Advertisement

Integration of metabolic and signaling networks

  • Dirk Müller
  • Luciano Aguilera-Vázquez
  • Matthias Reuss
  • Klaus Mauch
Chapter
Part of the Topics in Current Genetics book series (TCG, volume 13)

Abstract

This contribution addresses the construction of mathematical models that provide a combined description of metabolic and regulatory processes within cells. In the first part of the article, strategies for reconstruction of metabolic and signaling networks are outlined followed by a discussion of their characteristic properties. The second part focuses on the development of integrated models of metabolism and signal transduction. The case of yeast cyclic AMP (cAMP) signaling and its interaction with energy metabolism and elements of the cell cycle machinery is used to exemplify this approach.

Keywords

Metabolic Network Signaling Network Functional Module Yeast Cell Cycle Anaphase Promote Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198-207CrossRefPubMedGoogle Scholar
  2. 2. Altintas MM, Kirdar B, Onsan ZI, Ulgen KO (2001) Plasmid stability in a recombinant S. cerevisiae strain secreting a bifunctional fusion protein. J Chem Technol Biotechnol 76:612-618CrossRefGoogle Scholar
  3. 3. Anghileri P, Branduardi P, Sternieri F, Monti P, Visintin R, Bevilacqua A, Alberghina L, Martegani E, Baroni MD (1999) Chromosome separation and exit from mitosis in budding yeast: Dependence on growth revealed by cAMP-mediated inhibition. Exp Cell Res 250:510-523CrossRefPubMedGoogle Scholar
  4. 4. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Genet 5:101-113CrossRefGoogle Scholar
  5. 5. Baroni MD, Monti P, Alberghina L (1994) Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Nature 371:339-342CrossRefPubMedGoogle Scholar
  6. 6. Bolte M, Dieckhoff P, Krause C, Braus GH, Irniger S (2003) Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae. Microbiology (UK) 149:1205-1216Google Scholar
  7. 7. Brightman FA, Fell DA (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signaling in PC12 cells. FEBS Lett 482:169-174CrossRefPubMedGoogle Scholar
  8. 8. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5-15CrossRefPubMedGoogle Scholar
  9. 9. Buziol S, Bashir I, Baumeister A, Claassen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80:632-636CrossRefPubMedGoogle Scholar
  10. 10. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369-391PubMedGoogle Scholar
  11. 11. Cross FR (2003) Two redundant oscillatory mechanisms in the yeast cell cycle. Dev Cell 4:741-752CrossRefPubMedGoogle Scholar
  12. 12. Domach MM, Shuler ML (1984) A finite representation model for an asynchronous culture of Escherichia coli. Biotechnol Bioeng 26:877-884CrossRefGoogle Scholar
  13. 13. Eéka A, Hawoong J, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378-382CrossRefPubMedGoogle Scholar
  14. 14. Engelberg D, Simchen G, Levitzki A (1990) In vitro reconstitution of Cdc25-regulated Saccharomyces cerevisiae adenylyl cyclase and its kinetic properties. EMBO J 9:641-651PubMedGoogle Scholar
  15. 15. Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125-145CrossRefPubMedGoogle Scholar
  16. 16. Futcher B (1999) Cell cycle synchronization. Methods Cell Sci 21:79-86CrossRefPubMedGoogle Scholar
  17. 17. Ghaemmaghami S, Huh W, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737-741Google Scholar
  18. 18. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245-252CrossRefPubMedGoogle Scholar
  19. 19. Gross E, Goldberg D, Levitzki A (1992) Phosphorylation of the Saccharomyces cerevisiae Cdc25 in response to glucose results in its dissociation from Ras. Nature 360:762-765CrossRefPubMedGoogle Scholar
  20. 20. Hall DD, Markwardt DD, Parviz F, Heideman W (1998) Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17:4370-4378CrossRefPubMedGoogle Scholar
  21. 21. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47-C52CrossRefPubMedGoogle Scholar
  22. 22. Heinrich R, Neel BG, Rapoport T (2002) Mathematical models of protein kinase signal transduction. Mol Cell 9:957-970CrossRefPubMedGoogle Scholar
  23. 23. Henson MA, Müller D, Reuss M (2002) Cell population modelling of yeast glycolytic oscillations. Biochem J 368:433-446CrossRefPubMedGoogle Scholar
  24. 24. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686-691CrossRefPubMedGoogle Scholar
  25. 25. Kacmar J, Zamamiri A, Carlson R, Abu-Absi NR, Srienc F (2004) Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated flow cytometry. J Biotechnol 109:253-268CrossRefGoogle Scholar
  26. 26. Kholodenko BN, Demin OV, Moehren G, Hoek JB (2000) Quantification of short term signaling by the epidermal growth factor receptor. Biol Chem 274:30169-30181Google Scholar
  27. 27. Kitano H (2003) Cancer robustness: tumour tactics. Nature 426:125CrossRefPubMedGoogle Scholar
  28. 28. Kromenaker SJ, Srienc F (1994) Cell-cycle kinetics of the accumulation of heavy and light-chain immunoglobulin proteins in a mouse hybridoma cell-line. Cytotechnology 14:205-218CrossRefPubMedGoogle Scholar
  29. 29. Levsky JM, Singer RH (2003) Gene expression and the myth of the average cell. Trends Cell Biol 13:4-6CrossRefPubMedGoogle Scholar
  30. 30. Ma P, Wera S, Van Dijck P, Thevelein JM (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10:91-104PubMedGoogle Scholar
  31. 31. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255-261CrossRefPubMedGoogle Scholar
  32. 32. Massague J (2002) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 3:169-178Google Scholar
  33. 33. Mauch K, Buziol S, Schmid JW, Reuss M (2002) Computer aided design of metabolic networks. AIChE Symposium Series 98:82-91Google Scholar
  34. 34. Melton L (2004) Proteomics in multiplex. Nature 429:101-107CrossRefPubMedGoogle Scholar
  35. 35. Müller D, Exler S, Aguilera-Vázquez L, Guerrero-Martín E, Reuss M (2003) Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast 20:351-367CrossRefPubMedGoogle Scholar
  36. 36. Nikawa J, Cameron S, Toda T, Ferguson KM, Wigler M (1987) Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes Dev 1:931-937PubMedGoogle Scholar
  37. 37. Noble D (2002) Modeling the heart - from genes to cells to the whole organ. Science 295:1678-1682CrossRefPubMedGoogle Scholar
  38. 38. Pardo LA, Lazo PS, Ramos S (1993) Activation of adenylate cyclase in Cdc25 mutants of Saccharomyces cerevisiae. FEBS Lett 319:237-243CrossRefPubMedGoogle Scholar
  39. 39. Puchalka J, Kierzek AM (2004) Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys J 86:1357-1372PubMedGoogle Scholar
  40. 40. Ravasz E, Somera L, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551-1555CrossRefPubMedGoogle Scholar
  41. 41. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 2. Mathematical model. Biotechnol Bioeng 55:592-608CrossRefGoogle Scholar
  42. 42. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88-96CrossRefPubMedGoogle Scholar
  43. 43. Schubert W (2003) Topological proteomics, toponomics, MELK-technology. Adv Biochem Eng Biotechnol 83:189-209PubMedGoogle Scholar
  44. 44. Silljé HH, ter Schure EG, Rommens AJ, Huls PG, Woldringh CL, Verkleij AJ, Boonstra J, Verrips CT (1997) Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J Bacteriol 179:6560-6565PubMedGoogle Scholar
  45. 45. Slepchenko BM, Schaff JC, Carson JH, Loew LM (2002) Computational cell biology: Spatiotemporal simulation of cellular events. Annu Rev Biophys Biomolec Struct 31:423-441CrossRefGoogle Scholar
  46. 46. Smith DM, Gao G, Zhang X, Wang G, Dou QP (2000) Regulation of tumor cell apoptotic sensitivity during the cell cycle. Int J Mol Med 6:503-507PubMedGoogle Scholar
  47. 47. Smith ME, Dickinson JR, Wheals AE (1990) Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccharomyces cerevisiae. Yeast 6:53-60CrossRefPubMedGoogle Scholar
  48. 48. Takahashi K, Kaizu K, Hu B, Tomita M (2004) A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20:538-546CrossRefPubMedGoogle Scholar
  49. 49. ten Dijke P, Miyazono K, Heldin CH (2000) Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 25:64-70CrossRefPubMedGoogle Scholar
  50. 50. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31-37CrossRefPubMedGoogle Scholar
  51. 51. Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904-918CrossRefPubMedGoogle Scholar
  52. 52. Tokiwa G, Tyers M, Volpe T, Futcher B (1994) Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371:342-345CrossRefPubMedGoogle Scholar
  53. 53. Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128-140CrossRefPubMedGoogle Scholar
  54. 54. Vasudeva K, Bhalla US (2004) Adaptive stochastic-deterministic chemical kinetic simulations. Bioinformatics 20:78-84CrossRefPubMedGoogle Scholar
  55. 55. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669-689CrossRefPubMedGoogle Scholar
  56. 56. You LC, Hoonlor A, Yin J (2003) Modeling biological systems using Dynetica - a simulator of dynamic networks. Bioinformatics 19:435-436CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • Dirk Müller
    • 1
  • Luciano Aguilera-Vázquez
    • 1
  • Matthias Reuss
    • 1
  • Klaus Mauch
    • 1
  1. 1.Institute for Biochemical Engineering, Allmandring 31, 70569 StuttgartGermany

Personalised recommendations