NMR • 3D Analysis • Photopolymerization pp 169-273

Part of the Apvances in Polymer Science book series (POLYMER, volume 170)

Two-Photon Photopolymerization and 3D Lithographic Microfabrication



This chapter attempts to give an overview of the historical development and current progress of femtosecond laser micro-nanofabrication based on multiphoton absorption, and particular emphasis is placed on two-photon photopolymerization. Femtosecond laser interaction with matter differs essentially from those with longer pulses or CW lasers in its significant nonlinearity, ultrafast characteristics and the possibility of highly localization of reaction volume. These features enable three-dimensional (3D) micro-nanofabrication in solid and liquid media. In two-photon photopolymerization, when a near-infrared femtosecond laser is tightly focused into a photopolymerizable resin, 3D polymer micro-nanostructures are produced by pinpoint photopolymerization of liquid precursory resins. Using this direct laser writing scheme, various photonic, micro-optical components and micromechanical devices have been readily produced. The two-photon photopolymerization technology is expected to play a similar role to that played by lithography for planar semiconductor device processing, but for micro-nanofabrication of 3D polymer-based optoelectronic devices as well for microelectromechanical systems.


3D lithography Two-photon photopolymerization Femtosecond laser Micro-nanodevice Micro-nanofabrication 

Abbreviations and Symbols






Atomic force microscope




Body-centered cubic


Bovin serum albumin


Computer-aided manufacturing


Computer-aided design


Charge coupled device


Continuous wave


Distributed Bragg reflection


Distributed feedback


Dimethyl formamide


Face-centered cubic


Full width at half maximum


Hexagonal close packing




Laser diode


Light emitting diode


Microcontact printing


Microelectromechanical system


Methyl methacrylate


Molecular weight


Mumerical aperture




Near-field scanning optical microscope


Photoacid generator


Photonic bandgap


Poly(dimethyl siloxane)


Photonic crystal


Poly(methyl methacrylate)


Point spread function


Poly(vinyl carbazole)


Lead zirconate titanate




Rose Bengal




Simple cubic




Scanning electron microscope


Square of light intensity


Spatial light modulator


Scanning tunneling microscope


Transverse electric


Tetrahydropyranyl methacrylate


Transverse magnetic


Two-photon absorption


Two-photon excitation




Volume element


Extreme UV


Refractive index


Two-photon absorption cross-section


Electrical permittivity


Glass transition temperature


Electric field strength; Young’s modulus


Light intensity




Lightwave frequency


Coherence length


Quality factor


Beam waist of Gaussian beam


Rayleigh depth


Quantum efficiency of proton generation


Shear modulus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Fouassier JP, Rabek JF (1990) Lasers in polymer science and technology. CRC Press, Boca Taton, FLGoogle Scholar
  3. 3.
    Reiser A (1989) Photoreactive polymers: The science and technology of resists. Wiley, New YorkGoogle Scholar
  4. 4.
    Fouassier JP, Rabek JF (1993) (eds) Radiation curing in polymer science and technology. Elsevier, LondonGoogle Scholar
  5. 5.
    Fouassier JP (1995) Photoinitiation, photopolymerization and photocuring: Fundamentals and applications. Hanser, Munich Vienna New YorkGoogle Scholar
  6. 6.
    Nakagawa T, Marutani Y (1996) (eds) Layered manufacturing systems: the latest development of three-dimensional copying technnologies (in Japanese). Kogyo Chosakai, JapanGoogle Scholar
  7. 7.
    Zhang X, Jiang XN, Sun C (1999) Sensor Actuat 77:149Google Scholar
  8. 8.
    Jiang XN, Sun C, Zhang X, Xu B, Ye YH (2000) Sensor Actuat 87:72Google Scholar
  9. 9.
    Bertsch A, Lorenz H, Renaud (1999) Sensor Actuat 73:14Google Scholar
  10. 10.
    Maruo S, Nakamura O, Kawata S (1997) Opt Lett 22:132Google Scholar
  11. 11.
    Parthenopoulos DA, Rentzepis PM (1989) Science 245:843Google Scholar
  12. 12.
    Denk W, Strickler JH, Webb WW (1990) Science 248:73Google Scholar
  13. 13.
    Kawata S, Sun HB, Tanaka T, Takada K (2001) Nature 412:697Google Scholar
  14. 14.
    Tanaka T, Sun HB, Kawata S (2002) Appl Phys Lett 80:312Google Scholar
  15. 15.
    Sun HB, Matsuo S, Misawa H (1999) Appl Phys Lett 74:786Google Scholar
  16. 16.
    Sun HB, Kawakami T, Xu Y, Ye JY, Matsuo S, Misawa H, Miwa M, Kaneko R (2000) Opt Lett 25:1110Google Scholar
  17. 17.
    Sun HB, Mizeikis V, Xu Y, Juodkazis S, Ye JY, Matsuo S, Misawa H (2001) Appl Phys Lett 79:1Google Scholar
  18. 18.
    Sun HB, Tanaka T, Takada K Kawata S (2001) Appl Phys Lett 79:1411Google Scholar
  19. 19.
    Sun HB, Takada K, Kawata S (2001) Appl Phys Lett 79:3173Google Scholar
  20. 20.
    Sun HB, Tanaka T, Kawata S (2002) Appl Phys Lett 80:3673Google Scholar
  21. 21.
    Albota M, Beljonne D, Bredas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Rockel H, Rumi M, Subramaniam C, Webb WW, Wu XL, Xu C (1998) Science 281:1653Google Scholar
  22. 22.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin JQ, Rockel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Nature 398:51Google Scholar
  23. 23.
    Zhou WH, Kuebler SM, Braun KL, Yu TY, Cammack JK, Ober CK, Perry JW, Marder SR (2002) Science 296:1106Google Scholar
  24. 24.
    Belfield KD, Schafer KJ, Liu YU, Liu J, Ren XB, Van Stryland EW (2000) J Phys Org Chem 13:837Google Scholar
  25. 25.
    Bhawalkar JD, He GS, Prasad PN (1996) Rep Prog Phys 59:1041Google Scholar
  26. 26.
    Lehmann O, Stuke M (1995) Science 270:1644Google Scholar
  27. 27.
    Wanke MC, Lehmann O, Muller K, Wen QZ, Stuke M (1997) Science 275:1284Google Scholar
  28. 28.
    Daneshvar K, Raissi M, Bobbio SM (2000) J Appl Phys 88:2205Google Scholar
  29. 29.
    Shiomi M, Yoshidome A, Abe F, Osakada K (1999) Int J Mach Tool Manu 39:237Google Scholar
  30. 30.
    Zhang YZ, Shi LK, Zhang PZ, Xu J (2000) Rare Metal Mat Eng 29:361Google Scholar
  31. 31.
    Sun HB, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J (2001) Opt Lett 26:325Google Scholar
  32. 32.
    Sun HB, Xu Y, Matsuo S, Misawa H (1999) Opt Rev 6:396Google Scholar
  33. 33.
    Menzel R (2001) Photonics: Linear and nonlinear interactions of laser light and matter, Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. 34.
    Saleh BEA, Teich MC (1991) Fundamentals of photonics. Wiley, New YorkGoogle Scholar
  35. 35.
    Milonni PW, Eberly JH ( 1988) Lasers. Wiley, New YorkGoogle Scholar
  36. 36.
    Mei DB, Cheng BY, Hu W, Li ZL, Zhan DH (1995) Opt Lett 20:429Google Scholar
  37. 37.
    Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Nature 404:53Google Scholar
  38. 38.
    Shoji S, Kawata S (2000) Appl Phys Lett 76:2668Google Scholar
  39. 39.
    Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) Appl Phys Lett 79:725Google Scholar
  40. 40.
    Allmen M, Blatter A (1995) Laser-beam interactions with materials. 2nd edn. Springer Berlin Heidelberg New YorkGoogle Scholar
  41. 41.
    Grigoryants AG (1994) Basics of laser material processing. CRC, New YorkGoogle Scholar
  42. 42.
    Shen YR (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  43. 43.
    Boyd RW (1992) Nonlinear optics. Academic, San DiegoGoogle Scholar
  44. 44.
    Kieffer JC, Matte JP, Belair S, Chaker M, Audebert P, Pepin H, Maine P, Strickland D, Bado P, Mourou G (1989) IEEE J Quantum Elect 25:2640Google Scholar
  45. 45.
    Bado P (2000) Laser Focus World 36:73Google Scholar
  46. 46.
    Diels JC, Rudolph W (1996) Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale (Optics and Photonics). Academic, New YorkGoogle Scholar
  47. 47.
    Saeta P, Wang JK, Siegal Y, Bloembergen N, Mazur E (1991) Phys Rev Lett 67:1023Google Scholar
  48. 48.
    Glezer EN, Milosavljevic M, Huang L, Finlay RJ, Her TH, Callan JP, Mazur E (1996) Opt Lett 21:2023Google Scholar
  49. 49.
    Glezer EN, Mazur E (1997) Appl Phys Lett 71:882Google Scholar
  50. 50.
    Goeppert-Mayer M (1931) Ann Phys 9:273Google Scholar
  51. 51.
    Kaiser W, Garrett CGB (1961) Phys Rev Lett 7:229Google Scholar
  52. 52.
    Eberly JH, Lambropoulos P (1978) (eds) Multiphoton processes : proceedings of an international conference at the University of Rochester, Rochester, N.Y., June 6–9, 1977. Wiley, New YorkGoogle Scholar
  53. 53.
    Kano H, Kawata S (1996) Opt Lett 21:1848Google Scholar
  54. 54.
    Higdon PD, Torok P, Wilson T (1999) J Microsc-Oxford 193:127Google Scholar
  55. 55.
    Hell S, Stelzer EHK (1992) Opt Commun 93:277Google Scholar
  56. 56.
    Bhawalkar JD, He GS, Park CK, Zhao CF, Ruland G, Prasad PN (1996) Opt Commun 124:33Google Scholar
  57. 57.
    He GS, Xu GC, Prasad PN, Reinhardt BA, Bhatt JC, Dillard AG (1995) Opt Lett 20:435Google Scholar
  58. 58.
    Fisher WG, Partridge WP, Dees C, Wachter EA (1997) Photochem Photobiol 66:141Google Scholar
  59. 59.
    He GS, Bhawalkar JD, Zhao CF, Park CK, Prasad PN (1995) Opt Lett 20:2393Google Scholar
  60. 60.
    Smith NI, Fujita K, Nakamura O, Kawata S (2001) Appl Phys Lett 78:999Google Scholar
  61. 61.
    Schaffer CB, Nishimura N, Glezer EN, Kim AMT, Mazur E (2002) Opt Express 10:196Google Scholar
  62. 62.
    Strickler JH, Webb WW (1991) Opt Lett 16:1780Google Scholar
  63. 63.
    Kawata S, Kawata Y (2000) Chem Rev 100:1777Google Scholar
  64. 64.
    Liphardt M, Goonesekera A, Jones BE, Ducharme S, Takacs JM, Zhang L (1994) Science 263:367Google Scholar
  65. 65.
    Moerner WE (1987) (ed) Persistent spectral hole burning: Science and applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  66. 66.
    Kim MK, Kachru R (1989) Opt Lett 14:423Google Scholar
  67. 67.
    Irie M (2000) Chem Rev 100:1685Google Scholar
  68. 68.
    Toriumi A, Herrmann JM, Kawata S (1997) Opt Lett 22:555Google Scholar
  69. 69.
    Sekkat Z, Knoll WJ (1995) J Opt Soc Am B 12:1855Google Scholar
  70. 70.
    Toriumi A, Kawata S, Gu M (1998) Opt Lett 23:1924Google Scholar
  71. 71.
    Kawata Y, Ishitobi H, Kawata S (1998) Opt Lett 23:756Google Scholar
  72. 72.
    Meerholz K, Volodin BL, Sandalphon, Kippelen B, Peyghambarian, N (1994) Nature 371:497Google Scholar
  73. 73.
    Day D, Gu M, Smallridge A (2001) Adv Mater 13:1005Google Scholar
  74. 74.
    Day D, Gu M (1999) Opt Lett 24:288Google Scholar
  75. 75.
    Tanaka T, Yamaguchi K, Yamamoto S (2002) Opt Commun 212:45Google Scholar
  76. 76.
    Qiu JR, Kojima K, Miura K, Mitsuyu T, Hirao K (1999) Opt Lett 24:786Google Scholar
  77. 77.
    Miura K, Qiu JR, Fujiwara S, Sakaguchi S, Hirao K (2002) Appl Phys Lett 80:2263Google Scholar
  78. 78.
    Sun HB, Juodkazis S, Watanabe M, Matsuo S, Misawa H, Nishii J (2000) J Phys Chem B 104:3450Google Scholar
  79. 79.
    Yamasaki K, Juodkazis S, Watanabe M, Sun HB, Matsuo S, Misawa H (2000) Appl Phys Lett 76:1000Google Scholar
  80. 80.
    Watanabe M, Sun HB, Juodkazis S, Takahashi T, Matsuo S, Suzuki Y, Nishii J, Misawa H (1999) Jpn J Appl Phys 37: L1527Google Scholar
  81. 81.
    Watanabe M, Juodkazis S, Sun HB, Matsuo S, Misawa H, Miwa M, Kaneko R (1999) Appl Phys Lett 74:3957Google Scholar
  82. 82.
    Watanabe M, Juodkazis S, Sun HB, Matsuo S, Misawa H (2000) Appl Phys Lett 77:13Google Scholar
  83. 83.
    Watanabe M, Juodkazis S, Sun HB, Matsuo S, Misawa H (1999) Phys Rev B 60:9959Google Scholar
  84. 84.
    Miura K, Qiu JR, Inouye H, Mitsuyu T, Hirao K (1997) Appl Phys Lett 71:3329Google Scholar
  85. 85.
    Minoshima K, Kowalevicz AM, Hartl I, Ippen EP, Fujimoto JG (2001) Opt Lett 26:1516Google Scholar
  86. 86.
    Homoelle D, Wielandy S, Gaeta AL, Borrelli NF, Smith C (1999) Opt Lett 24:1311Google Scholar
  87. 87.
    Minoshima K, Kowalevicz AM, Ippen EP, Fujimoto JG (2002) Opt Express 10:645Google Scholar
  88. 88.
    Li Y, Watanabe W, Yamada K, Shinagawa T, Itoh K, Nishii J, Jiang YY (2002) Appl Phys Lett 80:1508Google Scholar
  89. 89.
    Kawamura K, Sarukura N, Hirano M, Hosono H (2001) Appl Phys Lett 78:1038Google Scholar
  90. 90.
    Kawamura K, Sarukura N, Hirano M, Ito N, Hosono H (2001) Appl Phys Lett 79:1228Google Scholar
  91. 91.
    Watanabe W, Kuroda D, Itoh K, Nishii J (2002) Opt Express 10:978Google Scholar
  92. 92.
    Yablonovitch E (1987) Phys Rev Lett 58:2059Google Scholar
  93. 93.
    John S (1987) Phys Rev Lett 58:2486Google Scholar
  94. 94.
    Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: Modeling the flow of light. Princeton Univ Press, SingaporeGoogle Scholar
  95. 95.
    Ho KM, Chan CT, Soukoulis (1990) Phys Rev Lett 65:3152Google Scholar
  96. 96.
    Fukuda K, Sun H, Matsuo S, Misawa H (1998) Jpn J Appl Phys 37: L508Google Scholar
  97. 97.
    Sun HB, Song JF, Xu Y, Matsuo S, Misawa H, Du GT, Liu SY (2000) J Opt Soc Am B 17:476Google Scholar
  98. 98.
    Sun HB, Xu Y, Ye JY, Matsuo S, Misawa H, Song JF, Du GT, Liu SY (2000) Jpn J Appl Phys 39: L591Google Scholar
  99. 99.
    Wu PW, Cheng W, Martini IB, Dunn B, Schwartz BJ, Yablonovitch E (2000) Adv Mater 12:1438Google Scholar
  100. 100.
    Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang YD, Marder SR, Perry JW (2002) Adv Mater 14:194Google Scholar
  101. 101.
    Horiyama M, Sun HB, Miwa M, Matsuo S, Misawa H (1999) Jpn J Appl Phys Lett 38: L212Google Scholar
  102. 102.
    Maruo S, Ikuta K (2000) Appl Phys Lett 76:2656Google Scholar
  103. 103.
    Maruo S, Ikuta K (2002) Sensor Actuat A-Phys 100:70Google Scholar
  104. 104.
    Pappas SP (1985) Radiation Phys Chem25:633Google Scholar
  105. 105.
    Pappas SP (1992) (ed) Radiation curing science and technology. Plenum, New YorkGoogle Scholar
  106. 106.
    Fouassier JP, Rabek JF (1993) (eds) Radiation curing in polymer science and technology. Elsevier, LondonGoogle Scholar
  107. 107.
    Scully MO, Zubairy MS (1997) Cambridge Univ PressGoogle Scholar
  108. 108.
    Hopfield JJ, Worlock JM, Park KJ (1963) Phys Rev Lett 11:414Google Scholar
  109. 109.
    Frohlich D, Staginnus B (1967) Phys Rev Lett 19:476Google Scholar
  110. 110.
    Pao YH and Rentzepis PM (1965) Appl Phys Lett 6:93Google Scholar
  111. 111.
    Chin SL, Bedard G (1971) Phys Lett 36A: 271Google Scholar
  112. 112.
    Papouskova Z, Pola J, Bastl Z, Tiaskal J (1990) J Mecromol Sci Chem A27:1015Google Scholar
  113. 113.
    Morita H, Sadakiyo T (1995) J Photochem Photobiol A 87:163Google Scholar
  114. 114.
    Lee KS, Lee JH, Choi HY, Cha M, Chung MA, Kim YJ, Jung SD (2001) Mol Cryst Liq Cryst 370:155Google Scholar
  115. 115.
    Chung MA, Lee KS, Jung SD (2002) ETRI J 24:221Google Scholar
  116. 116.
    Li CD, Luo L, Wang SF, Huang WT, Gong QH, Yang YY, Feng SJ (2001) Chem Phys Lett 340:444Google Scholar
  117. 117.
    Belfield KD, Schafer KJ, Mourad WJ (2000) J Org Chem 65:4475Google Scholar
  118. 118.
    Jortner J, Ratner M (1997) (eds) Molecular electronics. Blackwell Science, LondonGoogle Scholar
  119. 119.
    Belfield KD, Hagan DJ, Van Stryland EW, Schafer KJ, Negres RA (1999) Org Lett 1:1575Google Scholar
  120. 120.
    Belfield KD, Schafer KJ, Alexander MD Jr (2000) Chem Mater 12:1184Google Scholar
  121. 121.
    Adronov A, Frechet JMJ, He GS, Kim KS, Chung SJ, Swiatkiewicz J, Prasad PN (2000) Chem Mater 12:2838Google Scholar
  122. 122.
    Hu Y (2001) MRS Bull 26:595Google Scholar
  123. 123.
    Adronov A, Frechet JMJ, He GS, Kim KS, Chung SJ, Swiatkiewicz J, Prasad PN (2000) Chem Mater 12:2838Google Scholar
  124. 124.
    Rentzepis PM (1989) US Patent 07 342 978Google Scholar
  125. 125.
    Bradbury S, Bracegirdle B (1998) Introduction to light microscopes. Springer, Berlin Heildelberg New YorkGoogle Scholar
  126. 126.
    Born M, Wolf E (1999) Principle of Optics, 7th edn. Cambridge Univ Press, CambridgeGoogle Scholar
  127. 127.
    Witzgall G, Vrijen R, Yablonovitch E, Doan V, Schwartz BJ (1998) Opt Lett 23:1745Google Scholar
  128. 128.
    Madou MJ (2002) Fundamentals of microfabrication: The science of miniaturization, 2nd edn. CRC Press, New YorkGoogle Scholar
  129. 129.
    Lyshevski SE (2002) MEMS and NEMS: Systems, devices, and structures. CRC Press, New YorkGoogle Scholar
  130. 130.
    (Anon) (2002) Laser Focused World 38 11Google Scholar
  131. 131.
    Cartlidge E (2002) Phys World 15:10Google Scholar
  132. 132.
    Quake SR, Scherer A (2000) Science 290:1536Google Scholar
  133. 133.
    Xia YN, Whitesides GM (1998) Ann Rev Mater Sci 28:153Google Scholar
  134. 134.
    Kumar A, Whitesides GM (1993) Appl Phys Lett 63:2002Google Scholar
  135. 135.
    Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114Google Scholar
  136. 136.
    Kim E, Xia Y, Whitesides GM (1995) Nature 376:581Google Scholar
  137. 137.
    Terris BD, Mamin HJ, Best ME, Logan JA, Rugar D (1996) Appl Phys Lett 69:4262Google Scholar
  138. 138.
    Masuda H, Fukuda K (1995) Science 268:1446Google Scholar
  139. 139.
    Xia Y, Kim E, Zhao X-M, Rogers JA, Prentiss M, Whitesides GM (1996) Science 273:347Google Scholar
  140. 140.
    Wu ES, Strickler JH, Harrell WR, Webb WW (1990) SPIE Proc 1674:776Google Scholar
  141. 141.
    Maruo S, Kawata S (1998) J IEEE MEMS, 7:411Google Scholar
  142. 142.
    Wu PW, Dunn B, Yablonovitch E, Doan V, Schwartz BJ (1999) J Opt Soc Am B 16:605Google Scholar
  143. 143.
    Brodeur A, Chin SL (1999) J Opt Soc Am B 16:637Google Scholar
  144. 144.
    Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) Phys Rev B 53:1749Google Scholar
  145. 145.
    vonderLinde D, Schuler H (1996) J Opt Soc Am B 13:216Google Scholar
  146. 146.
    Boiko Y, Costa JM, Wang M, Esener S (2001) Opt Express 8:571Google Scholar
  147. 147.
    Joshi MP, Pudavar HE, Swiatkiewicz J, Prasad PN, Reianhardt BA (1999) Appl Phys Lett 74:170Google Scholar
  148. 148.
    Kirkpatrick SM, Baur JW, Clark CM, Denny LR, Tomlin DW, Reinhardt BR, Kannan R, Stone MO (1999) Appl Phys A 69:461Google Scholar
  149. 149.
    Matsumoto K (1997) P IEEE 85:612Google Scholar
  150. 150.
    Sauer BB, McLean RS, Thomas RR (1998) Langmuir 14:3045Google Scholar
  151. 151.
    Tarun A, Daza MRH, Hayazawa N, Inouye Y, Kawata S (2002) Appl Phys Lett 80:3400Google Scholar
  152. 152.
    Flory PJ (1952) Principles of polymer chemistry. Cornell University Press, New YorkGoogle Scholar
  153. 153.
    Schulz GV (1997) Chem Ber 80:232Google Scholar
  154. 154.
    Bolon DA, Webb KK (1978) J Appl Polymer Sci 22:2543Google Scholar
  155. 155.
    Decker C, Faure J, Fizet M, Rychla L (1979) Photog Sci Eng 23:137Google Scholar
  156. 156.
    Hageman HJ (1985) Prog Organic Coatings 13:123Google Scholar
  157. 157.
    Booth MJ, Wilson T (2001) J Biomed Opt 6:266Google Scholar
  158. 158.
    Booth MJ, Wilson T (2001) J Microsc-Oxford 201:416Google Scholar
  159. 159.
    Booth MJ, Neil MAA, Juskaitis R, Wilson T (2002) P Natl Acad Sci USA 99:5788Google Scholar
  160. 160.
    Fujimoto M, Aoshima S, Hosoda M, Tsuchiya Y (1999) Opt Lett 24:850Google Scholar
  161. 161.
    DeVoe RJ, Kalveit H, Leatherdale CA, Williams TR (2002) Proc SPIEGoogle Scholar
  162. 162.
    Stamners J (1986) Waves in focal region. Adam Hilgar, BristolGoogle Scholar
  163. 163.
    Gu M (1999) Advanced optical imaging Theory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  164. 164.
    Bahlmann K, Hell SW (2000) Appl Phys Lett 77:612Google Scholar
  165. 165.
    T. Wilson (1990) (ed) Confocal microscopy. Academic, LondonGoogle Scholar
  166. 166.
    Berger V, GauthierLafaye O, Costard E (1997) J Appl Phys 82:60Google Scholar
  167. 167.
    Berger V, GauthierLafaye O, Costard E (1997) Electron Lett 33:425Google Scholar
  168. 168.
    Nakata Y, Okada T, Maeda M (2002) 81: 4239Google Scholar
  169. 169.
    Sharp DN, Campbell M, Dedman ER, Harrison MT, Denning RG, Turberfield A (2002) J Opt Quant Electron 34:3Google Scholar
  170. 170.
    Yang S, Megens M, Aizenberg J, Wiltzius P, Chaikin PM, Russel WB (2002) Chem Mater 14:2831Google Scholar
  171. 171.
    Segawa H, Yoshida K, Kondo T, Matsuo S, Misawa H (2003) J Sol-Gel Sci Techn 26:1023Google Scholar
  172. 172.
    Campagnola PJ, Delguidice DM, Epling GA, Hoffacker KD, Howell AR, Pitts JD, Goodman SL (2000) Macromolecules 33:1511Google Scholar
  173. 173.
    Nakayama Y, Matsuda T (1999) J Biomed Mater Res 48:511Google Scholar
  174. 174.
    Okino H, Nakayama Y, Tanaka M, Matsuda T (2002) J Biomed Mater Res 59:233Google Scholar
  175. 175.
    Pitts JD, Campagnola PJ, Epling GA, Goodman SL (2000) Macromolecules 33:1514Google Scholar
  176. 176.
    Zhou WH, Kuebler SM, Carrig D, Perry JW, Marder SR (2002) J Am Chem Soc 124:1897Google Scholar
  177. 177.
    Zhou WH, Kuebler SM, Braun KL, Yu TY, Cammack JK, Ober CK, Perry JW, Marder SR (2002) Science 296:1106Google Scholar
  178. 178.
    Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437Google Scholar
  179. 179.
    Gruning U, Lehmann V, Engelhardt CM (1995) Appl Phys Lett 66:3254Google Scholar
  180. 180.
    Xu Y, Sun HB, Ye JY, Matsuo S, Misawa H (2001) J Opt Soc Am B 18: 1084Google Scholar
  181. 181.
    Noda S, Tomoda K, Yamamoto N, Chutinan A (2000) Science 289:604Google Scholar
  182. 182.
    Kawakami S (1997) Electron Lett 33:1260Google Scholar
  183. 183.
    Biswas R, Chan CT, Sigalas M, Soukoulis CM, Ho KM (1995) In: Soukoulis CM (ed) Photonic band gap materials. Kluwer Academic Press, London, p 23Google Scholar
  184. 184.
    Straub M, Gu M (2002) Opt Lett 27:1824Google Scholar
  185. 185.
    Noda S, Chutinan A, Imada M (2000) Nature 407:608Google Scholar
  186. 186.
    Noda S, Yokoyama M, Imada M, Chutinan A, Mochizuki M (2001) Science 293:1123Google Scholar
  187. 187.
    Salaneck WR, Seki K, Kahn A, Pireaux JJ (2001) (eds) Conjugated polymer and molecular interfaces: science and technology for photonic and optoelectronic applications. Marcel Dekker, New YorkGoogle Scholar
  188. 188.
    Taton TA, Norris DJ (2002) Nature 416:685Google Scholar
  189. 189.
    Lee WM, Pruzinsky SA, Braun PV (2002) Adv Mater 14:271Google Scholar
  190. 190.
    Ashkin A (1970) Phys Rev Lett 24:156Google Scholar
  191. 191.
    Ashkin A, Schutze K, Dziedzic JM, Eutenuer U, Schliwa M (1990) Nature 348:346Google Scholar
  192. 192.
    Ashkin A (1992) Biophys J 61:569Google Scholar
  193. 193.
    Higurashi E, Sawada R, Ito T (1998) Appl Phys Lett 71:2951Google Scholar
  194. 194.
    Gauthier RC (1995) Appl Phys Lett 67:2269Google Scholar
  195. 195.
    Galajda P, Ormos P (2001) Appl Phys Lett 78:249Google Scholar
  196. 196.
    Friese MEJ, Enger J, Rubinsztein-Dunlop H, Heckenberg NR (1996) Phys Rev A 54:1593Google Scholar
  197. 197.
    He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H (1995) Phys Rev Lett 75:826Google Scholar
  198. 198.
    Sekkat Z, Knoll W (2002) (eds) Photorefractive organic thin films. Academic, New YorkGoogle Scholar
  199. 199.
    Kaneuchi Y, Kawai T, Hamaguchi M, Yoshino K, Irie M (1997) Jpn J Appl Lett, 36:3736Google Scholar
  200. 200.
    Masuda S, Sertowa N, Petkov I (1997) J Polymer Sci A 35:3683Google Scholar
  201. 201.
    Watanabe T, Akiyama M, Totani K, Kuebler SM, Stellacci F, Wenseleers W, Braun K, Marder SR, Perry JW (2002) Adv Funct Mater 12:611Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Applied PhysicsOsaka UniversityOsakaJapan
  2. 2.PRESTO, Japan Science and Technology Corporation (JST)Japan
  3. 3.RIKEN (The Institute of Physical and Chemical Research)SaitamaJapan

Personalised recommendations