Macaca fascicularis) with Rickettsia tsutsugamushi, J. Infect. Dis. 152: 739–749.

    PubMed  CAS  Google Scholar 

  34. Jerrells, T. R., Jarboe, D. L., and Eisemann, C. S., 1986, Cross-reactive lymphocyte responses and protective immunity against other spotted fever group rickettsiae in mice immunized with Rickettsia conorii, Infect. Immun. 51: 832–837.

    PubMed  CAS  Google Scholar 

  35. Jarboe, D. L., Eisemann, C. S., and Jerrells, T. R., 1986, Production and characterization ofcloned T-cell hybridomas that are responsive to Rickettsia conorii antigens, Infect. Immun. 52: 326–330.

    PubMed  CAS  Google Scholar 

  36. Williams, N. M., Granstrom, D. E., and Timoney, P. J., 1994, Humoral antibody and lymphocyte blastogenesis responses in BALB/c, C3H/HeJ, and AKR/N mice following Ehrlichia risticii infection, Res. Vet. Sci. 56: 284–289.

    PubMed  CAS  Google Scholar 

  37. Palmer, B. A., Hetrick, F. M., and Jerrells, T. R., 1984, Production of gamma interferon in mice immune to Rickettsia tsutsugamushi, Infect. Immun. 43: 59–65.

    PubMed  CAS  Google Scholar 

  38. Palmer, B. A., Hetrick, F. M., and Jerrells, T. R., 1984, Gamma interferon production in response to homologous and heterologous strain antigens in mice chronically infected with Rickettsia tsutsugamushi, Infect. Immun. 46: 237–244.

    PubMed  CAS  Google Scholar 

  39. Hinrichs, D. J., and Jerrells, T. R., 1976, In vitro evaluation of immunity to Coxiella burnetii, J. Immunol. 117: 996–1003.

    PubMed  CAS  Google Scholar 

  40. Nacy, C. A,, and Osterman, J. V., 1979, Host defenses in experimental scrub typhus: Role of normal and activated macrophages, Infect. Immun. 26: 744–750.

    PubMed  CAS  Google Scholar 

  41. Nacy, C. A., Leonard, E. J., and Meltzer, M. S., 1981, Macrophages in resistance to rickettsial infections: Characterization of lymphokines that induce rickettsiacidal activity in macrophages, J. Immunol. 126:204–207.

    PubMed  CAS  Google Scholar 

  42. Gage, K. L., and Jerrells, T. R., 1992, Demonstration and partial characterization of antigens of Rickettsia rhipicephali that induce cross-reactive cellular and humoral immune responses to Rickettsia rickettsii, Infect. Immun. 60: 5099–5106.

    PubMed  CAS  Google Scholar 

  43. Murata, M., and Kawamura, A., Jr., 1977, Restoration of the infectivity of Rickettsia tsutsugamushi to susceptible animals by passage in athymic nude mice, Jpn. J. Exp. Med. 47: 385–391

    PubMed  CAS  Google Scholar 

  44. Kenyon, R. H., and Pedersen, C. E.,Jr., 1980, Immune responses to Rickettsia akari infection in congenitally athymic nude mice, Infect. Immun. 28: 310–313.

    PubMed  CAS  Google Scholar 

  45. Kokorin, I. N., Kabanova, E. A., Shirokova, E. M., Abrosimova, G. E., Rybkina, N. N., and Pushkareva, V. I., 1982, Role of T lymphocytes in Rickettsia conorii infection, Acta Virol. 26: 91–97.

    PubMed  CAS  Google Scholar 

  46. Messick, J. B., and Rikihisa, Y., 1994, Inhibition of binding, entry, or intracellular proliferation of Ehrlichia risticii in P388D1 cells by anti-E. risticii serum, immunoglobulin G, or Fab fragment, Infect. Immun. 62: 3156–3161.

    PubMed  CAS  Google Scholar 

  47. Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R., 1992, Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium, Infect. Immun. 60: 1786–1792.

    PubMed  CAS  Google Scholar 

  48. Barnewall, R. E., and Rikihisa, Y., 1994, Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin, Infect. Immun. 62: 4804–4810.

    PubMed  CAS  Google Scholar 

  49. Turco, J., and Winkler, H. H., 1984, Effect of mouse lymphokines and cloned mouse interferon-γ on the interaction of Rickettsia prowazekii with mouse macrophage-like RAW264.7 cells, Infect. Immun. 45: 303–308.

    PubMed  CAS  Google Scholar 

  50. Chan, J., Xing, Y., Magliozzo, R. S., and Bloom, B. R., 1992, Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages,J. Exp. Med. 175: 1111–1122.

    Google Scholar 

  51. Gebran, S. J., Yamamoto, Y., Newton, C., Klein, T. W., and Friedman, H., 1994, Inhibition of Legionella pneumophila growth by gamma interferon in permissive A/J mouse macrophages: Role of reactive oxygen species, nitric oxide, tryptophan, and iron(III), Infect. Immun. 62: 3197–3205.

    PubMed  CAS  Google Scholar 

  52. Feng, H. M., and Walker, D. H., 1993, Interferon-gamma and tumor necrosis factor-alpha exert their antirickettsial effect via induction of synthesis of nitric oxide, Am. J. Pathol. 143:1016–1023.

    PubMed  CAS  Google Scholar 

  53. Jerrells, T. R., Turco, J., Winkler, H. H., and Spitalny, G. L., 1986, Neutralization of lymphokine-mediated antirickettsial activity of fibroblasts and macrophages with monoclonal antibody specific for murine interferon gamma, Infect. Immun. 51: 355–359.

    PubMed  CAS  Google Scholar 

  54. Turco, J., and Winkler, H. H., 1983, Inhibition of the growth of Rickettsiaprowazekii in cultured fibroblasts by lymphokines, J. Exp. Med. 157: 974–986.

    Article  PubMed  CAS  Google Scholar 

  55. Wisseman, C. L., Jr., and Waddell, A., 1983, Interferon-like factors from antigen-and mitogen-stimulated human leukocytes with antirickettsial and cytolytic actions on Rickettsia prowazekii. Infected human endothelial cells, fibroblasts, and macrophages, J. Exp. Med. 157: 1780–1793.

    Article  PubMed  CAS  Google Scholar 

  56. Turco, J., and Winkler, H. H., 1983, Comparison of the properties of antirickettsial activity and interferon in mouse lymphokines, Infect. Immun. 42: 27–32.

    PubMed  CAS  Google Scholar 

  57. Turco, J., Thompson, H. A., and Winkler, H. H., 1984, Interferon-γ inhibits the growth of Coxiella burnetii in mouse fibroblasts, Infect. Immun. 45: 781–783.

    PubMed  CAS  Google Scholar 

  58. Szalay, G., Hess, J., and Kaufmann, S. H. E., 1995, Restricted replication of Listeria monocytogenes in a gamma interferon-activated murine hepatocyte line, Infect. Immun. 63: 3187–3195.

    PubMed  CAS  Google Scholar 

  59. Jerrells, T. R., and Geng, P., 1994, The role of tumor necrosis factor in host defense against scrub typhus rickettsiae. II. Differential induction of tumor necrosis factor-alpha production by Rickettsia tsutsugamushi and Rickettsia conorii, Microbiol. Immunol. 38: 713–719.

    PubMed  CAS  Google Scholar 

  60. Manor, E., and Sarov, I., 1990, Tumor necrosis factor alpha and prostaglandin E, production by human monocyte-derived macrophages infected with spotted fever group rickettsiae, Ann. N.Y. Acad. Sci. 590:157–167.

    PubMed  CAS  Google Scholar 

  61. Geng, P., and Jerrells, T. R., 1994, The role of tumor necrosis factor in host defense against scrub typhus rickettsiae. I. Inhibition of growth of Rickettsia tsutsugamushi, Karp strain, in cultured murine embryonic cells and macrophages by recombinant tumor necrosis factor-alpha, Microbiol. Immunol. 38:703–711.

    PubMed  CAS  Google Scholar 

  62. Sporn, L. A., and Marder, V. J., 1996, Interleukin-1α production during Rickettsia rickettsii infection of cultured endothelial cells: Potential role in autocrine cell stimulation, Infect. Immun. 64: 1609–1613.

    PubMed  CAS  Google Scholar 

  63. Oster, C. N., Kenyon, R. H., and Pedersen, C. E., Jr., 1978, Suppression of cellular immune responses in guinea pigs infected with spotted fever group rickettsiae, Infect. Immun. 22:411–417.

    PubMed  CAS  Google Scholar 

  64. Jerrells, T. R., 1985, Immunosuppression associated with the development of chronic infections with Rickettsia tsutsugamushi: Adherent suppressor cell activity and macrophage activation, Infect. Immun. 50:175–182.

    PubMed  CAS  Google Scholar 

  65. Jerrells, T. R., and Hickman, C. J., 1987, Down regulation of Ia antigen expression on inflammatory macrophages by factors produced during acute infections with R. tsutsugamushi, in: Immune Regulation by Characterized Polypeptides, Volume 41, UCLA Symposia on Molecular and Cellular Biology (G. Goldstein, J. F. Bach, and H. Wigzell, eds.), Liss, New York, pp. 659–668.

    Google Scholar 

  66. Koster, F. T., Williams, J. C., and Goodwin, J. S., 1985, Cellular immunity in Qfever: Specific lymphocyte unresponsiveness in Qfever endocarditis, J. Infect. Dis. 152: 1283–1289.

    PubMed  CAS  Google Scholar 

  67. Koster, F. T., Williams, J. C., and Goodwin, J. S., 1985, Cellular immunity in Qfever: Modulation of responsiveness by a suppressor T cell-monocyte circuit, J. Immunol. 135:1067–1072.

    PubMed  CAS  Google Scholar 

  68. Damrow, T. A., Williams, J. C., and Waag, D. M., 1985, Suppression of in vitro lymphocyte proliferation in C57BL/10 ScN mice vaccinated with phase I Coxiella burnetii, Infect. Immun. 47: 149–156.

    PubMed  CAS  Google Scholar 

  69. Heinzen, R. A., Hayes, S. F., Peacock, M. G., and Hackstadt, T., 1993, Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells, Infect. Immun. 61: 1926–1935.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jerrels, T.R. (2002). Immunity to Rickettsiae (Redux). In: Anderson, B., Friedman, H., Bendinelli, M. (eds) Rickettsial Infection and Immunity. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-46804-2_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46804-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45528-5

  • Online ISBN: 978-0-306-46804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics