Large clostridial cytotoxins

Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 152)


The large clostridial cytotoxins are a family of structurally and functionally related exotoxins from Clostridium difficile (toxins A and B), C. sordellii (lethal and hemorrhagic toxin) and C. novyi (α-toxin). The exotoxins are major pathogenicity factors which in addition to their in vivo effects are cytotoxic to cultured cell lines causing reorganization of the cytoskeleton accompanied by morphological changes. The exotoxins are single-chain protein toxins, which are constructed of three domains: receptor-binding, translocation and catalytic domain. These domains reflect the self-mediated cell entry via receptor-mediated endocytosis, translocation into the cytoplasm, and execution of their cytotoxic activity by an inherent enzyme activity. Enzymatically, the toxins catalyze the transfer of a glucosyl moiety from UDP-glucose to the intracellular target proteins which are the Rho and Ras GTPases. The covalent attachment of the glucose moiety to a conserved threonine within the effector region of the GTPases renders the Rho-GTPases functionally inactive. Whereas the molecular mode of cytotoxic effects is fully understood, the mechanisms leading to inflammatory processes in the context of disease (e.g., antibiotic-associated pseudomembranous colitis caused by Clostridium difficile) are less clear.



Clostridium difficile-associated diarrhea


ADP-ribosyltransferase C3 from Clostridium botulinum


Large clostridial cytotoxin


Clostridium difficile toxin A


Clostridium difficile toxin B


Clostridium sordellii lethal toxin


Clostridium sordellii hemorrhagic toxin


Clostridium novyi alpha-toxin


  1. Aktories K, Prepens U, Sehr P, Just I (1997a) Probing the actin cytoskeleton by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. In: Aktories K (ed) Bacterial toxins. Chapman & Hall, Weinheim, pp 129–139CrossRefGoogle Scholar
  2. Aktories K, Sehr P, Just I (1997b) Actin-ADP-ribosylating toxins: Cytotoxic mechanism of Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. In: Aktories K (ed) Bacterial toxins. Chapman & Hall, Weinheim, pp 93–101CrossRefGoogle Scholar
  3. Alfano F, Russell A, Gambardella R, Duckett JG (1993) The actin cytoskeleton of the liverwort Riccia fluitans: Effects of cytochalasin B and aluminium ions on rhizoid tip growth. J Plant Physiol 142:569–574Google Scholar
  4. Barbieri JT, Riese MJ, Aktories K (2002) Bacterial Toxins that modify the actin cytoskeleton. Annu Rev Cell Dev Biol 18:315–344PubMedCrossRefGoogle Scholar
  5. Barbut F, Lalande V, Burghoffer B, Thien HV, Grimpel E, Petit JC (2002) Prevalence and genetic characterization of toxin A variant strains of Clostridium difficile among adults and children with diarrhea in France. J Clin Microbiol 40:2079–2083PubMedCrossRefGoogle Scholar
  6. Barroso LA, Wang S-Z, Phelps CJ, Johnson JL, Wilkins TD (1990) Nucleotide sequence of Clostridium difficile toxin B gene. Nucleic Acids Res 18(13):4004PubMedCrossRefGoogle Scholar
  7. Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K (2001) Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J Biol Chem 276:10670–10676PubMedCrossRefGoogle Scholar
  8. Bartlett JG (1994) Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 18:265–272Google Scholar
  9. Bartlett JG (2002) Antibiotic-associated diarrhea. N Engl J Med 346:334–339PubMedCrossRefGoogle Scholar
  10. Bette P, Oksche A, Mauler F, Von Eichel-Streiber C, Popoff MR, Habermann E (1991) A comparative biochemical, pharmacological and immunological study of Clostridium novyi α-toxin, C. difficile toxin B and C. sordellii lethal toxin. Toxicon 29:877–887PubMedCrossRefGoogle Scholar
  11. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255PubMedCrossRefGoogle Scholar
  12. Bobak DA (1999) Clostridial toxins: Molecular probes of Rho-dependent signaling and apoptosis. Mol Cell Biochem 193:37–42PubMedCrossRefGoogle Scholar
  13. Boeggeman E, Quasb PK (2002) Studies on the metal binding sites in the catalytic domain of beta1,4-galactosyltransferrase. Glycobiology 12:395–407PubMedCrossRefGoogle Scholar
  14. Boix E, Swaminathan J, Zhang Y, Natesh R, Brew K, Acharya KR (2002). Structure of UDP complex of UDP-galactose: β-galactoside-a-1,3-galactosyltransferase at 1.53-A resolution reveals a conformational change in the catalytic important C terminus. J Biol Chem 276:48608–48614Google Scholar
  15. Boquet P (2002) Modification of small GTP-binding proteins by bacterial protein toxins. Methods Microbiol 31:225–244CrossRefGoogle Scholar
  16. Boquet P, Lemichez E (2003) Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol 13:238–246PubMedCrossRefGoogle Scholar
  17. Borriello SP, Wren BW, Hyde S, Seddon SV, Sibbons P, Krishna MM, Tabaqchali S, Manek S, Price AB (1992) Molecular, immunological, and biological characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile. Infect Immun 60(10):4192–4199PubMedGoogle Scholar
  18. Braun V, Hundsberger T, Luekel P, Sauerborn M, Von Eichel-Streiber C (1996) Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181:29–38PubMedCrossRefGoogle Scholar
  19. Brito GAC, Fujji J, Carneiro BA, Lima AAM, Obrig T, Guerrant RL (2002) Mechanism of Clostridium difficile toxin A-induced apoptosis in T84 cells. J Infect Dis 186:1438–1447PubMedCrossRefGoogle Scholar
  20. Burger S, Tatge H, Hofmann F, Just I, Gerhard R (2003) Expression of recombinant Clostridium difficile toxin A using the Bacillus megaterium system. Biochem Biophys Res Commun 307:584–588PubMedCrossRefGoogle Scholar
  21. Busch C, Aktories K (2000) Microbial toxins and the glycosylation of rho family GTPases. Curr Opin Struct Biol 10:528–535PubMedCrossRefGoogle Scholar
  22. Busch C, Hofmann F, Selzer J, Munro J, Jeckel D, Aktories K (1998) A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 273:19566–19572PubMedCrossRefGoogle Scholar
  23. Busch C, Hofmann F, Gerhard R, Aktories K (2000) Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases. J Biol Chem 275:13228–13234PubMedCrossRefGoogle Scholar
  24. Calderon GM, Torres-Lopez J, Lin TJ, Chavez B, Hernandez M, Munoz O, Befus AD, Enciso JA (1998) Effects of toxin A from Clostridium difficile on mast cell activation and survival. Infect Immun 66:2755–2761PubMedGoogle Scholar
  25. Chaves-Olarte E, Florin I, Boquet P, Popoff M, Von Eichel-Streiber C, Thelestam M (1996) UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. J Biol Chem 271:6925–6932PubMedCrossRefGoogle Scholar
  26. Chaves-Olarte E, Weidmann M, Von Eichel-Streiber C, Thelestam M (1997) Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. J Clin Invest 100:1734–1741PubMedCrossRefGoogle Scholar
  27. Chaves-Olarte E, Low P, Freer E, Norlin T, Weidmann M, von Eichel-Streiber C, Thelestam M (1999) A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins. J Biol Chem 274:11046–11052PubMedCrossRefGoogle Scholar
  28. Chaves-Olarte E, Freer E, Parra A, Guzmán-Verri C, Moreno E, Thelestam, M (2003) R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile. J Biol Chem 278:7956–7963PubMedCrossRefGoogle Scholar
  29. Chen ML, Pothoulakis C, LaMont JT (2002) Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J Biol Chem 277:4247–4254PubMedCrossRefGoogle Scholar
  30. Ciesielski-Treska J, Ulrich G, Rihn B, Aunis D (1989) Mechanism of action of Clostridium difficile toxin B: role of external medium and cytoskeletal organization in intoxicated cells. Eur J Cell Biol 48:191–202PubMedGoogle Scholar
  31. Ciesielski-Treska J, Ulrich G, Baldacini O, Monteil H, Aunis D (1991) Phosphorylation of cellular proteins in response to treatment with Clostridium difficile toxin B and Clostridium sordellii toxin L. Eur J Cell Biol 56:68–78PubMedGoogle Scholar
  32. Ciesla WP Jr, Bobak DA (1998) Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities. J Biol Chem 273:16021–16026PubMedCrossRefGoogle Scholar
  33. Coleman ML, Olson MF (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9:493–504PubMedCrossRefGoogle Scholar
  34. Depitre C, Delmee M, Avesani V, L’Haridon R, Roels A, Popoff M, Corthier G (1993) Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J Med Microbiol 38:434–441PubMedGoogle Scholar
  35. Magdesian KG, Hirsh DC, Jang SS, Hansen LM, Madigan JE (1990) Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 58:480–488Google Scholar
  36. Dupuy B, Sonenshein AL (1998) Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27:107–120PubMedCrossRefGoogle Scholar
  37. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635PubMedCrossRefGoogle Scholar
  38. Falnes PO, Sandvig K (2000) Penetration of protein toxins into cells. Curr Opin Cell Biol 12:407–413PubMedCrossRefGoogle Scholar
  39. Farrell RJ, LaMont JT (2000) Pathogenesis and clinical manifestations of Clostridium difficile diarrhea and colitis. Curr Top Microbiol Immunol 250:109–125PubMedGoogle Scholar
  40. Faust C, Ye B, Song K-P (1998) The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region. Biochem Biophys Res Commun 251:100–105PubMedCrossRefGoogle Scholar
  41. Fiorentini C, Arancia G, Paradisi S, Donelli G, Giuliano M, Piemonte F, Mastrantonio P (1989) Effects of Clostridium difficile toxins A and B on cytoskeleton organization in HEp-2 cells: a comparative morphological study. Toxicon 27:1209–1218PubMedCrossRefGoogle Scholar
  42. Fiorentini C, Fabbri A, Falzano L, Fattorossi A, Matarrese P, Rivabene R, Donelli G (1998) Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 66:2660–2665PubMedGoogle Scholar
  43. Fiorentini C, Thelestam M (1991) Clostridium difficile toxin A and its effects on cells. Toxicon 29:543–567PubMedCrossRefGoogle Scholar
  44. Fiorentini C, Malorni W, Paradisi S, Giuliano M, Mastrantonio P, Donelli G (1990) Interaction of Clostridium difficile toxin A with cultured cells: cytoskeletal changes and nuclear polarization. Infect Immun 58:2329–2336PubMedGoogle Scholar
  45. Florin I, Thelestam M (1983) Internalization of Clostridium difficile cytotoxin into cultured human lung fibroblasts. Biochim Biophys Acta 763:383–392PubMedCrossRefGoogle Scholar
  46. Florin I, Thelestam M (1986) Lysosomal involvement in cellular intoxication with Clostridium difficile toxin B. Microb Pathogen 1:373–385CrossRefGoogle Scholar
  47. Frey SM, Wilkins TD (1992) Localization of two epitopes recognized by monoclonal antibody PCG-4 on Clostridium difficile toxin A. Infect Immun 60:2488–2492PubMedGoogle Scholar
  48. Frisch C, Gerhard R, Aktories K, Hofmann F, Just I (2003) The complete receptor-binding domain of Clostridium difficile toxin A is required for endocytosis. Biochem Biophys Res Commun 300:706–711PubMedCrossRefGoogle Scholar
  49. Garcia JL, Sánchez-Beato AR, Medrano FJ, López R (1998) Versatility of choline-binding domain. Microb Drug Resist 4:25–36PubMedGoogle Scholar
  50. Genth H, Hofmann F, Selzer J, Rex G, Aktories K, Just I (1996) Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii. Biochem Biophys Res Commun 229:370–374PubMedCrossRefGoogle Scholar
  51. Genth H, Aktories K, Just I (1999) Monoglucosylation of RhoA at Threonine-37 blocks cytosol-membrane cycling. J Biol Chem 274:29050–29056PubMedCrossRefGoogle Scholar
  52. Genth H, Selzer J, Busch C, Dumbach J, Hofmann F, Aktories F, Just I (2000) New method to generate enzymatically deficient Clostridium difficile toxin B as an antigen for immunization. Infect Immun 68:1094–1101PubMedCrossRefGoogle Scholar
  53. Gerhard R, Schmidt G, Hofmann F, Aktories K (1998) Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco-2 cells. Infect Immun 66:5125–5131PubMedGoogle Scholar
  54. Geric B, Johnson S, Gerding DN, Grabnar M, Rupnik M (2003) Frequency of binary toxin genes among Clostridium difficile strains that do not produce large clostridial cytotoxins. J Clin Microbiol 41:5227–5232PubMedCrossRefGoogle Scholar
  55. Geyer M, Wilde C, Selzer J, Aktories K, Kalbitzer HR (2003) Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for effector loop conformations observed by NMR spectroscopy. Biochemistry 42:11951–11959PubMedCrossRefGoogle Scholar
  56. Gomez J, Martinez C, Gonzalez A, Rebollo A (1998) Dual role of Ras and Rho proteins—at the cutting edge of life and death. Immunol Cell Biol 76:125–134PubMedCrossRefGoogle Scholar
  57. Green GA, Schué V, Monteil H (1995) Cloning and characterization of the cytotoxin L-encoding gene of Clostridium sordellii: Homology with Clostridium difficile cytotoxin B. Gene 161:57–61PubMedCrossRefGoogle Scholar
  58. Gründling A, Manson MD, Young R (2001) Holins kill without warning. Proc Natl Acad Sci 98:9348–9352PubMedCrossRefGoogle Scholar
  59. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514PubMedCrossRefGoogle Scholar
  60. Hammond GA, Johnson JL (1995) The toxinogenic element of Clostridium difficile strain VPI 10463. Microb Pathogen 19 203–213CrossRefGoogle Scholar
  61. Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3:66–98PubMedGoogle Scholar
  62. Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274PubMedCrossRefGoogle Scholar
  63. He D, Hagen J, Pothoulakis C, Chen M, Medina ND, Warny M, LaMont JT (2000) Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119:139–150PubMedCrossRefGoogle Scholar
  64. He D, Sougioultzis S, Hagen S, Liu J, Keates S, Keates AC, Pothoulakis C, LaMont JM (2002) Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122:1048–1057PubMedCrossRefGoogle Scholar
  65. Hecht G, Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82:1516–1524PubMedCrossRefGoogle Scholar
  66. Hecht G, Koutsouris A, Pothoulakis C, LaMont JT, Madara JL (1992) Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102:416–423PubMedGoogle Scholar
  67. Henriques B, Florin I, Thelestam M (1987) Cellular internalization of Clostridium difficile toxin A. Microb Pathogen 2:455–463CrossRefGoogle Scholar
  68. Herrmann C, Ahmadian MR, Hofmann F, Just I (1998) Functional consequences of monoglucosylation of H-Ras at effector domain amino acid threonine-35. J Biol Chem 273:16134–16139PubMedCrossRefGoogle Scholar
  69. Hofmann F, Herrmann A, Habermann E, Von Eichel-Streiber C (1995) Sequencing and analysis of the gene encoding the α-toxin of Clostridium novyi proves its homology to toxins A and B of Clostridium difficile. Mol Gen Genet 247:670–679PubMedCrossRefGoogle Scholar
  70. Hofmann F, Rex G, Aktories K, Just I (1996) The Ras-related protein Ral is monoglucosylated by Clostridium sordellii lethal toxin. Biochem Biophys Res Commun 227:77–81PubMedCrossRefGoogle Scholar
  71. Hofmann F, Busch C, Prepens U, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272:11074–11078PubMedCrossRefGoogle Scholar
  72. Hofmann F, Busch C, Aktories K (1998) Chimeric clostridial cytotoxins: identification of the N-terminal region involved in protein substrate recognition. Infect Immun 66:1076–1081PubMedGoogle Scholar
  73. Hundsberger T, Braun V, Weidmann M, Leukel P, Sauerborn M, Von Eichel-Streiber C (1997) Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244:735–742PubMedCrossRefGoogle Scholar
  74. Johal SS, Solomon K, Dodson S, Borriello P, Mahida YR (2004) Differential effects of varying concentrations of Clostridium difficile toxin A on epithelial barrier function and expression of cytokines. J Infect Dis 189:2110–2119PubMedCrossRefGoogle Scholar
  75. Johnson S, Sambol SP, Brazier JS, Delmee M, Avesani V, Gerding DN (2003) International typing study of toxin A-negative, toxin B-positive Clostridium difficile variants. J Clin Microbiol 41:1543–1547PubMedCrossRefGoogle Scholar
  76. Jones SL, Blikslager AT (2002) Pole of the enteric nervous system in the pathophysiology of secretory diarrhea. J Vet Intern Med 16:222–228PubMedCrossRefGoogle Scholar
  77. Just I, Boquet P (2000) Large clostridial cytotoxins as tools in cell biology. Curr Top Microbiol Immunol 250:97–107PubMedGoogle Scholar
  78. Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995a) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503PubMedCrossRefGoogle Scholar
  79. Just I, Wilm M, Selzer J, Rex G, von Eichel-Streiber C, Mann M, Aktories K (1995b) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 270:13932–13936PubMedCrossRefGoogle Scholar
  80. Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271:10149–10153PubMedCrossRefGoogle Scholar
  81. Just I, Selzer J, Hofmann F, Aktories K (1997) Clostridium difficile toxin B as a probe for Rho GTPases. In: Aktories K (ed) Bacterial toxins—tools in cell biology and pharmacology. Chapman & Hall, Weinheim, pp 159–168Google Scholar
  82. Karlsson KA (1995) Microbial recognition of target-cell glycoconjugates. Curr Opin Struct Biol 5:622–635PubMedCrossRefGoogle Scholar
  83. Kaul P, Silverman J, Shen WH, Blanke SR, Huynh PD, Finkelstein A, Collier RJ (1996) Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci 5:687–692PubMedCrossRefGoogle Scholar
  84. Kelly CP, LaMont JT (1998) Clostridium difficile infection. Annu Rev Med 49:375–390PubMedCrossRefGoogle Scholar
  85. Kelly CP, Pothoulakis C, LaMont JT (1994) Clostridium difficile colitis. N Engl J Med 330:257–262PubMedCrossRefGoogle Scholar
  86. Krivan HC, Wilkins TD (1987) Purification of Clostridium difficile toxin A by affinity chromatography on immobilized thyroglobulin. Infect Immun 55(8):1873–1877PubMedGoogle Scholar
  87. Krivan HC, Clark GF, Smith DF, Wilkins TD (1986) Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Galα1-3Galβ1-4GlcNAc. Infect Immun 53:573–581PubMedGoogle Scholar
  88. Kuijper EJ, de Weerdt J, Kato H, Kato N, van Dam AP, van der Vorm ER, Weel J, van Rheenen C, Dankert J (2001) Nosocomial outbreak of Clostridium difficile-associated diarrhea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis 20:528–534PubMedGoogle Scholar
  89. Kushnaryov VM, Sedmark JJ (1989) Effect of Clostridium difficile enterotoxin A on ultrastructure of Chinese hamster ovary cells. Infect Immun 57(12):3914–3921PubMedGoogle Scholar
  90. Kushnaryov VM, Redlich PN, Sedmak JJ, Lyerly DM, Wilkins TD, Grossberg SE (1992) Cytotoxicity of Clostridium difficile toxin A for human colonic and pancreatic carcinoma cell lines. Cancer Res 52:5096–5099PubMedGoogle Scholar
  91. Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB (1990) Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase cDNA. J Biol Chem 265:7055–7061PubMedGoogle Scholar
  92. Laughlin MR, Petit WA, Dizon JM, Shulman RG, Barrett EJ (1988) NMR measurements of in vivo myocardial glycogen metabolism. J Biol Chem 263:2285–2291PubMedGoogle Scholar
  93. Lyerly DM, Lockwood DE, Richardson SH, Wilkins TD (1982) Biological activities of toxins A and B of Clostridium difficile. Infect Immun 35:1147–1150PubMedGoogle Scholar
  94. Lyerly DM, Saum KE, MacDonald DK, Wilkins TD (1985) Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47:349–352PubMedGoogle Scholar
  95. Lyerly DM, Phelps CJ, Toth J, Wilkins TD (1986) Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect Immun 54:70–76PubMedGoogle Scholar
  96. Mahida YR, Makh S, Hyde S, Gray T, Borriello SP (1996) Effect of Clostridium difficile toxin A on human intestinal epithelial cells: induction of interleukin 8 production and apoptosis after cell detachment. Gut 38:337–347PubMedCrossRefGoogle Scholar
  97. Mahida YR, Galvin A, Makh S, Hyde S, Sanfilippo L, Borriello SP, Sewell JL (1998) Effect of Clostridium difficile toxin A on human colonic lamina propria cells: early loss of macrophages followed by T-cell apoptosis. Infect Immun 66:5462–5469PubMedGoogle Scholar
  98. Malorni W, Fiorentini C, Paradisi S, Giuliano M, Mastrantonio P, Donelli G (1990) Surface blebbing and cytoskeletal changes induced in vitro by toxin B from Clostridium difficile: an immunochemical and ultrastructural study. Exp Mol Pathol 52:340–356PubMedCrossRefGoogle Scholar
  99. Mani N, Dupuy B (2001) Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci 98:5844–5849PubMedCrossRefGoogle Scholar
  100. Mantyh CR, McVey DC, Vigna SR (2000) Extrinsic surgical denervation inhibits Clostridium difficile toxin A-induced enteritis in rats. Neurosci Lett 292:95–98PubMedCrossRefGoogle Scholar
  101. Moore R, Pothoulakis C, LaMont JT, Carlson S, Madara JL (1990) C. difficile toxin A increases intestinal permeability and induces Cl-. Am J Physiol 259:G165–G172PubMedGoogle Scholar
  102. Moos M, Von Eichel-Streiber C (2000) Purification and evaluation of large clostridial cytotoxins that inhibit small GTPases of the Rho and Ras subfamily. Methods Enzymol 325:114–125PubMedCrossRefGoogle Scholar
  103. Mukherjee K, Karlsson S, Burman LG, Akerlund T (2002) Proteins released during high toxin production in Clostridium difficile. Microbiology-Sgm 148:2245–2253Google Scholar
  104. Müller S, Von Eichel-Streiber C, Moos M (1999) Impact of amino acids 22–27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864. Eur J Biochem 266:1073–1080PubMedCrossRefGoogle Scholar
  105. Mylonakis E, Ryan ET, Calderwood SB (2001) Clostridium difficile-associated diarrhea. Arch Intern Med 161:525–533PubMedCrossRefGoogle Scholar
  106. Neunlist M, Barouk J, Michel K, Just I, Oreshkova T, Schemann M, Galmiche JP (2003) Toxin B of Clostridium difficile activates human VIP submucosal neurons in part via an Il-1beta-dependent pathway. Am J Physiol Gastrointest Liver Physiol 285:G1028–G1036PubMedGoogle Scholar
  107. Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL (1995) Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci 92:10629–10633PubMedCrossRefGoogle Scholar
  108. Oksche A, Nakov R, Habermann E (1992) Morphological and biochemical study of cytoskeletal changes in cultured cells after extracellular application of Clostridium novyi alpha-toxin. Infect Immun 60:3002–3006PubMedGoogle Scholar
  109. Peppelenbosch MP, Qiu R-G, De Vries-Smits AMM, Tertoolen LGJ, de Laat SW, McCormick F, Hall A, Symons MH, Bos JL (1995) Rac mediates growth factor-induced arachidonic acid release. Cell 81:849–856PubMedCrossRefGoogle Scholar
  110. Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407PubMedGoogle Scholar
  111. Petit P, Bréard J, Montalescot V, El Hadj NB, Levade T, Popoff M, Geny B (2003) Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell Microbiol 5:761–771PubMedCrossRefGoogle Scholar
  112. Pfeifer G, Schirmer J, Leemhuis J, Busch C, Meyer DK, Aktories K, Barth H (2003) Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eucaryotic cells. J Biol Chem 278(45):44535–44541PubMedCrossRefGoogle Scholar
  113. Popoff MR (1987) Purification and characterization of Clostridium sordellii lethal toxin and cross-reactivity with Clostridium difficile cytotoxin. Infect Immun 55:35–43PubMedGoogle Scholar
  114. Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a clostridium difficile strain. Infect Immun 56:2299–2306PubMedGoogle Scholar
  115. Popoff MR, Chaves OE, Lemichez E, Von Eichel-Streiber C, Thelestam M, Chardin P, Cussac D, Chavrier P, Flatau G, Giry M, Gunzburg H, Boquet P (1996) Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J Biol Chem 271:10217–10224PubMedCrossRefGoogle Scholar
  116. Pothoulakis C, LaMont JT (2001) Microbes and microbial toxins: Paradigms for microbial-mucosal interactions. Am J Physiol Gastrointest Liver Physiol 280:G178–G183PubMedGoogle Scholar
  117. Pothoulakis C, LaMont JT, Eglow R, Gao N, Rubins JB, Theoharides TC, Dickey BF (1991) Characterizing of rabbit ileal receptors for Clostridium difficile toxin A. J Clin Invest 88:119–125PubMedCrossRefGoogle Scholar
  118. Pothoulakis C, Galili U, Castagliuolo I, Kelly CP, Nikulasson S, Dudeja PK, Brasitus TA, LaMont JT (1996a) A human antibody binds to α-galactose receptors and mimics the effects of Clostridium difficile toxin A in rat colon. Gastroenterology 110:1704–1712PubMedCrossRefGoogle Scholar
  119. Pothoulakis C, Gilbert RJ, Cladaras C, Castagliuolo I, Semenza G, Hitti Y, Montcrief JS, Linevsky J, Kelly CP, Nikulasson S, Desai HP, Wilkins TD, LaMont JT (1996b) Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J Clin Invest 98:641–649PubMedCrossRefGoogle Scholar
  120. Pothoulakis C, Castagliuolo I, LaMont JT (1998) Nerves and intestinal mast cells modulate responses to enterotoxins. News Physiol Sci 13:58–63PubMedGoogle Scholar
  121. Poxton IR, McCoubrey J, Blair G (2001) The pathogenicity of Clostridium difficile. Clin Microbiol Infect 7:421–427PubMedCrossRefGoogle Scholar
  122. Qa’Dan M, Spyres LM, Ballard JD (2000) pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 68:2470–2474PubMedCrossRefGoogle Scholar
  123. Qa’Dan M, ’Ramsey M, Daniel J, Spyres LM, Safiejko-Mroczka B, Ortiz-Leduc W, Ballard JD (2002) Clostridium difficile toxin B activates dual caspase-dependent and caspase-independent apoptosis in intoxicated cells. Cell Microbiol 4:425–434PubMedCrossRefGoogle Scholar
  124. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, VanderSpek J, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150PubMedCrossRefGoogle Scholar
  125. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11:471–477PubMedCrossRefGoogle Scholar
  126. Rolfe RD (1991) Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters. Infect Immun 59:1223–1230PubMedGoogle Scholar
  127. Rolfe RD, Song W (1995) Immunoglobulin and non-immunoglobulin components of human milk inhibit Clostridium difficile toxin A-receptor binding. J Med Microbiol 42:10–19PubMedGoogle Scholar
  128. Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumonia. Mol Microbiol 25:819–829PubMedCrossRefGoogle Scholar
  129. Ruoslahti E (1997) Stretching is good for a cell. Science 276:1345–1346PubMedCrossRefGoogle Scholar
  130. Rupnik M, Avesani V, Janc M, Von Eichel-Streiber C, Delmée M (1998) A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36:2240–2247PubMedGoogle Scholar
  131. Rupnik M, Grabnar M, Geric B (2003a) Binary toxin producing Clostridium difficile strains. Anaerobe 9:289–294PubMedCrossRefGoogle Scholar
  132. Rupnik M, Kato N, Grabnar M, Kato H (2003b) New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clinic Microbiol 41:1118–1125CrossRefGoogle Scholar
  133. Sambol SP, Merrigan MM, Lyerly D, Gerding DN, (2000) Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease. Infect Immun 68:5480–5487PubMedCrossRefGoogle Scholar
  134. Sauerborn M, Von Eichel-Streiber C (1990) Nucleotide sequence of Clostridium difficile toxin A. Nucleic Acids Res 18:1629–1630PubMedCrossRefGoogle Scholar
  135. Savidge TC, Pan W-H, Newman P, O’Brien M, Anton PM, Pothoulakis C (2003) Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. Gastroenterology 125:413–420PubMedCrossRefGoogle Scholar
  136. Schallehn G, Eklund MW, Brandis H (1980) Phage conversion of Clostridium novyi type A. Zbl Bakt. A247:95–100Google Scholar
  137. Schiavo G, van der Goot FG (2001) The bacterial toxin toolkit. Nat Mol Cell Biol 2:530–537CrossRefGoogle Scholar
  138. Schmidt M, Vo M, Thiel M, Bauer B, Grannass A, Tapp E, Cool RH, De Gunzburg J, Von Eichel-Streiber C, Jakobs KH (1998) Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. J Biol Chem 273:7413–7422PubMedCrossRefGoogle Scholar
  139. Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins—effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304PubMedCrossRefGoogle Scholar
  140. Selzer J, Hofmann F, Rex G, Wilm M, Mann M, Just I, Aktories K (1996) Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J Biol Chem 271:25173–25177PubMedCrossRefGoogle Scholar
  141. Shibata Y, Nakamura H, Kato S, Tomoike H (1996) Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J Immunol 156:772–777PubMedGoogle Scholar
  142. Siffert J-C, Baldacini O, Kuhry J-G, Wachsmann D, Benabdelmoumene S, Faradji A, Monteil H, Poindron P (1993) Effects of Clostridium difficile toxin B on human monocytes and macrophages: Possible relationship with cytoskeletal rearrangement. Infect Immun 61:1082–1090PubMedGoogle Scholar
  143. Smith JA, Cooke DL, Hyde S, Borriello SP, Long RG (1997) Clostridium difficile toxin A binding to human intestinal epithelial cells. J Med Microbiol 46:953–958PubMedCrossRefGoogle Scholar
  144. Spyres LM, Qa’Dan M, Meader A, Tomasek JJ, Howard EW, Ballard JD (2001) Cytosolic delivery and characterization of the TcdB glucosylating domain by using heterologous protein fusion. Infect Immun 69:599–601PubMedCrossRefGoogle Scholar
  145. Spyres LM, Daniel J, Hensley A, Qa’Dan M, Ortiz-Leduc W, Ballard J (2003) Mutational analysis of the enzymatic domain of Clostridium difficile toxin B reveals novel inhibitors of the wild-type toxin. Infect Immun 71:3294–3301PubMedCrossRefGoogle Scholar
  146. Stoddart B, Wilcox MH (2002) Clostridium difficile. Curr Opin Infect Dis 15:513–518PubMedGoogle Scholar
  147. Surawicz CM, McFarland LV (1999) Pseudomembranous colitis: causes and cures. Digestion 60:91–100PubMedCrossRefGoogle Scholar
  148. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208PubMedGoogle Scholar
  149. Teneberg S, Lönnroth I, Löpez JFT, Galili U, Halvarsson MÖ, Ångström J, Karlsson KA (1996) Molecular mimicry in the recognition of glycosphingolipids by Galα3Galβ4GlcNAcβ-binding Clostridium difficile toxin A, human natural anti α-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology 6:599–609PubMedCrossRefGoogle Scholar
  150. Thelestam M, Chaves-Olarte E (2000) Cytotoxic effects of the Clostridium difficile toxins. Curr Top Microbiol Immunol 250:85–96PubMedGoogle Scholar
  151. Torres J, Camorlinga-Ponce M, Munoz O (1992) Sensitivity in culture of epithelial cells from rhesus monkey kidney and human colon carcinoma to toxins A and B from Clostridium difficile. Toxicon 30:419–426PubMedCrossRefGoogle Scholar
  152. Triadafilopoulos G, Pothoulakis C, O’Brien MJ, LaMont JT (1987) Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology 93:273–279PubMedGoogle Scholar
  153. Triadafilopoulos G, Pothoulakis C, Weiss R, Tiampaolo C, LaMont JT (1989) Comparative study of Clostridium difficile toxin A and cholera toxin in rabbit ileum. Gastroenterology 97:1186–1192PubMedGoogle Scholar
  154. Tucker KD, Wilkins TD (1991) Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 59:73–78PubMedGoogle Scholar
  155. Unligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10:510–517PubMedCrossRefGoogle Scholar
  156. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM (2000) X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J 19:5269–5280PubMedCrossRefGoogle Scholar
  157. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes & Dev 11:2295–2322CrossRefGoogle Scholar
  158. Vetter IR, Hofmann F, Wohlgemuth S, Herrmann C, Just I (2000) Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J Mol Biol 301:1091–1095PubMedCrossRefGoogle Scholar
  159. Von Eichel-Streiber C (1993) Molecular biology of the clostridium difficile toxins. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer-Verlag, New York, pp 264–289Google Scholar
  160. Von Eichel-Streiber C, Sauerborn M (1990) Clostridium difficile toxin A carries a C-terminal structure homologous to the carbohydrate binding region of streptococcal glycosyltransferase. Gene 96:107–113CrossRefGoogle Scholar
  161. Von Eichel-Streiber C, Harperath U, Bosse D, Hadding U (1987) Purification of two high molecular weight toxins of Clostridium difficile which are antigenically related. Microb Pathogen 2:307–318CrossRefGoogle Scholar
  162. Von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerborn M (1990) Cloning of Clostridium difficile toxin B gene and demonstration of high N-terminal homology between toxins A and B. Med Microbiol Immunol 179:271–279CrossRefGoogle Scholar
  163. Von Eichel-Streiber C, Warfolomeow I, Knautz D, Sauerborn M, Hadding U (1991) Morphological changes in adherent cells induced by Clostridium difficile toxins. Biochem Soc Trans 19:1154–1160Google Scholar
  164. Von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerborn M (1992a) Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233:260–268CrossRefGoogle Scholar
  165. Von Eichel-Streiber C, Sauerborn M, Kuramitsu HK (1992b) Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 174:6707–6710Google Scholar
  166. Von Eichel-Streiber C, Meyer zu Heringdorf D, Habermann E, Sartingen S (1995) Closing in on the toxic domain through analysis of a variant clostridium difficile cytotoxin B. Mol Microbiol 17:313–321CrossRefGoogle Scholar
  167. Von Eichel-Streiber C, Boquet P, Sauerborn M, Thelestam M (1996) Large clostridial cytotoxins—a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4:375–382CrossRefGoogle Scholar
  168. Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S, Qamar A, Pothoulakis C, LaMont JT, Kelly CP (2000) p38MAP kinase activation by Clostridum difficile toxin A mediates monocytes necrosis, IL-8 production, and enteritis. J Clin Invest 105:1147–1156PubMedCrossRefGoogle Scholar
  169. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312PubMedCrossRefGoogle Scholar
  170. Wettschureck N, Offermanns S (2002) Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 80:629–638PubMedCrossRefGoogle Scholar
  171. Wiggins CAR, Munro S (1998) Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci 95:7945–7950PubMedCrossRefGoogle Scholar
  172. Wren BW (1991) A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5:797–803PubMedCrossRefGoogle Scholar
  173. Zhang Z, Vuori K, Wang H-G, Reed JC, Ruoslahti E (1996) Integrin activation by R-ras. Cell 85:61–69PubMedCrossRefGoogle Scholar
  174. Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL, Der CJ (1998) Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17:1415–1438PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für ToxikologieMedizinische Hochschlule HannoverHannoverGermany

Personalised recommendations