Excess Electron Transfer in Defined Donor-Nucleobase and Donor-DNA-Acceptor Systems

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 236)


The transfer of positive charge through DNA has been investigated in great detail over the last couple of years. In this area, major new mechanistic insights have been gained using defined acceptor modified DNA strands. Transport of exon electrons, in contrast, is much less well-explored. Our current mechanistic understanding is based on EPR spectroscopic studies of DNA material reduced using solvated electrons. Herein we report the development of defined donor-acceptor modified DNA double strands which allow the study of excess electron transfer with high precision. The model mimics the DNA repair process of DNA photolyases: they contain a reduced and deprotonated flavin as a light-triggered electron donor and a thymine dimer as the electron acceptor. The dimer performs a cycloreversion upon single electron reduction, which translates the electron capture event into a readily detectable strand break signal. Investigations with these model systems allowed us to clarify that electrons hop through DNA using pyrimidine bases as stepping stones.


Excess Electron Pyrimidine Dimer Single Electron Transfer Cyclobutane Pyrimidine Dimer Single Electron Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pouget JP, Douki T, Richard MJ, Cadet J (2000) Chem Res Toxicol 13:541Google Scholar
  2. 2.
    Seidel CAM, Schulz A, Sauer MHM (1996) J Phys Chem 100:5541Google Scholar
  3. 3.
    Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617Google Scholar
  4. 4.
    Melvin T, Botchway S, Parker AW, O’Neill P (1995) Chem Comm 653Google Scholar
  5. 5.
    Debije MG, Milano MT, Bernhard WA (1999) Angew Chem Int Ed 38:2752Google Scholar
  6. 6.
    Holmlin RE, Dandlicker PJ, Barton JK (1997) Angew Chem Int Ed 36:2715Google Scholar
  7. 7.
    Giese B (2000) Acc Chem Res 33:631Google Scholar
  8. 8.
    Lewis FD, Letsinger RL, Wasielewski MR (2001) Acc Chem Res 34:159Google Scholar
  9. 9.
    Schuster GB (2000) Acc Chem Res 33:253Google Scholar
  10. 10.
    Giese B (2000) Chem Phys Chem 1:195Google Scholar
  11. 11.
    Giese B, Amaudrut J, Köhler A-K, Spormann M, Wessely S (2001) Nature 4112:318Google Scholar
  12. 12.
    Lewis FD, Miller SE, Hayes RT, Wasielewski MR (2002) J Am Chem Soc 124:11280Google Scholar
  13. 13.
    Barnett RN, Cleveland CL, Joy A, Landman U, Schuster GB (2001) Science 294:567Google Scholar
  14. 14.
    Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Science 277:673Google Scholar
  15. 15.
    Santosh U, Schuster GB (2002) J Am Chem Soc 124:10986Google Scholar
  16. 16.
    Williams TT, Barton JK (2002) J Am Chem Soc 124:1840Google Scholar
  17. 17.
    Dotse AK, Boone EK, Schuster GB (2000) J Am Chem Soc 122:6825Google Scholar
  18. 18.
    Vivic DA, Odom DT, Núñez ME, Gianolio DA, McLaughlin LW, Barton JK (2000) J Am Chem Soc 122:8603Google Scholar
  19. 19.
    Burrows CJ, Muller JG (1998) Chem Rev 98:1109Google Scholar
  20. 20.
    Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, WashingtonGoogle Scholar
  21. 21.
    Lewis FD, Liu X, Wu Y, Miller SE, Wasielewski MR, Letsinger RL, Sanishvili R, Joachimiak A, Tereshko V, Egli M (1999) J Am Chem Soc 121:9905Google Scholar
  22. 22.
    Giese B, Wessely S, Sporman M, Lindemann U, Meggers E, Michel-Beyerle ME (1999) Angew Chem Int Ed 38:996Google Scholar
  23. 23.
    Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105Google Scholar
  24. 24.
    Yoo K-H-, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi HY (2001) Phys Rev Lett 87:1981021Google Scholar
  25. 25.
    Fink H-W, Schönenberger C (1999) Nature 398:407Google Scholar
  26. 26.
    Porath D, Bezryadin A, De Vries S, Dekker C (2000) Nature 403:635Google Scholar
  27. 27.
    Heelis PF, Hartman RF, Rose SD (1995) Chem Soc Rev 24:289Google Scholar
  28. 28.
    Carell T (1995) Angew Chem Int Ed 34:2491Google Scholar
  29. 29.
    Sancar A (1994) Biochemistry 33:2Google Scholar
  30. 30.
    Carell T, Burgdorf LT, Kundu LM, Cichon MK (2001) Curr Op Chem Biol S 491Google Scholar
  31. 31.
    Kanai S, Kikuna R, Toh H, Ryo H, Todo T (1997) J Mol Evol 45:535Google Scholar
  32. 32.
    Hitomi K, Nakamura H, Kim S-T, Mizikoshi T, Ishikawa T, Iwai S, Todo T (2001) J Biol Chem 276:10103Google Scholar
  33. 33.
    Yeh S-R, Falvey DE (1992) J Am Chem Soc 114:7313Google Scholar
  34. 34.
    Scannel MP, Fenick DJ, Yeh S-R, Falvey DE (1997) J Am Chem Soc 119:1971Google Scholar
  35. 35.
    Steenken S, Telo JP, Novais HM, Candeias LP (1992) J Am Chem Soc 114:4701Google Scholar
  36. 36.
    Scannel MP, Prakash G, Falvey DE (1997) J Phys Chem A 101:4332Google Scholar
  37. 37.
    Steenken S (1997) Biol Chem 378:1293Google Scholar
  38. 38.
    Zhongli XL, Sevilla MD (2001) J Phys Chem B 105:10115Google Scholar
  39. 39.
    Debije MG, Bernhard WA (2002) J Phys Chem A 106:4608Google Scholar
  40. 40.
    Voityuk AA, Michel-Beyerle ME, Rösch N (2001) Chem Phys Lett 342:231Google Scholar
  41. 41.
    Carell T, Epple R, Gramlich V (1996) Angew Chem Int Ed 35:620Google Scholar
  42. 42.
    Epple R, Wallenborn E-U, Carell T (1997) J Am Chem Soc 119:7440Google Scholar
  43. 43.
    Hartman RF, Rose SD (1992) J Am Chem Soc 114:3559Google Scholar
  44. 44.
    Carell T, Epple R (1998) Eur J Org Chem 7:1245Google Scholar
  45. 45.
    Cichon MK, Arnold S, Carell T (2002) Angew Chem Int Ed 51:767Google Scholar
  46. 46.
    Wagenknecht H-A, Stemp EDA, Barton JK (2000) Biochemistry 39:5483Google Scholar
  47. 47.
    Epple R, Carell T (1998) Angew Chem Int Ed 37:938Google Scholar
  48. 48.
    Epple R, Carell T (1999) J Am Chem Soc 121:7318Google Scholar
  49. 49.
    Schwögler A, Carell T (2000) Org Lett 2:1415Google Scholar
  50. 50.
    Butenandt J, Eker APM, Carell T (1998) Chem Eur J 4:642Google Scholar
  51. 51.
    Schwögler A, Burgdorf LT, Carell T (2000) Angew Chem Int Ed 39:3918Google Scholar
  52. 52.
    Kundu LM, Burgdorf LT, Kleiner O, Batschauer A, Carell T (2002) Chem Bio Chem 3:1053Google Scholar
  53. 53.
    Behrens C, Burgdorf LT, Schwögler A, Carell T (2002) Angew Chem Int Ed 114:1841Google Scholar
  54. 54.
    Dandlicker PJ, Holmlin RE, Barton JK (1997) Science 275:1465Google Scholar
  55. 55.
    Dandlicker PJ, Núñez ME, Barton JK (1998) Biochemistry 37:6491Google Scholar
  56. 56.
    Bixon M, Jortner J (2001) J Am Chem Soc 123:12556Google Scholar
  57. 57.
    Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759Google Scholar
  58. 58.
    Pezeshk A, Symons MCR, McClymont JD (1996) J Phys Chem 100:18562Google Scholar
  59. 59.
    Messer A, Carpenter K, Forzley K, Buchanan J, Yang S, Razskazovskii Y, Cai Z, Sevilla MD (2000) J Phys Chem B 104:1128Google Scholar
  60. 60.
    Cai Z, Gu Z, Sevilla MD (2000) J Phys Chem B 104:10406Google Scholar
  61. 61.
    Nielsen PE, Egholm M (1999) Horizon Scientific Press, NorfolkGoogle Scholar
  62. 62.
    Cichon MK, Haas CH, Grolle F, Mees A, Carell T (2002) J Am Chem Soc 124:13984Google Scholar
  63. 63.
    Behrens C, Ober M, Carell T (2002) Eur J Org Chem 3281Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations