The Role of Molecular Vibrations in the Spin Crossover Phenomenon

  • Jean-Pierre Tuchagues
  • Azzedine Bousseksou
  • Gábor Molnár
  • John J. McGarvey
  • François Varret
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 235)

Abstract

The prominent role of intra- and inter-molecular vibrations in the spin crossover phenomenon is outlined, based on the results obtained by the spin crossover community. The experimental results gained from various techniques (IR, Raman, X-ray diffraction, heat capacity, Mössbauer spectroscopy, synchrotron radiation techniques, etc.) and their interpretation are described. The contribution of theoretical models (thermodynamic and Ising-like electro-vibrational models) to the understanding of the relationship between the relative energies of the high-spin and low-spin states and molecular vibrations, especially when the high-spin and low-spin energy levels are close to each other, is stressed.

Keywords

Spin crossover Spin-state equilibrium Vibrational properties Molecular vibrations Lattice dynamics Mass effect Isotope substitution IR and Raman spectroscopy Synchrotron radiation techniques Ising-like microscopic model Ising-like electro-vibrational model Macroscopic thermodynamic model 

List of Abbreviations and Symbols

4,4′-bipy

4,4′-Bipyridine

bpp

2,6-Bis(pyrazol-3-yl)pyridine

bpy

2,2′-Bipyridine

bpym

2,2′-Bipyrimidine

bt

2,2′-Bithiazoline

btr

4,4′-Bis-1,2,4-triazole

bzimpy

2,6-Bis(benzimidazol-2′-yl)pyridine

DFT

Density functional techniques

EXAFS

Extended X-ray absorption fine structure

fLM

Lamb-Mössbauer factor

FTIR

Fourier transform infrared spectroscopy

HB(pz)3

Hydrotris(1-pyrazolyl)borate

H2B(pz)2

Dihydrobis(pyrazolyl)borate

HS

High-spin

LIESST

Light induced excited spin state trapping

LS

Low-spin

3-MeO,5-NO2-sal-N(1,10)NMe(4,7)

1,10-Bis(3-methoxy,5-nitro-salicylaldimine)-1,4-diaza-7,10-bis(methylaza)decane

NFS

Nuclear forward scattering

NIS

Nuclear inelastic scattering

5-NO2-sal-N(1,4,7,10)

1,10-Bis(5-nitro-salicylaldimine)-1,4,7,10-tetraazadecane

phen

o-Phenanthroline

2-pic

2-Picolylamine

ptz

1-Propyltetrazole

PVDOS

Partial vibrational density of states

py

Pyridine

pz

Pyrazine

SCO

Spin crossover

ΘD

Debye temperature

tpa

Tris(2-pyridylmethyl)amine

tptMet

1,1,1-Tris{[N-(2-pyridylmethyl)-N-methylamino]-methyl}ethane

TRIM

4′-(4-Methylimidazole-2′-(2″-imidazolylmethyl)imidazole

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cambi L, Szegö L (1931) Ber Dtsch Chem Ges 64:259Google Scholar
  2. 2.
    Cambi L, Szegö L (1933) Ber Dtsch Chem Ges 66:656Google Scholar
  3. 3.
    König E (1987) Prog Inorg Chem 35:527Google Scholar
  4. 4.
    Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024Google Scholar
  5. 5.
    Gütlich P (1981) Struct Bond 44:83Google Scholar
  6. 6.
    Toftlund H (1989) Coord Chem Rev 94:67Google Scholar
  7. 7.
    Bousseksou A, McGarvey JJ, Varret F, Real JA, Tuchagues J-P, Dennis AC, Boillot ML (2000) Chem Phys Lett 318:409Google Scholar
  8. 8.
    Brehm G, Reiher M, Schneider S (2002) J Phys Chem A 106:12,024Google Scholar
  9. 9.
    Smit E, Manoun B, deWaal D (2001) J Raman Spectrosc 32:339Google Scholar
  10. 10.
    Moliner N, Salmon L, Capes L, Carmen Munoz M, Letard JF, Bousseksou A, Tuchagues J-P, McGarvey JJ, Dennis AC, Castro M, Burriel R, Real JA (2002) J Phys Chem B 106:4276Google Scholar
  11. 11.
    Molnar G, Niel V, Gaspar AB, Real JA, Zwick A, Bousseksou A, McGarvey JJ (2002) J Phys Chem B 106:9701Google Scholar
  12. 12.
    Zilverentant CL, van Albada GA, Bousseksou A, Haasnot JG, Reedijk J (2000) Inorg Chim Acta 303:287Google Scholar
  13. 13.
    Batschelet WH, Rose NJ (1983) Inorg Chem 22:2078, 2083Google Scholar
  14. 14.
    Takemoto JH, Hutchinson B (1972) Inorg Nucl Chem Lett 8:769Google Scholar
  15. 15.
    Takemoto JH, Hutchinson B (1973) Inorg Chem 12:705Google Scholar
  16. 16.
    Takemoto JH, Streusand B, Hutchinson B (1974) Spectrochim Acta 30:827Google Scholar
  17. 17.
    Hutchinson B, Hoffbauer M (1976) Spectrochim Acta A32:1785Google Scholar
  18. 18.
    Hoefer A (2000) PhD thesis, University of MainzGoogle Scholar
  19. 19.
    Dennis AC (2000) PhD thesis, Queen’s University BelfastGoogle Scholar
  20. 20.
    Jung J, Spiering H, Yu Z, Gütlich P (1995) Hypefine Interact 95:107Google Scholar
  21. 21.
    Paulsen H, Winkler H, Trautwein AX, Grünsteudel H, Rusanov V, Toftlund H (1999) Phys Rev B 59:975Google Scholar
  22. 22.
    Paulsen H, Grünsteudel H, Meyer-Klaucke W, Gerdau M, Grünsteudel HF, Chumakov AI, Rüffer R, Winkler H, Toftlund H, Trautwein AX (2001) Eur Phys J 23:463Google Scholar
  23. 23.
    Emanullah M, Linert W, Gutmann V (1995) Vib Spectrosc 9:265Google Scholar
  24. 24.
    Emanullah M, Renz F, El-Ayaan U, Wiesinger G, Linert W (1997) Vib Spectrosc 14:95Google Scholar
  25. 25.
    Müller EW, Ensling J, Spiering H, Gütlich P (1983) Inorg Chem 22:2074Google Scholar
  26. 26.
    Granjean F, Long GJ, Hutchinson BB, Ohlhausen L, Neill P, Holcomb JD (1989) Inorg Chem 28:4406Google Scholar
  27. 27.
    Fleisch J, Gütlich P, Hasselbach KM, Müller W (1976) Inorg Chem 15:958Google Scholar
  28. 28.
    Ferraro JR (1979) Coord Chem Rev 29:67Google Scholar
  29. 29.
    Molnár G, Niel V, Real J-A, Dubrovinsky L, Bousseksou A, McGarvey JJ (2003) J Phys Chem B 107:3149Google Scholar
  30. 30.
    Figg DC, Herber R, Potenza JA (1992) Inorg Chem 31:2111Google Scholar
  31. 31.
    Suemura N, Ohama M, Kaizaki S (2001) Chem Commun 1538Google Scholar
  32. 32.
    Tayagaki T, Tanaka K (2001) Phys Rev Lett 86:2886Google Scholar
  33. 33.
    Tayagaki T, Tanaka K (2001) J Luminesc 94/95:537Google Scholar
  34. 34.
    Molnar G, Bousseksou A, Zwick A, McGarvey JJ (2003) Chem Phys Lett 367:593Google Scholar
  35. 35.
    Brady C (2002) PhD thesis, Queen’s University BelfastGoogle Scholar
  36. 36.
    Zimmermann R, König E (1977) J Phys Chem Solids 38:779Google Scholar
  37. 37.
    Boukheddaden K, Varret F (1992) Hyperfine Interact 72:349Google Scholar
  38. 38.
    König E, Ritter G, Kulshreshtha SK (1985) Chem Rev 85:219Google Scholar
  39. 39.
    Yu Z, Schmitt G, Böres N, Spiering H, Gütlich P (1994) Hyperfine Interact 93:1459Google Scholar
  40. 40.
    Yousif A, Winkler H, Toftlund H, Trautwein AX, Herber RH (1989) J Phys Condens Matter 1:7103Google Scholar
  41. 41.
    Jung J (1995) PhD thesis, University of MainzGoogle Scholar
  42. 42.
    Floquet S, Salunke S, Boillot M-L, Clément R, Varret F, Boukheddaden K, Rivière E (2002) Chem Mater 14:4164Google Scholar
  43. 43.
    Grünsteudel H, Paulsen H, Meyer-Klaucke W, Winkler H, Trautwein AX, Grünsteudel HF, Baron AQR, Chumakov AI, Rüffer R Toftlund H (1998) Hyperfine Interact 113:311Google Scholar
  44. 44.
    Paulsen H, Benda R, Herta C, Schünemann V, Chumakov AI, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Phys Rev Lett 86:1351Google Scholar
  45. 45.
    Chumakov AI, Rüffer R (1998) Hyperfine Interact 113:59Google Scholar
  46. 46.
    Lübbers R, Nowitzke G, Goodwin HA, Wortmann G (1997) J Phys France 7:C2–651Google Scholar
  47. 47.
    Yokoyama T, Murakami Y, Kiguchi M, Komatsu T, Kojima N (1998) Phys Rev B 58:14328Google Scholar
  48. 48.
    König E (1991) Struct Bond 76:51Google Scholar
  49. 49.
    Sorai M (2001) Bull Chem Soc Jpn 74:2223Google Scholar
  50. 50.
    Sorai M, Seki S (1974) J Phys Chem Solids 35:555Google Scholar
  51. 51.
    Wajnflasz J (1970) Phys Stat Solid 40:537Google Scholar
  52. 52.
    Wajnflasz J, Pick R (1971) J Phys (Paris) 32:C1–91Google Scholar
  53. 53.
    Bari RA, Sivardière J (1972) Phys Rev 5:4446Google Scholar
  54. 54.
    Kambara T (1979) J Chem Phys 70:4199Google Scholar
  55. 55.
    Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65Google Scholar
  56. 56.
    Slichter CP, Drickamer HG (1972) J Chem Phys 56:2142Google Scholar
  57. 57.
    In the electro-vibrational models the electronic and vibrational contributions to the energy of the molecule are considered independently (Born-Oppenheimer approximation). This is at variance with the vibronic models where the energy states are described by vibronic wave-functions, i.e., non factorized in the electronic functions ⊗ vibration functions basis setGoogle Scholar
  58. 58.
    Bousseksou A, Constant-Machado H, Varret F (1995) J Phys I France 5:747Google Scholar
  59. 59.
    Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) J Phys I France 2:1381Google Scholar
  60. 60.
    Bousseksou A (1992) PhD thesis, University of Paris VIGoogle Scholar
  61. 61.
    The high gHS/gLS value (2189) is an average effective ratio of the degeneracies in the HS and LS states. This term writes: gHS/gLS=(gHS,elec/gLS,elec)(gHS,vib/gLS,vib). The term (gHS,vib/gLS,vib) is equal to ∠ I=1, number of modes (gi HS/gi LS). If we consider an average (gi HS,vib/gi LS,vib)=1.5 for each mode (usual observation), for the 15 modes of the octahedron this term is then equal to (1.5)15, leading to the gHS/gLS value of 5(1.5)15=2189Google Scholar
  62. 62.
    Gütlich P, Köppen H, Steinhäuser HG (1980) Chem Phys Lett 74:475Google Scholar
  63. 63.
    Bousseksou A, Tommasi L, Lemercier G, Varret F, Tuchagues J-P (1995) Chem Phys Lett 243:493Google Scholar
  64. 64.
    Real JA, Castro I, Bousseksou A, Verdaguer M, Buriel R, Linares J, Varret F (1997) Inorg Chem 36:455Google Scholar
  65. 65.
    Paulsen H. Private communicationGoogle Scholar
  66. 66.
    Bousseksou A, Verelst M, Constant-Machado H, Lemercier G, Tuchagues J-P, Varret F (1996) Inorg Chem 35:110Google Scholar
  67. 67.
    Bousseksou A, Salmon L, Varret F, Tuchagues J-P (1998) Chem Phys Lett 282:209Google Scholar
  68. 68.
    Moliner N, Muñoz M, Létard S, Salmon L, Tuchagues J-P, Bousseksou A, Real JA (2002) Inorg Chem 41:6997Google Scholar

Authors and Affiliations

  • Jean-Pierre Tuchagues
    • 1
  • Azzedine Bousseksou
    • 1
  • Gábor Molnár
    • 1
  • John J. McGarvey
    • 2
  • François Varret
    • 3
  1. 1.Laboratoire de Chimie de CoordinationCNRS UPR 8241ToulouseFrance
  2. 2.School of ChemistryQueen’s University BelfastBelfastNorthern Ireland, UK
  3. 3.Laboratoire de Magnétisme et d’Optique de VersaillesCNRS UMR 8634VersaillesFrance

Personalised recommendations